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Abstract - Increasing complexity of microprocessor-based sys-
tems puts pressure on a product’s time-to-market. We describe a | Interface architecture ¢ 5
methodology used in designing the system interface of definition
UltraSPARC-I. This methodology allowed us to define the system | Architecture validation —>
interface architecture, verify the functionality, perform timing
and noise analysis and do the physical board design in parallel.
This concurrency permitted rapid implementation of the micro- Functional validation < >
processor and the system.

Design implementation —

Physical design < >
|. INTRODUCTION Electrical design < >

As microprocessors continue to increase in complexity a
performance, so do the systems that use these processor
order to keep up with their microprocessor brethren, systgm — T | 11E
components have been increasing in complexity, clock frg-
quency and level of integration. Because multiprocessingg, 1. High-level overview of design methodology, showing concurrency of
now widely available on the desktop, it is expected in all key activities
future systems, adding even more to the complexity of the
verification effort.

Performance is most easily obtained from increased clockY!traSPARC-1 is a 64-bit SPART V9 processor with
rates. That means that increasingly sophisticated techniqd@4r-way instruction dispatch, superscalar processing and
must be employed in physical design and electrical analysfdvanced multimedia capabilities [1][2][3][4]. It has a tightly-
techniques that were once found only in the halls of maif@upPled instruction prefetch and dispatch unit, integer execu-
frame and supercomputer design houses. tion unit, fI(_)atmg-pomt/graphlcs unit, load/store unit qnd
, L memory unit. It has external cache control and system inter-
_ Increased complexity can mean a longer design time. Thigq |ogic on-board. The chip was carefully designed to maxi-
increase must occur without impacting the ovgre}II time chize system efficiency and promote optimal throughput when
mar.ket qf the end pr(_)duct. In qrder to absorb this increasedBecuting complex, memory-intensive applications while
design time, the design of various system components Mystintaining full binary compatibility with all existing SPARC
now proceed in parallel with that of other components. Pr%pplications.

cesses must be in place to incorporate design information o )
from other components as they change. The processor has 16 KB of on-chip instruction cache and

) ) ) ) 16 KB of on-chip data cache. The processor contains about
Fig. 1 gives a high-level overview of the concurrency 5 mjjjion transistors. The chip is fabricated on an advanced
required to execute a program of this complexity. This PaPRur-layer metal 0.5m process.

will discuss each of the items shown. It will focus on the .
design techniques used at the system-level to validate©ther components complete the UltraSPARC-I chipset. A

UltraSPARC-I and its surrounding system components. Sori@ir of data buffers connect UltraSPARC-I to the system and
tools and techniques that led up to the full-system work wifflate second-level cache activity from the system bus. Each
also be discussed. data buffer is a 70K gate gate-array containing logic and data-
paths that allow overlapping of operations, resulting in shorter

__ 32nd ACM/IEEE Design Automation Conference [J . miss latencies and larger bandwidths to and from the system.
Permission to copy without fee dl or part of this material is granted, provided L . T
that the copies are not made or distributed for direct commercial advantage, 1 he external cache is implemented using standard, pipelined 1
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® P the system was implemented in ASICs [5]. The ASICs
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'l’r|1m|ng analysis

Il. SYSTEM OVERVIEW



totalled approximately 240K gates of logic and 13K bits o
SRAM. Fig. 2 shows a high-level diagram of how the systern
components are interconnected.

Ill. SYSTEM INTERFACE ARCHITECTURE DEFINITION PROCESS

While the CPU design team was still defining the intern
microarchitecture, a small group of CPU and system en
neers and architects met to define the system interface. T
group analyzed memory latency, system memory bandwidt
clock distribution and multiprocessor support.

Murphi C++ Verifier, Version 1.4, bfs mode.
h Copyright (C) Andreas J. Drexler.

The Murphi description language and verification system
were conceived and designed by David L. Dill, Andreas

Drexler, Alan J. Hu, and C. Han Yang, at the Computer

Systems Laboratory at Stanford University.

Please email bugs/suggestions/comments to
i- “murphi@theforce.stanford.edu”

I$This program should be regarded as a debugging aid, not
h, a certification of correctness.

Found states: 1,893,517 max, 20.1 bps, 37,213 Kb.
Active states: 473,379 max, 4.0 bps, 1,849 Kb.

