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Abstract - The next generation UltraSPARC-I CPU represents
a significant step forward in processor performance at the cost of
increased design complexity. Added complexity increases the
risks in achieving functionally correct first silicon. Existing
design verification techniques were supplemented by applying
emulation to obtain an early look at functionality. Discussed are
the goals, methods and results of the UltraSPARC-I emulation.

I. INTRODUCTION

Emulation is a method of functionally implementing a logic
design with performance several orders of magnitude faster
than simulation for the purpose of design verification. Emula-
tion requires the use of dynamically configured hardware in
which to implement the design. Emulation differs from tradi-
tional simulation in that the emulation hardware implements
the functionality of the design while simulation is a general-
ized program that models the functionality while executing on
a general purpose host computer. Where simulation processes
events sequentially, emulation operates in parallel, as will the
final silicon, resulting in fast emulation speeds of approxi-
mately 500 KHz.

The UltraSPARC-I CPU from SPARC Technology, a divi-
sion of Sun Microsystems, Inc., is a high-performance 64-bit
V9 SPARC implementation 100% compatible with existing
binaries [1][2][3][4][5][6]. It is a 4 way superscalar design
using 9 functional units. Support for either tightly-coupled or
loosely-coupled multiprocessing is provided. New VISual
instructions provide outstanding performance for multi-media
applications[7][8].

II. EMULATION GOALS

On-time delivery of new processor designs to market is
critical for SPARC Technology to maintain its advantage.
Emulating a processor design provides a competitive advan-
tage over those that do not emulate designs. When a product
arrives within its market window, it has greater potential for
revenue generation.

The primary goal for processor emulation is to shorten the
time-to-market for the design [9][10]. Emulation provides
verification capabilities not available through any other tech-
nology. Emulation provides five advantages that affect time-
to-market:

• Improves confidence in the design prior to tapeout.

• May reduce the number of silicon iterations to arrive at the
final design.

• Shortens the time to bring-up the silicon testbed by having
software debugged in emulation.

• Provides advanced debug facilities to rapidly isolate any
functional problems in the silicon.

• Provides design re-verification prior to additional silicon
iterations.

Tapeout is the event in time when the design is released for
silicon fabrication. Emulation improves pre-tapeout confi-
dence in the functionality of the design by providing an early
look at tests too complex to simulate, including:

• Power-On-Self-Test (POST) and other diagnostics

• Single-user and Multi-user Solaris operating system boot

• OpenWindows and applications

• Benchmarks, stress tests and random exerciser tools

When emulation finds functional bugs in the processor
design before tapeout, the quality of the resulting silicon is
improved as the bug is corrected before silicon commitment.
This reduces the number of silicon iterations to arrive at the
final design. Emulation finds bugs that slipped through simu-
lation testing that would otherwise be found during silicon
debug.

In a typical CPU project without emulation, system soft-
ware testing is scheduled to complete by first silicon return.
Though completely simulated, subtle problems may escape
detection until silicon bring-up. With emulation, the system
software development is accelerated to meet an earlier sched-
ule for emulation bring-up. Software bugs found and fixed
during emulation bring-up will not cost time during the silicon
bring-up, thus, emulation creates a pretested environment for
silicon.

The emulation system provides the capability to probe any
net within the design and obtain deep history traces of those
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nets. As many as 1000 nets per emulation system can be
probed at one time. These advanced debugging facilities aid in
the rapid isolation of any functional problem discovered in the
silicon.

Design changes can be easily incorporated into the emula-
tion database. If additional silicon iterations to include func-
tionality changes are required, emulation provides significant
design re-verification prior to tapeout.

III. EMULATION METHODOLOGY

The Emulation Methodology consists of four major phases:
Pre-configuration, Configuration, Testbed, and In-Circuit
Emulation (ICE). Fig. 1 shows the relationship between
phases.

Pre-Configuration Preparation must be completed prior to
an attempt at an emulation database configuration. This phase
brings together all of the necessary database control files,
netlists, libraries, and other inputs.

The Full Chip Configuration step uses the vendor supplied
configuration software to create the downloadable emulation
database. This step takes the results of the Pre-Configuration
Preparation phase and generates the bitstream necessary to
program the emulation hardware.

