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Abstract— In this paper, we present a new performance driven
placement method based on path delay constraint approach for
large standard cell layout. The proposed method consists of three
phases and uses the Elmore delay model to model interconnection
delay precisely in each phase. In the first phase, initial placement
is performed by an efficient performance driven mincut partition-
ing method. Next, an iterative improvement method by nonlinear
programming improves the layout. The improvement is formu-
lated as the problem of minimizing the total wire length subject to
critical path delays. Finally, row assignment considering timing
constraint is performed. From the experimental results compar-
ing with RITUAL[17], the proposed method is much better than
RITUAL in point of the maximal violation ratio, the total wire
length, and the cut size, and is more effective in point of the inter-
connection delay model and its extendability.

I Introduction

Performance is one of the most important criterion to eval-
uate the quality of VLSI chips. VLSI layout design which
handles performance explicitly is generally called performance
driven layout. Due to the advance of semi-conductor process
technologies, interconnection delay cannot be ignored as well
as switching delay of gates in the physical design[1]. There-
fore, dealing with performance explicitly means dealing with
the interconnection delay.

There have been many studies about performance driven lay-
out, especially performance driven placement, and they can be
classified into the following four groups, (1)the net weight-
ing approach[2, 15], (2)the net delay constraint approach[7, 10,
18], (3)the path weighting approach[9, 19], and (4)the path de-
lay constraint approach[3, 8, 11, 17]. However, many of them
have a difficulty of trade-off between the quality of the layout
and the computation time. Especially for interconnection de-
lay, the estimation of the interconnection delay is inaccurate
because of some assumptions of the model.

In this paper, we propose a new performance driven place-
ment algorithm of the path constraint based approach. As the
interconnection delay model of the proposed method, the El-
more delay model is used explicitly so that we can estimate the
accurate interconnection delay and can also apply the proposed
method to wider technologies than conventional methods. The
proposed algorithm consists of four phases. The algorithm first

gets an initial placement, then improves it iteratively. In the im-
provement step, the algorithm selects a subcircuit and finds a
new placement by nonlinear programming. Because the sub-
circuit includes at least one whole path which violates its own
delay requirement, we can treat the timing constraint more flex-
ibly than the net based approach. Moreover, to limit the size of
subcircuit enables the proposed method to apply to large cir-
cuits. Finally, the placement is formed to a row based layout
style by the performance driven row assignment phase. From
the experimental results comparing with RITUAL[17], the pro-
posed method improved the total wire length by a 19.4% on
average and 36.0% in maximum compared with RITUAL. As
a result, the proposed method is much better than RITUAL in
point of the maximal violation ratio, the total wire length and
the cut size, and is more effective in point of the interconnec-
tion delay model and its extendability.

II Preliminaries

A. Layout and Delay Models

In this paper, the row based design such as the poly-cell type
standard cell or the gate array models is assumed. The Sea-of-
Gates and the mixed macro cell models can be adopted too with
minor modification. The metal routing consists of two layers,
the first layer is used for horizontal direction routing, and the
second for vertical direction routing.

An equivalent circuit of an interconnection is originally
modeled as a distributed RC circuit, and the Elmore’s delay
equation[5] is often used to represent the interconnection delay.
When a multi-terminal net is implemented by a Steiner tree,
Kuh gives an upper bound of the Elmore delay from the source
pin to the load pin i of the net by the following equation[14].

di(W;L0i) = (cW +
X

j

Clj)(R0 + rL0i); (1)

where W is the total wire length of the Steiner tree, L0i is the
path length from the source to the load i, c and r are the wire
capacitance and resistance per unit length, respectively, R0 is
the equivalent output resistance of the source, and

P
j Clj is the

sum of the load capacitances. We employ the equation (1) as an
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Fig. 1. A constrained circuit and critical paths.

interconnection delay model. However, the wire capacitances
are different between the first and second metal layers(M1 and
M2), so we compute the delay as the sum of delay of M1 and
M2. Furthermore, it is not practical to construct Steiner trees
during placement from the point of computation time, so we
estimate the wire length of a net by half perimeter of a bounding
box of the pins of the net. The delay from the source pin to the
load pin i of the net is thus defined as,

di(l1; l2) = (c1l1 + c2l2 +
X

j

Clj)(R0 + r1l1 + r2l2) (2)

where l1 and l2 are the width and height of the bounding box
of the net, c1 and c2 are the capacitance of M1 and M2 per unit
length, and r1 and r2 are the resistance of M1 and M2 per unit
length, respectively.