The challenge was in specifying the interface in @NoUgN grror in rule Finish_Writeback (line 883):

detail to allow implementation to begin without knowing all
the details of other parts of the system (such as the core p
cessor pipeline and I/O requirements), since these other p3
were being defined in parallel.

More information regarding the architecture definition pro-
cess can be found in [6].

IV. FORMAL VERIFICATION

The cache coherence protocol was verified using the Mu
phi model checker [7] before any VerildgHDL register
transfer level (RTL) code was written. Very subtle bugs wer|

Inconsistent Writeback Buffer

Oa violating trace of differences is:

(Next State)

- (Next State)
6
(Violating State)

b No longest trace requested.

found, sufficiently subtle that it would not have been notice§l periormance:

until well into multiprocessor simulation. Correcting the erro
at a later stage could have been costly.

8,804 states, 5,669 of them active, 0.5 cps, 56.3s,
331 rps.

State graph:

Fig. 3 shows an example of the output from a Murphi run.

This run found an error in how the consistency protocol ha
dled writebacks. The detailed state information (in italics) h

Explored part of state graph has 8,804 states and
- 18,632 multi-edges.

Termination status:

Error statement executed or assertion violated.

been simplified for purposes of this paper.

Despite not being a full formal proof of correctness, using Fig. 3. Sample output from Murphi
Murphi to yalidate the cache c_oh_erence protocol was highly Murphi has the advantage of being much easier to use than
cost-effeciive. Not only were significant bug_s uncqvered, biost other model checkers. The cache coherence protocol was
thgy were f(_)und very early, _before any S'mU|fit'0n MOd&lritten in the Murphi language as a set of guarded rules,
e_X|sted. Wr|t|r_19 a quel at this Ie_vel of abstraction also Pr'%escribing a non-deterministic state-transition system. Murphi
Y_'de‘?' a deel‘? insight into the wor!«ng of th(_':' protocol._Thg Ve{Ren explores each reachable state explicitly. Clearly, a full-
ification engineer became a designer, actively contributing to, .4 description would have too many states, so we scaled

the design. down the description to two bits of address, two processors
and usually no data at all. Even with this drastic scaling there
C%Cghe were about 30 million reachable states, requiring an overnight
SRAM run on a compute server with 600 megabytes of main memory.

’[ | However, while the design was buggy, Murphi usually found

an error very early, requiring just a few minutes on a worksta-

tion.
System V. FUNCTIONAL VALIDATION
UltraSPARC-I

One objective of the functional validation effort was to

bring up components of the entire system incrementally and

hierarchically (Fig. 4). This process allows design units to be

stabilized concurrently before integration into a larger simula-
I_ tion. Another goal was to simulate as much of the system as

possible. This goal is very important in light of the time-to-
market requirements and complexity of this product.

Fig. 2. UltraSPARC-I system block diagram
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Fig. 4. Hierarchical functional verification
Initially we created stand-alone environments for each f

[l

Assembler

the subunits of the processor and for each of the syst¢m %
inker

ASICs. We implemented both the design itself and all tHe
parts of the design environment in Verilog HDL [8]. Each suly-
unit or ASIC (e.g., integer unit, floating-point unit, etc.) was Fig. 5. UltraSPARC-I with system behavioral model

sanity-checked at a stand-alone level before being integratedris stub model allowed the system design team to do ini-
into a Iqrger_simulation. This ef_fort guarantees a minimal levgl| validation of the system design without having to con-
of functionality so that debugging at the next level of integras, me simulation cycles debugging the CPU core. Fig. 7 shows
_tlon can focus on interface problems and not core functiongls\, the stub model is used in system validation. The “glue
ity bugs. logic” represents behavioral Verilog code that reads and exe-
We then integrated the CPU together with simple systecutes the test program. This stub model also allowed designers
behavioral models. Several system behavioral models weregenerate a large number of system transactions without
used, each one focusing on different system aspects. All th@ving to worry about managing a CPU pipeline. Had this
models behave like a complete system so that actual SPABfbrt been done using assembly language tests, a lot of simu-
code could be used as diagnostics (Fig. 5). All the modedktion cycles would be lost executing instructions that don’t
were capable of not only servicing CPU memory requests hiitectly result in system activity, which decreases the amount
also generating system-initiated traffic, such as interrupts, 1&0d density of system transactions. This higher density of sys-
requests and multiprocessing coherency requests. tem traffic allows bugs in system interface corner cases to be

