
Limits of using Signatures for Permutation Independent

Boolean Comparison

Janett Mohnke Paul Molitor Sharad Malik

Institut f�ur Informatik Dep. of Electrical Engineering
Martin-Luther-Universit�at Princeton University

06099 Halle (Saale), Germany Princeton NJ 08544, U.S.A.

Abstract| This paper addresses problems that

arise while checking the equivalence of two Boolean

functions under arbitrary input permutations. The

permutation problem has several applications in the

synthesis and veri�cation of combinational logic: It

arises in the technology mapping stage of logic syn-

thesis and in logic veri�cation. A popular method to

solve it is to compute a signature for each variable

that helps to establish a correspondence between the

variables. Several researchers have suggested a wide

range of signatures that have been used for this pur-

pose. However, for each choice of signature, there

remain variables that cannot be uniquely identi�ed.

Our research has shown that, for a given example,

this set of problematic variables tends to be the same

{ regardless of the choice of signatures. The paper

investigates this problem.

I. Introduction

Checking if two Boolean functions are equivalent is a
general and important task in logic synthesis and veri-
�cation. With the development of the reduced ordered
binary decision diagram (ROBDD) as a canonical form
for representing Boolean functions, this problem reduces
to checking if the two canonical forms are the same [2, 1].
However, in several cases in logic synthesis and automatic
logic veri�cation the following problem arises: We need to
test the equivalence of two functions, but we do not know
the correspondence between their inputs. In logic synthe-
sis it occurs during the technology mapping stage, when
a match has to be found from a cell library to parts of the
technology independent network. This is especially di�-
cult when a large number of inputs is involved. In logic
veri�cation we are confronted with it when the correspon-
dence between the inputs of two circuits is not known.
That may be the case when using di�erent tools, which
have their own naming conventions, at the various stage
of synthesis.
Here, the problem is that we cannot use the ROBDD

representations directly to check the equivalence. We have
to establish a correspondence between the input variables
of the two functions before we can apply this method.

The most direct way is then to try each possible corre-
spondence. However, it is clear that this cannot be a
practical one: For two Boolean functions with n input
variables there are n! possible correspondences. Several
papers have investigated this problem in recent years, for
example [6, 3, 7, 4, 11, 10]. Except [10], all have developed
ideas for the ROBDD data structure and basically used
the following method: Derive signatures for each input
variable of a function to uniquely identify this variable.
What is the basic idea behind using signatures? A sig-

nature is a description of an input variable that is inde-
pendent of the permutation of the inputs of a Boolean
function f . So, it can be used to identify this variable
independent of permutation, i.e., any possible correspon-
dence between the input variables of two functions is re-
stricted to a correspondence between variables with the
same signature. So, if each variable of a function f had a
unique signature, then there would be at most one possi-
ble correspondence to the variables of any other function.
That is why the quality of any signature is characterized
by its ability to be a unique identi�cation of a variable
and, of course, by its ability to be computed fast. The
signatures that have been introduced in the cited papers
di�er in terms of the quality. Nevertheless, we can say
that this concept, in general, is a promising one and suc-
cessful in a large number of practical cases.
However, this method is not complete. There is no

signature which can uniquely identify all the variables of
the investigated benchmark sets (mostly the LGSynth91
and ESPRESSO benchmarks for logic synthesis). On com-
paring the most successful signatures, we observed that
those benchmarks that have variables that could not be
uniquely identi�ed have been always the same over the
di�erent signatures. In other words, there is a nearly con-
stant set of benchmarks for which signatures could not
help to solve the permutation problem! Unfortunately,
not just 2 or 3 variables of those benchmarks are not
uniquely identi�ed, but about 15 and more, so that the
number of possible correspondences is still large (see for
example [3, 7]). Furthermore, this seems to be indepen-
dent of the method used to solve that problem: In [10], a
totally di�erent method has been used, based on another
data structure { circuits described on the gate level. How-