Testbed Preparation includes the design, planning and
implementation of the physical environment that contains the
emulation. This testbed environment must provide all neces-
sary real world hardware interfaces and resources.

The In-Circuit Emulation Phase integrates the testbed and
the design emulation to deliver a system in which verification
and debug can occur.

A. Pre-Configuration Preparation

During Pre-Configuration Preparation, all inputs needed to
successfully complete the full design configuration are assem-
bled and prepared for inclusion in the configuration step.
Some key components and procedures are discussed in the
following subsections.

Leaf-Cell Library Translation.  The UltraSPARC-I project
made liberal use of custom leaf-cell libraries to represent
design elements. To increase the flexibility of the libraries for
the design team, several individual cell libraries were created.
The custom library cells represent elements in terms of the
CPU design primitive elements. For emulation, each element
must be expressed in terms of primitives defined by the emu-
lation vendor. Fortunately, a rather large set of emulation
primitive elements was available; well in excess of 2000 ele-
ments. Using an automated flow to perform this mapping
greatly simplified the task and facilitated rapid updating of the
emulation library to reflect the latest design library changes.

The emulation libraries must be verified to ensure that each
element fully and accurately reflects the original functional

intent of the library designers. This verification is accom-
plished by comparing the results of a simulation of the origi-
nal libraries to the emulation of the new libraries under the
same stimuli. A second verification step for the emulation
library elements is implicitly performed during the block level
testing described below.

Depending on design style, there can be problem areas for
emulation within a leaf-cell library. These must be identified
and modified. Possible problems include “Wire” logic (Wired-
or, Wired-and, etc.) that must be replaced by appropriate com-
binational gates, transistor specified elements that must be
redesigned into gates, element simplification, and multiple
identical elements with different power levels that can be
reduced to a single element (power levels are a circuit require-
ment not an emulation requirement).

Although UltraSPARC-I exclusively used custom leaf-cell
libraries, other projects may benefit from emulation vendor
supplied pretested libraries for many standard ASIC technolo-
gies.

The result of this translation and verification is a set of
libraries in terms of emulation primitives available to support
netlist configurations.

Design Netlists. Full Chip Configuration requires all neces-
sary gate level netlists to be collected and presented to the
configuration software. This can be easy on a small project,
but a design such as UltraSPARC-I involves a large number of
individual netlists that can be in a variety of standard netlist
formats. The netlists originate from different team members
(standard cell designers, datapath designers, megacell design-
ers, etc.) and often use specialized libraries. All netlists must
be in a format acceptable to the emulation vendor’s configura-
tion software. Translations could be required and tools were
developed as needed by the emulation team.

Once netlists are gathered and translated into an appropriate
standard syntax, the semantics of the netlists can be reviewed.

Fig. 1.   The Emulation Methodology consists of four major phases. The
configuration tasks usually overlap in time with the Testbed Preparation. To
successfully go In-Circuit, all tasks must be completed.
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There are several possible problem areas where the original
design may not be optimally compatible with emulation tech-
nology. These incompatibilities are resolved by redesign or
emulation-local modifications to the netlists. Areas of concern
include gated clocks, feed-thrus, and pre-charge logic.

The emulation hardware implements a clock distribution
scheme where highly tuned “low-skew nets” are designed into
the emulation system. These low-skew nets ensure that all
physical areas of the emulation hardware see the clocks with
minimal skew with respect to all other locations within the
system. When a design clock is gated it can no longer be
routed over these special low-skew nets but must be routed
through the system as any other data portion of the design.
This has two very negative effects: potential for Hold Time
Violations in the design, and costs gates plus pins to route the
clock. Gated clocks are redesigned to either remove the gat-
ing, or pull the gating to the root of the clock tree to allow use
of low-skew nets “down-stream” from the point of gating. The
vendor supplied clocktree analysis procedure greatly aids in
identification of this situation. Changes to the clock tree will
be verified during Block Configuration described below.