Test Program

One model was tuned to generate simple bus transaction§3J9ht auickly.
exercise basic functionality. We later added a random transacThis stub model environment later evolved into a random
tion generation capability to enhance the utility of this modefesting environment, where a test program was generated ran-
A second model integrated control of bus activity with thdomly and executed on the model. System interfaces can be
SPARC assembly language diagnostic code. A third modemplex, and the corner cases that cause bugs are hard to pre-
emphasized multiprocessing activity. dict, so it was found that randomly generated transactions are

Thus, these models created an environment that appeare@t #90d Way of uncovering cases that were not foreseen during
the CPU model to be the real system design without haviected test development.
the overhead of having to simulate the real design. The combi-
nation of the CPU and one of the system behavioral models Cache
consumed on the order of 300,000 lines of Verilog code apd Tag
about 550 megabytes of run-time memory in Verilog-XL. SRAM

In parallel to the CPU integration effort, the system design
team integrated portions of the system to verify that thege
interfaces were functionally correct. The CPU designers ¢
ated a CPU “stub” model to assist the bringup of the systdn Callﬁ?eerfggg 'l\_ﬂoegr}lory
ASICs (Fig. 6). The stub model contained only the syste
interface and external cache control logic of the process
along with the SRAM behavioral model and the datapalh
ASIC netlist. The stub model executed a crude instruction ge
that allowed an engineer to write a program that caused th
stub model to generate and receive different bus transactiofg- T

Data
UltraSPARC-I | — Buffer

v

Fig. 6. UltraSPARC-I with “stub” model portions shaded
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Fig. 7. Application of UltraSPARC-I stub model T
Multiple stub models can be instantiated to verify multiprg-

cessing. This eliminates the need to instantiate complete CPU
models, thus reducing the simulation memory and compyte
requirements.

Assembler
Linker

[l

A two-stub multiprocessing environment had about a 240
megabyte Verilog-XL run-time memory image. Each stub wds
about 20,000 lines of code. Fig. 8. Full-system simulation environment

The final test was to simulate the entire system (Fig. 8). A hardware emulation system was also built, integrating all
There is no substitute for simulating the real design, sin@ the microprocessor and system components. This emula-
only at this level can system-wide problems be found and cdien system is described in [9].
rected. The design team created an environment where the full
CPU netlist was integrated with key system ASIC netlists. VI. PHYSICAL DESIGN
This environment consumed about 730 megabytes of run-time
memory in Verilog-XL.

Test Program

Early in the design process we specified the pad

assignment and package pinout of each of the components.
We took advantage of the fact that we were simulatingThis early definition was required because of the long lead-

real computer system by running real programs on the simutiane required by the package supplier. The early pad assign-

tion models. SPARC assembly language diagnostics wargnt also allowed us to do the internal CPU bus route plan-

written, “loaded” into the system memory, and executed, jusing early and to freeze the CPU floorplan. Finally, defining

as in a real system. Trap handlers and page mappings wgkepackage pinouts allowed many trial component place-

created to support running these programs. These diagnostigsnts and module layouts to occur to optimize the critical

were used to both validate the functionality of the system apdths on the module.

to verify that the system performance matched expectations.

We also compiled some C programs and ran these programs.ta

check that our new compilers would generate code fpr Component Component|‘_

UltraSPARC-I that meets our performance expectations. Pinouts Placement

Finally, when real module and board layouts were com-
pleted, logical netlists were extracted and simulated. This sfep
was performed to ensure that the actual board would hook|up
all the components correctly.

Trial Place
and Route

V2

Both Verilog-XL from Cadence Design Systems and VC
from Chronologic Simulation were used in our design. Bo Extracted
tools were used because each offered its own advantades. Net Lengths
Verilog-XL has a richer feature set and was particularly useful
in the early design phase where we needed to quickly itergte
on small design blocks. VCS was more valuable later in the
project when the design was more stable and reduction of fhe
memory requirements for our simulations was requiregl.
Design Automation’s SignalScan and System Sciencd's
Magellan graphical waveform viewers were used to help |n
debugging our simulations.