ever, even here, the same group of benchmarks causes
problems [9]. Another observation is that those bench-
marks with non-uniquely identi�ed variables are not the
benchmarks with the most number of inputs. So, from a
statistical point of view, we can conjecture that the qual-
ity of the used signatures is not the problem: We did not
�nd a relationship between the number of input variables
of a function and the ability of the signatures to distin-
guish between all these inputs. So, it seems a likely sup-
position that the variables that cannot be distinguished
by the signatures have special properties that make it im-
possible to distinguish between them for our purpose |
the permutation independent comparison of two Boolean
functions. The focus of this paper is to break this tie.
Our e�ort is directed towards �nding special properties of
these variables that cannot be uniquely identi�ed. We will
demonstrate that these properties are special symmetries
which avoid a unique identi�cation by any signature. We
then propose methods to identify these symmetries and
break the ties among the unidenti�ed variables.

II. Preliminaries

In the following, let Bn be the set of completely{
speci�ed Boolean functions with n input variables, X =
fx1; x2; : : : ; xng and one output. We use X as a sequence
of variables. For any f 2 Bn, we use the following basic
de�nitions and notations:

A literal is a variable, xi, or its complement, �xi.

The cofactor of f with respect to a literal xi(�xi) is the
Boolean function obtained by setting xi(�xi) to 1 in f and
is denoted by fxi (f �xi). The function fxi (f �xi) is consid-
ered as a function with the same number of input variables
as the function f , i.e. as a function with n input variables.

A minterm is a point (also referred to as a vertex) in
the Boolean n-space of inputs.

The satisfy set of f is the set of all minterms for which
the function value is 1. The satisfy count of f , denoted
by jf j, is the cardinality of this set.

The function f is symmetric w.r.t. a subset of input
variables, ~X � X, if f is invariant under all permutations
of the variables in ~X.

The set ~X is a maximal symmetry group (a maximal set
of symmetric variables) of f if there is no variable xi =2 ~X
so that f is symmetric w.r.t. to ~X [xi as well.

Last but not least, let us de�ne the problem that is the
subject of this paper:

Let Pn be the set of all possible permutations on the
set of inputs X = fx1; x2; : : : ; xng, i.e., one-to-one map-
pings of X onto itself. Pn is a group, and we call it the
permutation group in the sequel.

Let f1 and f2 be two Boolean functions of Bn. The
permutation problem, P� is de�ned as follows: Does there
exist a permutation � 2 Pn such that f1(X) = (f2��)(X)
? If so, we say that f1 and f2 are permutation equivalent.

III. Signatures

In this section we review the basic ideas behind using
signatures for permutation independent Boolean compar-
ison. Since we want to test if two Boolean functions are
equivalent independent of the permutation of their inputs,
we have to solve the problem of establishing a correspon-
dence between the input variables of these two functions.
The basic components of the approach we have used for
that are signatures. In this context, a signature can be
described as follows:

De�nition III..1 Let U be an ordered set, (U;�).
A mapping s : Bn � X �! U is a signature function

i�:
8f 2 Bn8� 2 Pn and 8xi; xj 2 X :

�(xi) = xj =) s(f; xi) = s(f � �; xj).
Then, we call s(f; xi) a signature for the input variable

xi of function f .

That means that a signature for an input variable xi
of a Boolean function f 2 Bn is a description of xi which
provides special information about that variable in terms
of f . Furthermore, it is very important, that this infor-
mation is independent of any permutation of the inputs
of f , i.e. if a permutation � maps the variable xi on xj,
then the signature of xi in f must be the same as the
signature of xj in f � �.
A signature may be a value or a vector of values as well

as a special function. For example, a simple signature for
an input variable xi of a Boolean function f is the satisfy
count of the positive phase cofactor of this function w.r.t.
xi, jfxi=1j. However, there are a number of other signa-
tures that have been used in practice. For information
about these signatures see [6, 3, 7, 4, 11].
We can use a signature to identify an input variable xi

independent of permutation and to establish a correspon-
dence between this variable xi of f with a variable xj of
any other Boolean function g 2 Bn. It only makes sense to
establish a correspondence between these two variables, if
variable xi of f has the same signature as variable xj of
g.
The main idea of this approach is clear: If we are able