The design team may provide gate level netlists containing
ports and wires to implement feed-thru paths to reflect the
physical layout of the chip. In a multi-system emulation, the
partitioning of the design is based on minimizing the inter-
system connections while maximizing the capacity of each
system. It is very possible that the floorplanning of the emula-
tion design is radically different from that of the real chip;
unrelated design blocks may co-exist within a single system
while tightly related blocks may be split between systems for
capacity reasons. Since the feed-thrus are designed to reflect
the silicon floorplanning rather than the emulation floorplan,
surprising results can occur. For example, consider a bus that
passes from one block through its neighboring block to a des-
tination block. What if the neighboring block is resident in a
different system than the source or destination block? The bus
could be routed via external cables from the source system to
the system containing the neighboring block, then routed via
different external cables to the system that contains the desti-
nation block. In this example, a feed-thru forces a bus to route
via cables to an external emulation system just to satisfy the
designed feed-thru. The solution is to flatten design feed-thrus
so the emulation configuration sees only direct connections
from source block to actual destination block.

Repeaters can lead to the same problems as feed-thrus.
Since emulation does not make use of or need repeater
devices, they should be flattened from the design for emula-
tion.

Emulation does not support pre-charge logic, pass-thru
latches, or domino logic. They must be redesigned into a static
representation. Such redesign requires careful verification to
ensure that the emulation static model produces a cycle accu-
rate functional representation of the original logic.

Other possible netlist problem areas need to be identified
and resolved before full chip configuration begins.

Megacells and Large Memory Array Megacells. Mega-
cells (custom circuits) come in two basic flavors: those con-
taining large memories and those that do not contain large
memories. The general discussion on megacells applies to
both types while there are additional complications to large
memory array megacells.

Gate level descriptions of megacells may not be available
early enough in the project to start the emulation effort. How-
ever, there must be an RTL level description of each megacell
used for simulation. It may be necessary to create an emula-
tion local gate level description for each megacell. These local
gate models may ultimately replaced by the actual gate level
description from the design team.

Megacells often have creative internal clocking structures
that cause problems for emulation (see discussion on low-
skew nets above). Frequently, such creative clocking is related
to scan control and can be removed or redesigned. Other cre-
ative clocking issues must be reviewed and reimplemented for
emulation.

Memory arrays are implemented in emulation using exter-
nal Memory Emulation Modules (MEM cards). Megacells
containing MEM arrays require the additional step of parti-
tioning the design into a control portion and a memory portion
that maps to one or more MEM cards. Some amount of emula-
tion specific logic may be needed to glue together the control
portion of the megacell to the MEM card array.

All the above reimplementation of the megacells must be
carefully verified for cycle accurate functionality with respect
to the original megacell.

Block Configuration & Quickwave. In previous sections,
there have been several statements about verification of cer-
tain modifications to ensure cycle accurate functionality with
respect to the original design. The method used to perform
this verification is to apply simulation generated test vectors
to an emulation of the equivalent block of logic.

Before beginning to configure the entire chip, the emulation
team configures, in isolation, each individual design block and
selected parts of the design hierarchy. Once configured for
emulation, these individual chunks of logic are test vector ver-
ified to ensure that the top level outputs from the logic are
cycle accurate with respect to the simulation model.

Mismatches indicate a problem with the emulation model.
This could be a bad library element, an incorrect netlist modi-
fication, or an incorrectly redesigned megacell.

Verification at the block level provides early detection of
model problems. This provides faster turn-around while
debugging any such problems and much greater confidence in
the overall emulation model of the design. Once all blocks
pass test vector verification, the full chip configuration begins.



Fig. 3.   The UltraSPARC-I target ICE system is shown on the left. The cables
extending from the interface pods (left center) attach to the Enterprise
systems. Notice the cables that connect between the Enterprises. In the
foreground on the right is an InterModule chassis with several cables, this
unit provides additional system-to-system signal interconnections.
Combining the logic analyzers, over 5000 nets are typically probed.

Fig. 2.   Five Quickturn Design Systems Enterprise model 330 systems: Two
stacked Enterprises in the background on the right, two stacked Enterprises in
the foreground in the center, and a single Enterprise on the left side. The black
cables between the systems provide clocking. Each Enterprise system is
hosted by a Sun SPARCserver 10 (visible atop each Enterprise). This design
is approximately 1.1 million emulation gates.

B. Full Chip Configuration Phase

Full Chip Configuration combines the design netlists and
libraries with control and specification files for delivery to the
vendor supplied configuration software. The purpose of the
configuration step is to produce a database that can be directly
downloaded to program the emulation hardware.