B. Timing Constraint

In this paper, we consider the long path problem. As there
are many paths from a primary input(PI) or an output of flip-
flops(FFs) to a primary output(PO) or inputs of FFs, they can
be specified by pairs of pins, source ones and sink ones. Thus
we specify a timing constraint as t� = (s� ; e� ;Dreq� ), where
s� is a source pin, e� is a sink pin, and Dreq� is the maximum
permissible delay from the source to the sink. For example, if
a circuit and its timing constraint are given as shown in Fig.
1(a), the delay of any path from s� to e� , in this case three
paths, must be less than Dreq

�
(Fig. 1(c)). We have to get the

layout satisfying all elements of the set of timing constraints T.

C. Problem Formulation

We define some terminologies and symbols. Let L =
(M;N) be a logic circuit, where M = fm1;m2; . . . ;mMg

is a set of cells and N = fn1; n2; . . . ; nNg is a set of nets. A
setNi is a set of nets connecting to a cell mi, and a setMj is a
set of cells connecting to a net nj . For every timing constraint
t� 2 T, we define a critical path denoted by p� = (M� ;N�)
as any path whose source is s� and sink is e� , where M� is a
set of cells which are on the critical path andN� is a set of nets
which have connection to some cell on the critical path. Let
P be a set of critical paths and let P� � P is a set of critical
paths specified by a timing constraint t� 2 T� . Let Dreq�

be
the required propagation delay of p� 2 P, and let Dact� be the
actual propagation delay of p� 2 P.

For every timing constraint t� 2 T, let L� = (M� ;N� ) be
a constrained circuit, in which a set of cells and nets are de-
fined as M� =

S
8p

�
2P

�

M� ; and N� =
S
8p

�
2P

�

N� . If

M� are regarded as vertices and N� as edges whose direc-
tions are given by corresponding signal flows, a constrained
circuit c� is represented as a directed acyclic graph(Fig. 1(b)),
in which the source is s� and the destination is t� . Let C be a
set of constrained circuits, and let Dact� = max8p�2P� Dact�

be the actual propagation delay time from s� to e� . Figure 1
shows an example of our definition. (a) is a timing constraint
t� = (s� ; t� ; D� ), and (b) is the constrained circuit correspond-
ing to t� . There are three critical paths as shown in (c).

Now, we formulate the performance driven placement prob-
lem.

[ The Performance Driven Placement Problem ]
Inputs : a logic circuit L = (M;N), timing constraints T,

and physical parameters of equation (1) of the Elmore de-
lay model

Output : positions ofM which minimize the objective func-
tion

Objective Function: the total wire length of nets
Constraints : satisfy the layout model and the timing con-

straints T 2

III A New Performance Driven Placement

Method

A. Outline of the Proposed Method

The proposed method consists of three phases. In phase 1, it
generates an initial placement by a hierarchical timing driven
mincut placement algorithm. Next, the placement obtained in
phase 1 is improved using nonlinear programming in phase 2.
This phase is iterative improvement, and in each iteration, a
subcircuit which contains a critical path violating its constraint
is placed. Finally, the cells are assigned in rows considering the
timing constraints. We will explain the details of each phase in
the following subsections.

B. Phase 1 : Initial Placement Based on Hierarchical Tim-
ing Driven Mincut Partitioning

In our initial placement, three points should be considered,
to minimize the total wire length, to distribute cells uniformly
in the placement region and to reduce the violations of timing
constraints as much as possible. As the violations will be elim-
inated in phase 2, it is not necessary for the initial placement to
satisfy all of timing constraints.

We employ an extended version of the timing driven mincut
placement algorithm we proposed in [19] as this phase, because
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it takes three points mentioned above into account, produces a
placement comparatively quickly and uses the same intercon-
nection delay model as the proposed method does. This algo-
rithm is based on ordinary hierarchical quadratic partitioning.
The quadratic partitioning is basically realized by applying the
well-known bi-partitioning method, called the FM method[6],
in three times. Both logic cells and a region in which the cells
are placed at the center is divided into four parts(Fig. 2(a)).