to compute a unique signature for each input variable of
f , then the correspondence problem is solved { there is
only one or no possible correspondence for permutation
equivalence of function f with any other function g. If
we �nd for each variable of f a variable of g which has
the same signature, then we have established a correspon-
dence. Otherwise, we know immediately that these two
functions are not permutation equivalent.
The main problem that arises in this paradigm is when

more than one variable of a function f has the same signa-
ture, so that it is not possible to distinguish between these
variables, i.e. there is no unique correspondence that can
be established with the inputs of any other function. We
call a group of such variables an aliasing group. Suppose

there is just one aliasing group of inputs of a function f

after applying certain signatures. If the size of this group
is k, then there are still k! correspondence possibilities to
test between the inputs of f and the inputs of any other
function g.

What can we say about the practical experiences with
using signatures? Let us consider the benchmarks of the
LGSynth91 and the ESPRESSO benchmark set. Using the
signatures introduced in [7], approx. 92% of all bench-
marks have a unique correspondence for their inputs,
i.e. all variables can be uniquely identi�ed. (Symmetries
as de�ned in the previous section have been considered.
See [7] for details.) For the 8% of benchmarks with alias-
ing, the number of possibilities for correspondence among
inputs ranges from 4 to approx. 1023 after applying all
signatures.

Considering the complete set of benchmarks, we can
make the observation that there is no relationship be-
tween the number of input variables of a function and the
ability of the signatures to distinguish between all these
inputs. The problem seems to be that there are special
properties that make it impossible to distinguish between
those variables via signatures. Since signatures work well
for approx. 92% of the benchmarks, there is no reason to
reject the signature approach. What we need is a moder-
ate solution for the other 8% as well. For examples with
just a few correspondence possibilities, the obvious solu-
tion of enumerating all possibilities works well. But what
about the other examples (see for instance [7])? For those,
we cannot be satis�ed with existing solutions. A further
understanding of these cases is the focus of the rest of this
paper.

IV. Limits of Signatures

In this section, we discuss some properties of input vari-
ables that make it impossible to distinguish between these
variables with the help of signatures. These properties are
special symmetries that we can generalize as follows:

Consider a group G � Pn of permutations. We say
that a Boolean function f 2 Bn is G{symmetric if f keeps
invariant under all permutations � in G [5]. The simplest
example for G{symmetry is a Boolean function f that is
symmetric in all input variables. Here, G is equal to Pn,
and we say, f is Pn{symmetric.

In order to understand the signi�cance of G{symmetry
for the permutation problem, let us consider the following
partition of the set of inputs, X into a set of nonempty
and disjoint subsets constructed by a G{symmetry:

A = fA1; A2; : : : ; Akg, so that

1. Any permutation of G maps any element of Ai to an
element of Ai again:
For all permutations � 2 G: � � Ai = Ai (for all
i = 1; 2; : : : ; k)

2. There is no �ner partition of X that satis�es Condi-
tion 1.

That this partition exists for each G{symmetry is obvi-
ous to see. Furthermore, it is unique and has the following
property:

Property IV..1 Consider any element Ai of partition A,
any G{symmetric Boolean function f , and any signature
function s. All elements of Ai have the same signature
s(f; � � �).

Proof:

1. For all xk; xl 2 Ai there is a permutation � of G so
that �(xk) = xl.

To see why this must be so, suppose that this is not
the case. That implies that xl is not an element of the
subset G(xk). However, then G(xk) is a proper subset
of Ai: G(xk) � Ai. So, it is possible to partition Ai

into G(xk) andAin(G(xk)). That implies that there is
a �ner partition of the inputs of Ai thanAi itself, and
this is a contradiction to the property that partition
A was the �nest.

2. Consider any xl; xk 2 Ai, a permutation � of G such
that �(xk) = xl, and any signature function s. As
de�ned, s(f; xk) is equal to s(f � �; �(xk)). Further-
more, this is equal to s(f; �(xk)), because f is G{
symmetric.

