
System Design Methodology of UltraSPARCTM-I

Lawrence Yang, David Gao, Jamshid Mostoufi
SPARC Technology, Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, CA 94043

Raju Joshi, Paul Loewenstein
Sun Microsystems Computer Corporation, Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, CA 94043

Abstract - Increasing complexity of microprocessor-based sys-
tems puts pressure on a product’s time-to-market. We describe a
methodology used in designing the system interface of
UltraSPARC-I. This methodology allowed us to define the system
interface architecture, verify the functionality, perform timing
and noise analysis and do the physical board design in parallel.
This concurrency permitted rapid implementation of the micro-
processor and the system.

I. INTRODUCTION

As microprocessors continue to increase in complexity and
performance, so do the systems that use these processors. In
order to keep up with their microprocessor brethren, system
components have been increasing in complexity, clock fre-
quency and level of integration. Because multiprocessing is
now widely available on the desktop, it is expected in all
future systems, adding even more to the complexity of the
verification effort.

Performance is most easily obtained from increased clock
rates. That means that increasingly sophisticated techniques
must be employed in physical design and electrical analysis:
techniques that were once found only in the halls of main-
frame and supercomputer design houses.

Increased complexity can mean a longer design time. This
increase must occur without impacting the overall time to
market of the end product. In order to absorb this increase in
design time, the design of various system components must
now proceed in parallel with that of other components. Pro-
cesses must be in place to incorporate design information
from other components as they change.

Fig. 1 gives a high-level overview of the concurrency
required to execute a program of this complexity. This paper
will discuss each of the items shown. It will focus on the
design techniques used at the system-level to validate
UltraSPARC-I and its surrounding system components. Some
tools and techniques that led up to the full-system work will
also be discussed.

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

Fig. 1. High-level overview of design methodology, showing concurrency of
key activities

II. SYSTEM OVERVIEW

UltraSPARC-I is a 64-bit SPARCTM V9 processor with
four-way instruction dispatch, superscalar processing and
advanced multimedia capabilities [1][2][3][4]. It has a tightly-
coupled instruction prefetch and dispatch unit, integer execu-
tion unit, floating-point/graphics unit, load/store unit and
memory unit. It has external cache control and system inter-
face logic on-board. The chip was carefully designed to maxi-
mize system efficiency and promote optimal throughput when
executing complex, memory-intensive applications while
maintaining full binary compatibility with all existing SPARC
applications.

The processor has 16 KB of on-chip instruction cache and
16 KB of on-chip data cache. The processor contains about
5.2 million transistors. The chip is fabricated on an advanced
four-layer metal 0.5µm process.

Other components complete the UltraSPARC-I chipset. A
pair of data buffers connect UltraSPARC-I to the system and
isolate second-level cache activity from the system bus. Each
data buffer is a 70K gate gate-array containing logic and data-
paths that allow overlapping of operations, resulting in shorter
miss latencies and larger bandwidths to and from the system.
The external cache is implemented using standard, pipelined 1
Mbit SRAMs organized as 32Kx36 parts.

As is traditional with all of Sun’s systems, the core logic of
the system was implemented in ASICs [5]. The ASICs

Interface architecture

Architecture validation

Design implementation

Functional validation

Physical design

Electrical design

Timing analysis

definition

Time

totalled approximately 240K gates of logic and 13K bits of
SRAM. Fig. 2 shows a high-level diagram of how the system
components are interconnected.

III. SYSTEM INTERFACE ARCHITECTURE DEFINITION PROCESS

While the CPU design team was still defining the internal
microarchitecture, a small group of CPU and system engi-
neers and architects met to define the system interface. This
group analyzed memory latency, system memory bandwidth,
clock distribution and multiprocessor support.

The challenge was in specifying the interface in enough
detail to allow implementation to begin without knowing all
the details of other parts of the system (such as the core pro-
cessor pipeline and I/O requirements), since these other parts
were being defined in parallel.

More information regarding the architecture definition pro-
cess can be found in [6].

IV. FORMAL VERIFICATION

The cache coherence protocol was verified using the Mur-
phi model checker [7] before any VerilogTM HDL register
transfer level (RTL) code was written. Very subtle bugs were
found, sufficiently subtle that it would not have been noticed
until well into multiprocessor simulation. Correcting the error
at a later stage could have been costly.