Pre-Configuration Preparation created the set of netlists and
libraries for use during configuration. The emulation team
also provides several important control files and specification
files to guide the configuration process. Many of the control
files identify the external interfaces to the emulated design,
including Pod Pin maps, External Logic Analyzer (LA)
probes, MEM card locations, MEM card pin maps, etc. Other
control files define netlist names/paths, logic analyzer probes,
clock tree definitions, Timing Analysis (TA) exclusion infor-
mation, etc.

One of the most complex tasks of this phase is to determine
the optimum partitioning of the overall design to fit within the
capacity of the emulation systems available while minimizing
the number of cables required to route signals between sys-
tems. This can be a delicate balance with potentially great cost
if a non-optimum solution is derived.

Vendor supplied tools partition the design into the individ-
ual systems. A new top level netlist produced by these tools
binds together the individual partitions and defines the sys-
tem-to-system cabling. Once the system level partitioning is
complete, individual configurations are performed on each
partition to create the downloadable database. In the case of
UltraSPARC-I, five emulation systems from Quickturn
Design Systems are used (see Fig. 2) and 50 system to system
cables required (see Fig. 3); less optimum partitionings could
easily require 60 or more cables to implement.

Each individual partition must be fully configured. These

can be performed in parallel for all partitions as they are inde-
pendent configurations. A configuration operation contains
several steps:

• Parse netlists

• Semantic analysis and logic optimization

• Clock tree extraction

• Design partitioning within the system

• Logic mapping for each individual Field Programmable
Gate Array (FPGA) within the emulation system

• Timing analysis on the design as implemented within the
emulation hardware

• Delay insertion fix-up for hold violations

• Final timing analysis

If this sounds like a long compute intensive process, it is.
The wall clock flow time for an entire UltraSPARC-I chip
configuration is 36 hours using 5 large fast computers to do
the main work and using 70 computers during the logic map-
ping for all the FPGAs. Automating that entire flow was
required to ensure reliable execution with a minimum of
human error.

C. Testbed Preparation

The testbed is a collection of hardware and lab equipment
providing an environment in which the design under emula-
tion can operate. This collection covers three major areas: tar-
get In-Circuit Emulation board, External Logic Analyzer, and
supporting lab equipment (see Fig. 4).

The purpose target ICE board provides real world hardware
support to the emulation. Typical components on a target
board include: SIMMs, PROM socket, I/O Ports, etc. In addi-
tion to the real world hardware, the target board provides



Fig. 4.   Closeup of the target ICE board and pods. The single PCB standing
vertically in the chassis was custom designed for exclusive use by emulation.
It provides access to memory SIMMs, I/O ports and supporting logic. On the
right side are two columns of interface pods which pass signals between the
emulation and the target board. External disk drives and pulse generators are
on the extreme left.

sockets for emulation Pods that carry the top level I/O pins
from the emulated design. Care must be taken to plan the
physical and mechanical design requirements for the Pods
including pod header spacing.

The target ICE board also provides headers to connect the
external logic analyzer probes. These external probes supple-
ment the visibility into the design provided by the internal
logic analyzer inside of each emulation system. All totaled,
over 5000 nets were routinely probed (128K depth) on the
UltraSPARC-I project. A complete strategy for integrating the
internal emulation logic analyzer samples with external logic
analyzer samples was developed by the emulation team.

In addition to the target ICE board and emulation equip-
ment, other basic lab equipment is necessary: pulse genera-
tors, oscillascope, etc. Other important lab issues must be
considered including physical setup, electrical requirements
and air conditioning.

D. In-Circuit Emulation Phase

The In-Circuit Emulation Phase combines the design emu-
lation database with the testbed (target board and emulation
hardware) to perform design verification. In addition, critical
software must be available at ICE power-on. The emulation
project must coordinate with and ensure that PROMs and
Software deliveries are adjusted to fit emulation schedules
which are earlier than silicon schedules.

The lab debug and bring-up effort requires a broad range of
knowledge and skills. A team of people must be identified to
provide this debug expertise during the bringup.

With the integration of the testbed hardware, emulation
hardware, design emulation database and software, the design
is downloaded into the emulation hardware, reset is released
and it just boots Solaris--easy, right!? Unfortunately, like any

significant hardware bring-up, every part has to be systemati-
cally debugged and fixed where needed. After a long (and
often painful) bring-up experience, the Solaris “login” prompt
appears on the monitor.