So, we have: s(f; xk) = s(f; xl) for any xk; xl 2 Ai.
2

This result now gives us a possible explanation for the
trouble several benchmarks have with the signature ap-
proach: It is possible that these benchmarks include G{
symmetric functions. Then there is no unique description
by signatures for the input variables of these functions.
Thus, it is futile to try and distinguish all the variables
with additional signatures.
The immediate follow-up question is then: What do we

do in this case? Our response to this is that we do not
really need to uniquely identify the variables. Perhaps
we can achieve our end goal of establishing permutation
independent function equivalence by identifying the vari-
ables involved in the G{symmetry and exploring the exact
nature of the G{symmetry. This is further explored in the
next section.

V. Special Symmetries

We now discuss some special kinds of G{symmetry that
often appear in practice. Of course, this cannot be a com-
plete enumeration of possible G{symmetries. We discov-
ered these cases in our quest to understandwhy signatures
were proving to be inadequate for permutation indepen-
dent Boolean comparison. These are: hierarchical, group,

and rotational symmetries. Here we will not consider the
well known symmetry of a Boolean function w.r.t. a sub-
set of its input variables since that is well understood
(see Preliminaries). This kind of symmetry is under con-
trol already, and is not included in the 8% of benchmarks
with aliasing that we consider in this paper (see for ex-
ample [7]).

A. Hierarchical Symmetries

Investigations on our benchmark set have shown that
for several examples the reason for the existence of alias-
ing groups after computation of all signatures considered
in [7] is the following kind of symmetry:

De�nition V..1 Let f 2 Bn be a Boolean function with
the input variables X = fx1; x2; : : : ; xng. Let X1;X2 � X

be two subsets of X.
X1 and X2 are hierarchical symmetric (h{symmetric)

i� jX1j = jX2j > 1, X1 and X2 are maximal symme-
try groups of f (see Preliminaries), and f is H(X1;X2){
symmetric, where H(X1;X2) is equal to the subgroup of
the permutation group Pn generated by the following set
of permutations:

f� 2 Pnj�(X1) = X2 and �(X2) = X1g.

(I.e., f keeps invariant under any exchanging of the vari-
ables of X1 with those of X2.)
A group of subsets of X, fX1;X2; : : : ;Xkg is h-

symmetric i�: 8i; j 2 f1; 2; : : : ; kg : Xi is h{symmetric
to Xj.

Consider the following example:

Example V..1 f = (x1 + x2) + (x3 + x4) + (x5 + x6)

Here, fx1; x2g, fx3; x4g and fx5; x6g are pairs of sym-
metric variables, but there is no symmetry between the
variables of these pairs. However, it is easy to see, that
exchanging any two of these three pairs keeps the function
f invariant. This simple example illustrates h{symmetry.
The de�nition of h{symmetry indicates that this is a

special kind of G{symmetry. So, let us examine the par-
tition A built by it. It is obvious that all variables of X1

and X2 are in one element Ai of partition A if X1 and X2

are h{symmetric subsets of variables. Thus, from Prop-
erty IV..1, we know that all of these variables have to have
the same signatures, i.e., they form an aliasing group.
Thus, there is no way to distinguish between them via
signatures.
Luckily, there is a solution for this that is based upon

our handling of symmetric variables. To understand this,
let us consider the algorithm to identify the input vari-
ables by signatures. Here, the �rst step should be to de-
termine all maximal groups of pairwise symmetric vari-
ables. This can be done very fast [8], and the advantage
is that the signature computations can be restricted to

one representative of each maximal symmetry group [7].
Furthermore, pairwise symmetric variables are kept to-
gether in aliasing groups in this way. Now, let us consider
two h{symmetric subsets, X1 and X2, of input variables
of function f again. As we know, they form an alias-
ing group: fX1 [X2g. A correspondence between these
variables and the variables of an aliasing group of any
other function g is possible if the variables of the other
group have the same signatures, and this aliasing group
has the same structure, i.e., fY1 [Y2g with Y1 and Y2 are
maximal symmetry groups and jX1j = jY1j. Then, there
are two possible correspondences between these groups:
(X1 $ Y1;X2 $ Y2) as well as (X1 $ Y2;X2 $ Y1). And
because of h{symmetry both of these correspondences are
acceptable for our purpose. In other words, our remaining
task in terms of h{symmetry is to detect this kind of sym-
metry. That is su�cient to decide that no further work
has to be done with these aliasing groups in order to solve
the permutation problem, P�.
Thus, we need an algorithm to decide if two subsets