Fig. 3 shows an example of the output from a Murphi run.
This run found an error in how the consistency protocol han-
dled writebacks. The detailed state information (in italics) has
been simplified for purposes of this paper.

Despite not being a full formal proof of correctness, using
Murphi to validate the cache coherence protocol was highly
cost-effective. Not only were significant bugs uncovered, but
they were found very early, before any simulation model
existed. Writing a model at this level of abstraction also pro-
vided a deep insight into the working of the protocol. The ver-
ification engineer became a designer, actively contributing to
the design.

Fig. 2. UltraSPARC-I system block diagram

Cache
Data

SRAM

Cache
Tag

SRAM

UltraSPARC-I
Data
Buffer

System

Fig. 3. Sample output from Murphi

Murphi has the advantage of being much easier to use than
most other model checkers. The cache coherence protocol was
written in the Murphi language as a set of guarded rules,
describing a non-deterministic state-transition system. Murphi
then explores each reachable state explicitly. Clearly, a full-
sized description would have too many states, so we scaled
down the description to two bits of address, two processors
and usually no data at all. Even with this drastic scaling there
were about 30 million reachable states, requiring an overnight
run on a compute server with 600 megabytes of main memory.
However, while the design was buggy, Murphi usually found
an error very early, requiring just a few minutes on a worksta-
tion.

V. FUNCTIONAL VALIDATION

One objective of the functional validation effort was to
bring up components of the entire system incrementally and
hierarchically (Fig. 4). This process allows design units to be
stabilized concurrently before integration into a larger simula-
tion. Another goal was to simulate as much of the system as
possible. This goal is very important in light of the time-to-
market requirements and complexity of this product.

Murphi C++ Verifier, Version 1.4, bfs mode.
Copyright (C) Andreas J. Drexler.

The Murphi description language and verification system
were conceived and designed by David L. Dill, Andreas
Drexler, Alan J. Hu, and C. Han Yang, at the Computer
Systems Laboratory at Stanford University.

Please email bugs/suggestions/comments to
“murphi@theforce.stanford.edu”

This program should be regarded as a debugging aid, not
a certification of correctness.

Found states: 1,893,517 max, 20.1 bps, 37,213 Kb.
Active states: 473,379 max, 4.0 bps, 1,849 Kb.

Error in rule Finish_Writeback (line 883):
Inconsistent Writeback Buffer

A violating trace of differences is:

-------- 0 --------
(Initial state)
-------- 1 --------
(Next State)
-------- 2 --------
(Next State)

.

.

.
(Next State)
-------- 6 --------
(Violating State)
No longest trace requested.

Performance:
8,804 states, 5,669 of them active, 0.5 cps, 56.3s,

331 rps.

State graph:
Explored part of state graph has 8,804 states and

18,632 multi-edges.

Termination status:
Error statement executed or assertion violated.

Fig. 4. Hierarchical functional verification

Initially we created stand-alone environments for each of
the subunits of the processor and for each of the system
ASICs. We implemented both the design itself and all the
parts of the design environment in Verilog HDL [8]. Each sub-
unit or ASIC (e.g., integer unit, floating-point unit, etc.) was
sanity-checked at a stand-alone level before being integrated
into a larger simulation. This effort guarantees a minimal level
of functionality so that debugging at the next level of integra-
tion can focus on interface problems and not core functional-
ity bugs.

We then integrated the CPU together with simple system
behavioral models. Several system behavioral models were
used, each one focusing on different system aspects. All the
models behave like a complete system so that actual SPARC
code could be used as diagnostics (Fig. 5). All the models
were capable of not only servicing CPU memory requests but
also generating system-initiated traffic, such as interrupts, I/O
requests and multiprocessing coherency requests.

One model was tuned to generate simple bus transactions to
exercise basic functionality. We later added a random transac-
tion generation capability to enhance the utility of this model.
A second model integrated control of bus activity with the
SPARC assembly language diagnostic code. A third model
emphasized multiprocessing activity.

Thus, these models created an environment that appeared to
the CPU model to be the real system design without having
the overhead of having to simulate the real design. The combi-
nation of the CPU and one of the system behavioral models
consumed on the order of 300,000 lines of Verilog code and
about 550 megabytes of run-time memory in Verilog-XL.