We extended the FM method so as to consider timing con-
straints. The FM method is an iterative improvement method
and elements(in this case cells) with the maximal gain are
moved to the opposite side of the partition one by one. The
gain, we call it cut gain gcuti here, for a cell mi means the de-
creasing number of cut size, which is the number of nets cross-
ing the cut line, if mi is moved to the opposite side. Once a cell
is moved actually, it is locked and never moved any more. Then
the gains of all cells connecting to that cell are updated. These
operations are repeated iteratively until all cells are locked.

In addition to the gain for minimizing the cut size, we intro-
duce another three gains. Firstly, we introduce the gain to han-
dle timing constraints. Let slack for each critical path p� 2 P

be defined as follows.

slack� = min(Dreq� �Dact�;0): (3)

The slack means the margin of the delay time of p� against the
required delay time. If a cell mi is moved to the opposite side,
the sum of the difference of slack of paths containing mi can
be written as

gslacki =
X

8p�2P
��
mi 2 M�

(slack0
�
� slack�); (4)

where slack� is the current slack of a critical path p� , and
slack0

�
is the slack of a critical path p� after moving the cell.

We call gslacki the slack gain. To move the cell with large slack
gain means to decrease the delay time of paths which contain
it and violate their required delay time.

Next, we explain another gain to consider terminal positions
of nets. We consider a vertical(resp. horizontal) partitioning
shown in Fig. 3. LetMmi be a set of cells connecting with cell

region_width

positive cost region

partitioned
region

negative cost region

region 1 region 2

cut line

region_height
micell

Fig. 3. costtermi of a horizontal partitioning.

mi 2 M and let xi; xj(resp. yi; yj) be a x-coordinate (resp. y-
coordinate) of cell mi 2 M and mj 2Mmi, respectively. Let
region width (resp. region height) be the width(resp. height)
of the region to be partitioned. Now, we define the cost con-
cerned with terminal positions of nets connecting with the cell
mi as

costtermi
=

X
mj2Mmi

�
(
jxj � xij

region width
+ 1) � kij

�
; (5)

where kij = �1 if xj � xi = 0, otherwise kij = xj�xi
jxj�xij

. For
example in Fig. 3, the cells placed at the left part of the cell mi

have negative costs, and the cells placed at right part of the cell
mi have positive costs. Then, the gain considering the terminal
positions, called terminal gain, is defined as

gtermi
= costtermi

� cost0termi
(6)

where costtermi
and cost0termi

are the costs before and after mov-
ing cell mi, respectively. From the gain gtermi

, we can realize
the same effect of the terminal propagation method[4] in a short
computation time.

Finally, we define the gain, called wire gain, to consider the
wire length of nets. Because the minimization of the cut size
doesn’t always minimize the total wire length of nets, we ex-
plicitly consider the total wire length during the partitioning.
Let wirei be the total wire length of nets connecting with cell
mi. In other words, wirei is the sum of the half perimeters of
the enclosing minimum rectangle of all pins of nets connecting
with the cell mi. Then we define the wire gain as

gwirei = wirei � wire0
i

(7)

where wirei and wire0
i

is the total wire length before and after
moving cell mi, respectively.

Consequently, the gain of a cell mi is defined as the sum of
above four gains, that is,

gaini = �� gcuti +�� gslacki + �gtermi
+ �� gwirei ; (8)

where �, �, , and � are positive constants. In our experiment,
we set � = 1, � = 3,  = 4, and � = 2. In the proposed
method, the above mentioned bi-partitioning method is hier-
archically applied by shifting the partitioned region as shown



in Fig. 2(a)�(f). Since the precise cell positions are already
assigned after the first partitioning as shown in Fig. 2(b), the
terminal and wire gains can be accurately calculated and a good
initial placement can be obtained.

C. Phase 2 : Iterative Improvement Based on Nonlinear
Programming

1. Selection of a Target Subcircuit

An initial placement may violate some timing constraints.
The objective of phase 2 is to eliminate all the violations and
to minimize the total wire length of the placement. To achieve
them, we transform the placement problem to a mathematical
programming problem. But mathematical programming tends
to require much computation time and memory space. There-
fore, we apply mathematical programming to subcircuits, for
which the formulated problem can be solved in a practical com-
putation time and with practical size of memory space.