of symmetric variables of a Boolean function f , X1 and
X2, that have the same signature, are h{symmetric. Our
algorithm works as follows: It starts by �rst determining
aliasing groups via signatures. Next, it works on groups
like fX1;X2g that contain subgroups of pairwise symmet-
ric variables. On those, special cofactor computations are
made, based on the following fact.

Fact V..1 Exchanging two di�erent, ordered subsets of
variables, X1 = fx11; : : : ; x

1
kg and X2 = fx21; : : : ; x

2
kg,

i.e. exchanging x1i with x2i for all i = 1; 2; : : : ; k, does
not change a Boolean function f i� for all assignments
a1; a2 2 f0; 1gk to the variables of X1 and X2, the follow-
ing two cofactor functions are equal:

fa1(X1)a2(X2) = fa2(X1)a1(X2).

In our special case, X1 and X2 are subsets of pairwise
symmetric variables. So, just the number of 1's in an as-
signment ai to the variables ofX1 as well as to those ofX2

is of consequence, i.e., we have to take into considerations
exactly jX1j + 1 assignments ai to the variables. This
is easily accomplished by the cofactor operation on the
ROBDD of f . The overall complexity of this algorithm is
O(jX1j�bddf+jX1j

2) where bddf is the size of the ROBDD
of function f : We can take all cofactors simultaneously
and have to test O(jX1j

2) equations.

B. Group and Rotational Symmetries

Two other G{symmetries that appear in practice are
group and rotational symmetries. Group symmetry (g{
symmetry in short) is the term for certain G{symmetries
that have one characteristic in common | There are
at least two di�erent, nonempty, and disjoint subsets
of the set of inputs of a Boolean function f that have
the following property: There is a set of permutations
on these subsets, so that applying the permutations
simultaneously on all subsets does not change function f .

Example V..2 f = A0(x0 + x1) + B0(x2 + x3)

Here, fx0; x1g and fx2; x3g are pairs of symmetric vari-
ables, but there is no h-symmetry between them because
of the variables A0 and B0. However, exchanging fx0; x1g
and fx2; x3g AND A0 and B0 keeps the function invari-
ant. So, this is what we call g-symmetry between the two
subsets of inputs, fx0; x1; x2; x3g and fA0; B0g. The par-
tition A constructed by this G{symmetry (see Section IV.
) includes exactly those subsets. In our example, A is as
follows:

A = ffx0; x1; x2; x3g; fA0; B0gg:

Again, we have a case where signatures will be unable to
distinguish between the variables and thus result in the
formation of aliasing groups (see Property IV..1).
Our practical experiences on the benchmark set show

that this kind of symmetry appears relatively often. One
well-known example is a n{bit multiplier:

xnxn�1 : : : xn

2
+1 � xn

2
: : : x2x1

Exchanging xn

2
+i and xi for each i = 1; : : : ; n

2
simultane-

ously keeps the function invariant.
Unfortunately, it seems to be very complicated to detect

a g{symmetry in general. Furthermore, we believe that
the knowledge of this property is not very helpful | in
general the reduction of possible variable correspondences
is too small to be very useful.
However, we have made an interesting observation in

this regard. The subsets of input variables that result
in a g{symmetry are connected with each other in the
following sense: If we have identi�ed the variables of one
of these sets, then it is possible to identify the variables of
the other subsets as well. With that knowledge we have
developed a heuristic to distinguish between variables of
g{symmetric subsets. We provide a brief outline of the
proposed algorithm for this purpose.
Consider the cofactors of a Boolean function that only