IV. EMULATION RESULTS

During the life of an emulation project there are three dis-
tinct phases during which value is returned: pre-tapeout, post-
tapeout to pre-silicon, and post-silicon. These phases align
with the silicon events of first tapeout and first silicon returns
from the foundry. During each phase, emulation plays a
slightly different role.

Based on past experience with the MicroSPARC II and
SuperSPARC II processor emulation projects, a relative value
for each of the phases was derived. Experience shows only
25% of the total return on emulation investment is derived
during the pre-tapeout phase with the remaining 75% value
returned later in the project. All three phases have significant
impact on the ultimate delivery of the product to market.

A. Pre-Tapeout Phase

The pre-tapeout phase provides about 25% of the overall
return on investment for an emulation project. The main
source of value is in the additional functional design verifica-
tion that can be completed by the emulation testbed prior to
tapeout.

The testbed for UltraSPARC-I successfully emulated the
chip at execution speeds of several hundred kilohertz--many
orders of magnitude faster than simulation in terms of instruc-
tion cycles per wall clock second. This makes it practical to
boot single-user Solaris in about 1 hour and 30 minutes.

Prior to tapeout, UltraSPARC-I successfully booted single-
user Solaris with all CPU features enabled.

During the bring-up of Solaris on the emulated UltraS-
PARC-I, one serious design bug was encountered that pre-
vented successful booting. Through the enhanced visibility
into the design provided by emulation, this problem was iso-
lated to a simple code sequence that under the right circum-
stances caused a major problem. This problem was recreated
in simulation. A design fix was made and verified in both sim-
ulation and emulation.

In addition to the UltraSPARC-I bug, a significant number
of bugs were found and fixed in the POST (Power-On Self-
Test), boot PROM and kernel. These bug fixes were rolled
forward into the silicon bring-up saving significant debug
time.

B. Post-Tapeout to Pre-Silicon Phase

The window of time between tapeout and silicon return
provides an opportunity to continue the emulation effort and
increase the overall return on investment. This phase contrib-
utes another 25% to the overall return.



During this short window of time the emulation team
focuses on additional design verification via stress testing.
Efforts during this phase on UltraSPARC-I focused on Multi-
User Solaris and OpenWindows in addition to a large assort-
ment of applications and stress tests.

If additional problems are found during this phase, small
fixes in the metal masks will improve the overall quality of the
first silicon. No problems were discovered during this phase
for UltraSPARC-I.

C. Post-Silicon Phase

Following silicon return, emulation takes on a supporting
role. When a functional problem is encountered in silicon,
emulation may prove to be a more friendly environment in
which to debug with the available internal visibility into the
design via the logic analyzer. Once a bug has been isolated
and a fix developed by the design team, emulation includes
the fix in the database and verifies that the problem has been
resolved. A suite of regression tests helps to insure that new
problems have not been introduced. Approximately 50% of
the total return on investment is derived in this phase.

During this phase emulation can provide two additional ser-
vices: what-if experiments and support for follow-on tapeout
verification.

Designers often want to try some design change or
enhancements to see what effect it will have on the real sys-
tem. Prototyping such what-if changes is relatively easy for
emulation.

Just as with the first tapeout, the design team desires confi-
dence in the design for any follow-on tapeout events (metal-
mask changes, all layers changes, major design revision, etc.).
The emulation provides additional confidence in each updated
design by booting Solaris and running the suite of regression
tests.

V. BENEFITS

Emulation supplements existing design verification tech-
niques providing additional capabilities not available through
any other technology. Confidence in the design prior to silicon
commitment is improved due to the additional verification
accomplished by emulation. Applications can be executed in

emulation that are impractical to simulate due to execution
duration. Problems discovered and fixed before tapeout
improve the quality of the first silicon with a potential to save
silicon iterations.

Once silicon is available, bring-up benefits from the pre-
tested software environment available as a result of emulation
testing. The advanced debugging capabilities in emulation
reduce the time necessary to isolate functional design bugs.
Design fixes and changes are rapidly prototyped in the emula-
tion system before silicon commitment.

Emulation helps reduce the time-to-market of the complete
product increasing life-time revenue and profit potential.
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