In parallel to the CPU integration effort, the system design
team integrated portions of the system to verify that these
interfaces were functionally correct. The CPU designers cre-
ated a CPU “stub” model to assist the bringup of the system
ASICs (Fig. 6). The stub model contained only the system
interface and external cache control logic of the processor,
along with the SRAM behavioral model and the datapath
ASIC netlist. The stub model executed a crude instruction set
that allowed an engineer to write a program that caused the
stub model to generate and receive different bus transactions.

UltraSPARC-I
sub-unit

UltraSPARC-I
sub-unit

System
ASIC

System
ASIC

UltraSPARC-I Sub-Systems

Full System

Stand-alone
Sub-unit
Verification

Chip or
Sub-system
Verification

Full System
Verification

Fig. 5. UltraSPARC-I with system behavioral model

This stub model allowed the system design team to do ini-
tial validation of the system design without having to con-
sume simulation cycles debugging the CPU core. Fig. 7 shows
how the stub model is used in system validation. The “glue
logic” represents behavioral Verilog code that reads and exe-
cutes the test program. This stub model also allowed designers
to generate a large number of system transactions without
having to worry about managing a CPU pipeline. Had this
effort been done using assembly language tests, a lot of simu-
lation cycles would be lost executing instructions that don’t
directly result in system activity, which decreases the amount
and density of system transactions. This higher density of sys-
tem traffic allows bugs in system interface corner cases to be
caught quickly.

This stub model environment later evolved into a random
testing environment, where a test program was generated ran-
domly and executed on the model. System interfaces can be
complex, and the corner cases that cause bugs are hard to pre-
dict, so it was found that randomly generated transactions are
a good way of uncovering cases that were not foreseen during
directed test development.

Fig. 6. UltraSPARC-I with “stub” model portions shaded

Cache
Data

SRAM

Cache
Tag

SRAM

UltraSPARC-I
Data
Buffer

System
Behavioral

Model

Memory
Model

Test Program

Assembler
Linker

Cache
Data

SRAM

Cache
Tag

SRAM

UltraSPARC-I
Data
Buffer

Cache and Memory
Interface Logic

Fig. 7. Application of UltraSPARC-I stub model

Multiple stub models can be instantiated to verify multipro-
cessing. This eliminates the need to instantiate complete CPU
models, thus reducing the simulation memory and compute
requirements.

A two-stub multiprocessing environment had about a 240
megabyte Verilog-XL run-time memory image. Each stub was
about 20,000 lines of code.

The final test was to simulate the entire system (Fig. 8).
There is no substitute for simulating the real design, since
only at this level can system-wide problems be found and cor-
rected. The design team created an environment where the full
CPU netlist was integrated with key system ASIC netlists.
This environment consumed about 730 megabytes of run-time
memory in Verilog-XL.

We took advantage of the fact that we were simulating a
real computer system by running real programs on the simula-
tion models. SPARC assembly language diagnostics were
written, “loaded” into the system memory, and executed, just
as in a real system. Trap handlers and page mappings were
created to support running these programs. These diagnostics
were used to both validate the functionality of the system and
to verify that the system performance matched expectations.
We also compiled some C programs and ran these programs to
check that our new compilers would generate code for
UltraSPARC-I that meets our performance expectations.

Finally, when real module and board layouts were com-
pleted, logical netlists were extracted and simulated. This step
was performed to ensure that the actual board would hook up
all the components correctly.

Both Verilog-XL from Cadence Design Systems and VCS
from Chronologic Simulation were used in our design. Both
tools were used because each offered its own advantages.
Verilog-XL has a richer feature set and was particularly useful
in the early design phase where we needed to quickly iterate
on small design blocks. VCS was more valuable later in the
project when the design was more stable and reduction of the
memory requirements for our simulations was required.
Design Automation’s SignalScan and System Science’s
Magellan graphical waveform viewers were used to help in
debugging our simulations.

Cache
Data

SRAM

Cache
Tag

SRAM

Data
Buffer

Cache and Memory
Interface Logic

Test

Glue Logic System
ASICs

Program

Fig. 8. Full-system simulation environment

A hardware emulation system was also built, integrating all
of the microprocessor and system components. This emula-
tion system is described in [9].