Now, we define the target subcircuit as Lmov =
(Mmov;Nmov), where Mmov is the set of cells, called mov-
able cells, of the subcircuit, and Nmov is the set of nets, called
movable nets, connecting to at least one movable cells. The
cells other than movable cells are called fixed cells and their
set is represented by Mfix. The nets other than movable nets
are called fixed nets and their set is represented by Nfix.

The target subcircuit is selected by the following algorithm.
In the algorithm, randi(0;1) is a real number between 0 and 1
randomly generated for each cell mi.

[ The Target Subcircuit Selection Algorithm ]
Step 1 : Find a critical path P� with large violation ratio;
Step 2 : Mmov = M�; Mfix = M�Mmov;

Nmov = N� ; Nfix = N �Nmov;
Step 3 : Calculate connectivity of cells of Mfix;
Step 4 : If 2 � (jMmov j + jNmov j) � (preset value), then

output Mmov and Nmov and stop;
Step 5 : Search a cell mi 2 Mfix in decreasing order of

its connectivity until the condition randi(0;1) �
(preset value) is satisfied;

Step 6 : Mmov = Mmov[fmig; Mfix = Mfix�fmig;
Nmov = Nmov [Ni; Nfix = Nfix � Ni;

Step 7 : Update connectivity and go to Step 4; 2

First, we find one of critical paths with a large violation ratio.
The violation ratio is the value of actual delay time of a criti-
cal path (or a constrained circuit) divided by the required delay
time of it, i.e., Dact�

Dreq�
. The candidates for the critical path are

selected from constrained circuits which are the largest 10�20
percent in the all constrained circuits in point of the violation
ratio. Firstly, let the critical path be the initial subcircuit. Next,
expand the subcircuit by adding cells one by one. The added
cell should have large connectivity, which is the number of con-
nections to the present subcircuit. In order to avoid repeatedly
selecting the same cell to be added to the target subcircuit in
each iteration of phase 2 , we introduce a randomness in the
selecting step and determine whether the cell is included(See.

Lmov

a target
subcircuit

critical
   paths

Lmov

the critical path
with the maximum
timing violation

Fig. 4. Selection of a target subcircuit.

Step 5). If it is included, all nets connecting to it turn to mov-
able nets. By the way, when the placement problem is trans-
lated to a mathematical programming problem, it needs vari-
ables twice the number of the movable cells and movable nets.
To solve the problem in a practical computation time, we must
limit the number of variables in the mathematical program-
ming. Hence, the growing process of the subcircuit continues
until the number of variables of the mathematical programming
problem reaches to a given constant (Fig. 4).

There are two reasons why we construct the target subcir-
cuit in such a way. Firstly, if the subcircuit around a violated
critical path is improved at the same time, the cells on the path
must be able to move fairly freely. Second, the cells with many
connections with the critical path must be included in the same
constrained circuit so that moving the cells connecting with the
critical path will be effective to reduce the timing violation.

2. Constraints of Nets

To transform the placement problem to a mathematical pro-
gramming problem, we need variables to represent the wire
length of movable nets as well as positions of movable cells.
We define two variables for each movable cell, these are xj
and yj which are the XY coordinates of a cell mj2Mmov .
We also define two variables for each movable net as shown
in Fig. 5(a), where wi is the width of the bounding box of a
net ni2Nmov and hi is the height. Then we can represent the
bounding box of a movable net ni by these variables and the
following inequations.

CN1 : xj � xk � wi

yj � yk � hi

9=
;

8mj 6= mk 2Mi \Mmov;

8ni 2 Nmov

They mean that for any pair of movable cells connecting to ni,
they are completely included in the bounding box of ni. When
ni connects to fixed cells, the following another inequations are
needed.

CN2 : xj �Xmini � wi

Xmaxi � xj � wi

Xmaxi �Xmini � wi

yj � Ymini � hi

Ymaxi � yj � hi

Ymaxi � Ymini � hi

9>>>>>>>>>>=
>>>>>>>>>>;

8mj 2 Mi \Mmov ;

8ni 2 Nmov
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If a net has some fixed cells, the bounding box of the fixed cells
can be constructed, and for any pair of a movable cell and the
bounding box, their bounding box is completely included in the
bounding box of ni.