depend on those variables that have been already uniquely
identi�ed by signatures. If these cofactors provide special
information about an aliasing variable xi, then they can
be used to identify this variable: The information is in-
dependent of the permutation of variables with aliasing.
We can consider this to be a new kind of signature. An
example of such a signature is the cofactor with respect
to all aliasing variables set to 0 accept xi set to 1. The
advantage of using these signatures is that they can be
used to break the tie in terms of g{symmetries. This is
now illustrated using Example V..2. After signature com-
putation, using a basic set of signatures, the partition of
its variables is A = ff(x0; x1); (x2; x3)g; fA0; B0gg. The
variables x0 and x1 as well as x2 and x3 are marked
as pairs of symmetric variables. However, we want to
break up this partition. So, let us try the following:
Just assume that the variables of one of these two alias-
ing groups, say fA0; B0g, are uniquely identi�ed. Then,

we can use the signature described above to try to dis-
tinguish between x0 and x2. (Note, that this would be
enough because of the pairwise symmetries between x0
and x1 as well as x2 and x3.): g1 = fx0 �x1 �x2 �x3 = B0 and
g2 = f �x0 �x1x2 �x3 = A0. At this point, the cofactor functions
g1 and g2 are di�erent. It is now possible to distinguish
between x0 and x2 under this assumption! However, there
is still a problem. This identi�cation is not canonical. It
depends on the order of A0 and B0 in function f . Be-
cause of this, we do this procedure for each possible order
of A0 and B0, i.e., f = A0(x0 + x1) + B0(x2 + x3) and

f̂ = B0(x0 + x1) +A0(x2 + x3). Thus, we get two di�er-
ent identi�cations for the variables x0 and x2 depending
on the order of A0 and B0. Finally, we need a canonical
way to select one of these two identi�cations. However,
this is easy. Signatures are elements of an ordered set
(see de�nition). So, we can order the input variables of a
Boolean function f by their signatures. Furthermore, we
can reconstruct f using this new order. Now, for our spe-
cial case, we have two new orders, i.e. two new functions
as well. So, let us choose that order that belongs to the
lexicographic smaller of these two functions as the canon-
ical one, and we have a unique solution for our problem.
We have tested this approach for the examples of our

benchmark set. The experimental results are very promis-
ing (see next section).
Last and least, another kind of G{symmetry is the ro-

tational symmetry: Let f 2 Bn be a Boolean function
and Y := fy1; y2; : : : ; ykg � X a subset of its input vari-
ables. f is rotational symmetric (r{symmetric) if k � 3,
f is not symmetric in Y , but does not change on applying
the following permutation � on Y : �(y2) = y1; �(y3) =
y2; �(yk) = yk�1; �(y1) = yk or �(y1) = y2; �(y2) =
y3; �(yk�1) = yk; �(yk) = y1.
The following simple example illustrates this kind of

symmetry:

Example V..3 f = x1x2 + x2x3 + x3x4 + x4x5 + x5x1

Here it is obvious that rotating the variables does not
change f , even though there is no pairwise symmetry be-
tween the variables.
In our experience r{symmetries do not appear very of-

ten in practice.

VI. Experimental Results

We have implemented the ideas presented in the pre-
vious sections in the Berkeley SIS system in C. To get
an overview about the quality of the signatures in [7] we
have tested all available benchmarks from the LGSynth91
and ESPRESSO benchmark set for which we were able
to construct the ROBDDs, as well as a couple of addi-
tional benchmarks (act1, act2 { the actel1 and actel2 cells
from the FPGA manufacturer Actel; mult3 { a 3-bit mul-
tiplier). In all there are 243 benchmarks. Of these, only
8% demonstrate aliasing with a range of signatures. These

circuit number of correspondences cpu

name #i #o #n sig +hsymm +grsym (in sec.)