VI. PHYSICAL DESIGN

Early in the design process we specified the pad
assignment and package pinout of each of the components.
This early definition was required because of the long lead-
time required by the package supplier. The early pad assign-
ment also allowed us to do the internal CPU bus route plan-
ning early and to freeze the CPU floorplan. Finally, defining
the package pinouts allowed many trial component place-
ments and module layouts to occur to optimize the critical
paths on the module.

Fig. 9. Module physical design flow

Cache
Data

SRAM

Cache
Tag

SRAM

UltraSPARC-I
Data
Buffer

System
ASICs and
Memory

Test Program

Assembler
Linker

Component
Placement

Trial Place
and Route

Extracted
Net Lengths

Timing
Analysis

Component
Pinouts

Final
Placement

Cadence Concept (formerly Valid’s GED) was used for the
module schematic entry. Allegro was used for the module lay-
out. Fig. 9 shows the physical design flow.

All the chips used BGA packages. This new technology did
not pose a problem for the layout tools since the package foot-
print looks like that of a 50-mil PGA package.

VII. ELECTRICAL DESIGN

Concurrent with the functional and physical design, timing
and noise analysis of all the signals between the components
was done. (Fig. 10)HSPICE was the primary simulator used
for all timing and noise analysis. [10][11].

Circuit designers completed the output driver and input
receiver circuits early in the project. These circuits were
implemented in test silicon to verify that their performance
matched that of their models. Models of the I/O circuits for
the external cache SRAM and datapath ASIC were obtained
from the various silicon suppliers.

We performed several trials of module component layouts.
We then generated approximate net lengths for use in our
analysis.

Circuit simulation models were then built using the driver
and receiver circuits, package parasitic models, and the mod-
ule netlengths [12]. Interconnect delays were thus generated
and were validated to meet the cycle time requirements.

Clock skew and tester guardband values were budgeted
early in the design process and also validated later.

All of the simulation results were then plugged into a
spreadsheet (Fig. 11). Two sets of numbers were analyzed for
each interface: one set of maximum timings and another set of
minimum timings.

Fig. 10. Module timing analysis methodology

Clock Skews

Preliminary
I/O Circuits

Design
Optimization

Final I/O
Circuits

Preliminary
Module Layout

Module Layout
Optimization

Final
Module Layout

Package Tester
Parasitics Guardband

Preliminary
Timing Analysis

Preliminary Timing
Spreadsheet

Final
Timing Analysis

Final Timing
Spreadsheet

Fig. 11. Timing spreadsheet example

The maximum column uses max output delays and input
setup times. The total should be less than the cycle time goal.
The minimum column analyzes hold time. It uses minimum
output delays and input hold times. Anything that “helps”
hold time is a positive number (such as output delay). Any-
thing that “hurts” hold time is a negative number (such as
input hold times, clock skews, and tester guardband). The goal
is to get a result greater than zero.

At high frequencies it is important to analyze the effects of
noise on the system [13]. Our noise simulation used a simula-
tion model of the CPU core, the actual I/O driver and receiver
circuits and pad models, a parasitic model of the CPU pack-
age, and a parasitic model of the module board.

When modeling the board parasitics we modeled the area
under the CPU chip separately from the rest of the board.
Because the CPU is a BGA package, there is an array of vias
underneath the CPU that results in an array of holes in the
ground plane. This “swiss cheese” pattern is difficult model.

Another source of complexity in modeling the board was
the fact that although the CPU chip had separate ground pins
for the output drivers and the core logic, these pins were con-
nected to the same ground planes on the module. Thus, the
module ground plane was a source of noise coupling between
the two power domains.

The real CPU pinout has ground pins assigned in an irregu-
lar pattern, so the board modeling task was simplified by
assuming one core or output ground via for every twelve vias
(Fig. 12). Also, instead of an array of holes it was assumed
that there was a grid of traces; it was easier to model a set of
straight-line traces (Fig. 13).

The module board model was generated using software
from Pacific Numeric. This tool created a complex RLC net-
work with over sixty R, L and C components. This network
caused us problems in simulation. Using AC analysis, we
approximated this network with a three component equivalent
circuit model.