Timing
Analysis

Final
Placement

Fig. 9. Module physical design flow



Cadence Concept (formerly Valid’s GED) was used for t
module schematic entry. Allegro was used for the module | Max Min
out. Fig. 9 shows the physical design flow. Clock-to-out 41 14
. . Internal clock skew 0.3 -0.3
All the chips used BGA packages. This new technology d| Tester guardband 03 03
not pose a problem for the layout tools since the package fox External clock skew 0.1 0.1
print looks like that of a 50-mil PGA package. Input setup time 0.5
Input hold time -0.5
VIl. ELECTRICAL DESIGN
. . . . .. Total 5.3 0.2
Concurrent with the functional and physical design, timinp

and noise analysis of all the signals between the components
was done. (Fig. 10)HSPICE was the primary simulator used
for all timing and noise analysis. [10][11].

Fig. 11. Timing spreadsheet example
The maximum column uses max output delays and input
setup times. The total should be less than the cycle time goal.
Circuit designers completed the output driver and inpithe minimum column analyzes hold time. It uses minimum
receiver circuits early in the project. These circuits wergutput delays and input hold times. Anything that “helps”
implemented in test silicon to verify that their performanc@old time is a positive number (such as output delay). Any-
matched that of their models. Models of the 1/O circuits fO[lhmg that “hurts” hold time is a negative number (SUCh as
the external cache SRAM and datapath ASIC were obtaingghut hold times, clock skews, and tester guardband). The goal
from the various silicon suppliers. is to get a result greater than zero.

We performed several trials of module component layouts. At high frequencies it is important to analyze the effects of
We then generated approximate net lengths for use in aiise on the system [13]. Our noise simulation used a simula-
analysis. tion model of the CPU core, the actual I/O driver and receiver

Circuit simulation models were then built using the drivegircuits and pad models, a parasitic model of the CPU pack-
and receiver circuits, package parasitic models, and the m@@e, and a parasitic model of the module board.

ule netlengths [12]. Interconnect delays were thus generatedyhen modeling the board parasitics we modeled the area

and were validated to meet the cycle time requirements.  ynder the CPU chip separately from the rest of the board.
Clock skew and tester guardband values were budget@gcause the CPU is a BGA package, there is an array of vias

early in the design process and also validated later. underneath the CPU that results in an array of holes in the
All of the simulation results were then plugged into Eground plane. This “swiss cheese” pattern is difficult model.

spreadsheet (Fig. 11). Two sets of numbers were analyzed foAnother source of complexity in modeling the board was
each interface: one set of maximum timings and another setl$ fact that although the CPU chip had separate ground pins
minimum timings. for the output drivers and the core logic, these pins were con-
nected to the same ground planes on the module. Thus, the
———mmm— o module ground plane was a source of noise coupling between
| Ppaarglg?tg:i | | Clock Skewl | Gul?dségrn dl the two power domains.
The real CPU pinout has ground pins assigned in an irregu-
lar pattern, so the board modeling task was simplified by
assuming one core or output ground via for every twelve vias

Preliminary Preliminary Preliminary (Fig. 12). Also, instead of an array of holes it was assumed
/O Circuits Timing Analysis Module Layout || that there was a grid of traces; it was easier to model a set of
straight-line traces (Fig. 13).
— * The module board model was generated using software
Design Preliminary Timin Module Layout i ; ; _
(opﬁmizaﬁon) Spreadsheet 9 Optimization from Pa_lcmc Num_erlc. This tool created a comple>_< RLC net
work with over sixty R, L and C components. This network
caused us problems in simulation. Using AC analysis, we

— * - approximated this network with a three component equivalent
Final I/O _'(T Final s)'_ Final circuit model.

Circuits iming Analysi Module Layout

The noise is dependent on the switching behavior of the

4 output drivers. Various switching conditions had to be ana-
Final Timing lyzed, including all drivers switching in the same direction, as
Spreadsheet well as different combinations of drivers switching in differ-
ent directions.

Fig. 10. Module timing analysis methodology



neers wanted to focus on different aspects of the design, we
d Q Q Q é Q Q Q found that it was impossible for one or two environments to

serve everyone’s needs. In the end it was beneficial having
O O O O O O O O different people working with different environments. The
O O O O O O O G system interface logic was sufficiently complex that having a
diverse approach allowed for broader test coverage.
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