CM150 21 1 64 � 107 � 107 1 4.9

CM151 12 2 32 216 216 1 0.5

act2 8 1 12 4 4 1 0.0

addm4 9 8 225 16 16 1 1.0

cordic 23 2 86 4 1 1 0.4

dist 8 5 135 16 16 1 0.7

ex4 128 28 896 4 4 1 40.8

i3 132 6 134 � 1023 1 1 55.0

lal 26 19 123 24 1 1 0.2

misg 56 23 109 5184 216 1 36.4

mlp4 8 8 141 16 16 1 0.8

mult3 6 6 44 8 8 1 0.2

mux 21 1 88 � 107 � 107 1 4.9

mux cl 11 1 18 216 216 1 1.4

ryy6 16 1 27 4 1 1 0.1

sao2 10 4 123 16 16 1 0.6

t481 16 1 80 331776 331776 331776 (0.6)

ts10 22 16 271 720 720 720 (2.2)

term1 34 10 616 � 108 � 108 1 36.0

TABLE I

Benchmarks with aliasing

have been listed in Table I. These benchmarks have been
the subject of our research for this paper. A descrip-
tion of each circuit (name, number of inputs, outputs and
ROBDD nodes) is followed by the number of possible cor-
respondences after using signatures only(sig), signatures
and the algorithms to determine h{symmetry (+hsymm),
signatures, the h{symmetry algorithms and the heuristics
for g{symmetry (+grsym). The last column includes the
CPU time in seconds needed to apply all three heuristics
on a SUN Sparcstation 10.

As can be observed, the results are very promising.
Approx. 26% of all benchmarks with aliasing groups in-
clude h{symmetry. For all but two of the rest the grsym-
algorithm has been successful. These two examples are
ts10 and t481. We know, that ts10 is r{symmetric in 6
variables. Furthermore, we are still investigating the ex-
act nature of the symmetry of the last case, t481.

The CPU times are very modest. With a minimal
amount of time we could solve the correspondence prob-
lem in almost all cases.

VII. Conclusions

This paper presents interesting new insights into the
permutation independent Boolean comparison problem.
It �rst examines the limitations of using signatures to
tackle this problem by presenting a basic result which
identi�es exactly what the limitations are. Next, it iden-
ti�es new kinds of symmetry classes that help in �nding
a correspondence between the variables of two functions
being compared. The CPU times necessary to establish
such a unique correspondence is very promising. Thus, in
addition to providing theoretical insight, the algorithms
presented also have direct practical impact on the com-
plete solution of this problem.

Acknowledgements

This research has been supported in part by DFG
grants SFB 124 and Mo645/2-1.

References

[1] K. S. Brace, R. L. Rudell, and R. E. Bryant. E�cient

implementation of a BDD package. In Proceedings of the

27th ACM/IEEE Design Automation Conference, pages 40{

45, June 1990.

[2] R. E. Bryant. Graph-based algorithms for boolean function

manipulation. In IEEE Transactions on Computers, volume

C-35, pages 677{691, August 1986.

[3] D. I. Cheng and M. Marek Sadowska. Verifying equivalence of

functions with unknown input correspondence. In Proceedings

of EDAC, pages 81{85, February 1993.

[4] E.M. Clarke, K.L.McMillan, X.Zhao, M. Fujita, and J.Yang.

Spectral transforms for large boolean functions with appli-

cations to technology mapping. In Proceedings of the 30th

ACM/IEEE Design Automation Conference, pages 54{60,

1993.

[5] G.Hotz. Schaltungstheorie. De Gruyter Lehrbuch, Walter De

Gruyter, 1974.

[6] Y.-T. Lai, S. Sastry, and M. Pedram. Boolean matching using

binary decision diagrams with applications to logic synthesis

and veri�cation. In Proceedings of the ICCD'92, pages 452{

458, October 1992.

[7] J. Mohnke and S. Malik. Permutation and phase independent

boolean comparison. INTEGRATION - the VLSI journal 16,

pages 109{129, 1993.

[8] D. M�oller, J. Mohnke, and M. Weber. Detection of symmetry

of boolean functions represented by ROBDDs. In Proceedings

of ICCAD, pages 680{684, November 1993.

[9] I. Pomeranz and S.M. Reddy. personal communication.

[10] I. Pomeranz and S.M. Reddy. On diagnosis and correction

of design errors. In Proceedings of ICCAD, pages 500{507,

November 1993.

[11] U. Schlichtmann, F. Brglez, and P. Schneider. E�cient boolean

matching based on unique variable ordering. In Proceedings of

the IWLS, May 1993.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