The noise is dependent on the switching behavior of the
output drivers. Various switching conditions had to be ana-
lyzed, including all drivers switching in the same direction, as
well as different combinations of drivers switching in differ-
ent directions.

Max Min

Clock-to-out 4.1 1.4

Internal clock skew 0.3 -0.3

Tester guardband 0.3 -0.3

External clock skew 0.1 -0.1

Input setup time 0.5

Input hold time -0.5

Total 5.3 0.2

Fig. 12. Approximated layout of core and I/O Vss pins

Fig. 13. Reduction of layout of Vss pins into traces

VIII. R ESULTS

All of our design efforts resulted in a system bringup that
exceeded our expectations. Despite the fact that the system
had a new processor and system architecture, a new operating
system, a new silicon process and a new packaging technol-
ogy, the system debug team was able to bring up multi-user
Unix in under a week after arrival of first silicon.

One aspect of our methodology that we debated was the
need for multiple system simulation environments. Ideally we
wanted to focus our simulation time and resources on only
one or two environments. However, because different engi-

= Core Vss = I/O Vss

neers wanted to focus on different aspects of the design, we
found that it was impossible for one or two environments to
serve everyone’s needs. In the end it was beneficial having
different people working with different environments. The
system interface logic was sufficiently complex that having a
diverse approach allowed for broader test coverage.

ACKNOWLEDGMENTS

In addition to the authors, several other people were
involved in the design and verification of the UltraSPARC-I
system interface. Sherri Al-Ashari, Devereaux Chen, Reza
Eltejaein, Gary Goldman, G.P. Grewal, Kevin Normoyle and
Shaham Parvin were also key contributors to the design and
verification of the system interface logic. Christopher Cheng,
Sunil Kaul, Mohammad Tamjidi and Leo Yuan helped
immensely on the electrical design and analysis.

REFERENCES

[1] A. Agrawal, “UltraSPARC: A new era in SPARC performance,”Proc.
7th Microprocessor Forum, Oct. 1994.

[2] L. Gwennap, “UltraSPARC unleashes SPARC performance,”Micropro-
cessor Report, vol. 8, num. 13, October 3, 1994.

[3] A. Charnas,et al., “A 64b microprocessor with multimedia support,”
ISSCC Digest of Technical Papers,pp 178-179, Feb. 1995.

[4] D. Greenley,et al., “UltraSPARC: The next generation superscalar 64 bit
SPARC,”COMPCON Spring 95 Digest of Papers.

[5] A. Bechtolsheim,et al, “How Sun Microsystems created SPARCStation 1
using LSI Logic’s ASIC system technology,” inThe SPARC Technical
Papers, New York: Springer-Verlag, 1991.

[6] M. Tremblay, “A fast and flexible performance simulator for microarchi-
tecture trade-off analysis on UltraSPARC.”Proc. 32st ACM/IEEE Des.
Auto Conf., Jun. 1995 (in press).

[7] D. Dill, A.J. Drexler, A.J. Hu, C.H. Yang, “Protocol verification as a
hardware design aid,”IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp 522-525, 1992.

[8] E. Sternheim, R. Singh, Y. Trivedi,Digital Design with Verilog HDL,
Cupertino, California: Automata Publishing Co., 1990.

[9] J. Gateley,et al., “UltraSPARC-I Emulation,”Proc. 32st ACM/IEEE Des.
Auto Conf., Jun. 1995 (in press).

[10] T.Y. Chou, J. Costentino, and Z. Cendes, “High speed interconnect mod-
eling and high accuracy simulation using SPICE and finite element meth-
ods,”Proc. 30th ACMIEEE Des. Auto. Conf., Jun. 1993.

[11] L.W. Nagel, “SPICE2: A computer program to simulate semiconductor
circuits,” Electr. Res. Lab. Report ERL M520, University of California,
Berkeley, May 1975.

[12] H.B. Bakoglu,Circuits, Interconnections and Packaging for VLSI,
Menlo Park, California: Addison-Wesley, 1990.

[13] H.W. Ott,Noise Reduction Techniques in Electronic Systems, New York:
John Wiley and Sons, 1976.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