Some conventional methods[11, 12] based on mathematical
programming use four variables for each net, those are coor-
dinates of left lower corner and right upper corner of bound-
ing box of the net as shown in Fig. 5(b). The method of Fig.
5(b)(let it be B) needs four times the number of movable nets,
while the method of Figure 5(a) (let it be A) needs only twice.
So A is superior to B in point of the number of variables. On
the other hand, there is not a large difference in the number
of inequations between them. Hence, we have employed the
method A.

3. Constraints of Path Delay

Our placement problem has timing constraints, so these con-
straints should also be transformed to the mathematical pro-
gramming problem. As mentioned in Section 1., a target sub-
circuitLmov grows from a critical path(Fig. 4). However, there
are many critical paths other than it which are partially or en-
tirely included in the subcircuit. If we have not thought about
them during the improvement, it would happen that while vi-
olation of the first selected critical path might be eliminated,
other critical paths might cause timing violations. Therefore
we have to consider all of them as constraints. Constraints of
critical path delays can be written as follows.

CP :
X

8ni2N�\Nmov

di(wi; hi)

+
X

8ni2N�\Nfix

di(Xmaxi �Xmini ; Ymaxi � Ymini)

+
X

8mj2M�

Dswitchj � Dreq� ;

8p� 2 P
��
M� \Mmov 6= ;;

where Dswitchj is the switching delay of cell mi. In these in-
equations, the right side means the permissible delay time of
a path and the left side means the actual delay time of it. The
first term of the left side is the sum of delay of movable nets on
it, the second is the sum of delay of fixed nets, and the third is
the sum of switching delay of cells. In this formulation, only
the first term of the left side has variables and the inequations
are quadratic(See Eq.(2) in Sec. 2.1).

4. NLP Formulation of the Problem

The objective of our problem is to minimize the total wire
length. However, in general, a placement produced by math-
ematical programming with minimizing the total wire length
tends to make the distribution of cells imbalance, i.e., some
cells may concentrate in a local region. This is because this
objective does not concern with the differences of length be-
tween the nets. If many cells overlap each other, they must
be moved far away in the post processing, resulting that the
“goodness” of the placement obtained in phase 2 would be di-
minished and this is nonsense. But it is difficult to add some
constraints or to adopt a special objective function to explicitly
make cells uniformly distributed on the chip while keeping the
convexity of the problem. So, to distribute cells uniformly on
the chip, we rearrange the objective function as minimizing the
sum of square of wire length. If such an objective is taken, it
tends to make the wire length of each net equal than a linear
objective function even if the sum of wire length is the same in
both objectives.

From above arguments and Sects. III.C.2. and III.C.3., we
formulate the placement problem as a mathematical program-
ming problem.

minimize :
X

8ni2Nmov

�i(w
2
i + h2

i ) (9)

subject to : CN1 [CN2 [CP

where �i is the constant considering a criticality of a net ni.
Because the objective and constraints CP are quadratic, this
problem is a nonlinear programming problem(NLP).

5. The Algorithm of Phase 2

The algorithm of phase 2 is shown below.

[ Iterative Improvement Based on NLP ]
Step 1 : Perform timing verification to all constrained cir-

cuits; LoopNumber = 1;
Step 2 : If the maximum violation ratio is less than

a pre-determined permissible violation ratio or
LoopNumber > ( preset value), then stop;

Step 3 : Select a target subcircuit Lmov to be improved;
Step 4 : Find all critical paths which have the cells of

Mmov ;
Step 5 : Formulate the nonlinear programming problem (9)

and solve it;
Step 6 : Perform timing verification to the constrained cir-

cuits which have cells ofMmov ;
Step 7 : LoopNumber = LoopNumber + 1 and go to Step 2;

2

This algorithm improves a placement iteratively, and in each
iteration, it constructs a target subcircuit, formulates a nonlin-
ear programming problem and solves it. It starts from timing
verification and calculates violation ratios for all constrained
circuits. In the following loop, the improvement and timing
verification is done. This timing verification is executed for all
the constrained circuits which have movable cells. This loop is
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repeated until the maximum violation ratio is less than a pre-
determined permissible violation ratio or the loop count reaches
some preset value.

As a nonlinear programming method, we employ the mul-
tiple method[13], which is easy to implement, and it takes
O(k1V

2 + k2C) computation time, where V is the number of
variables,C is the number of constraints, and k1 and k2 are con-
stants ( or sometimes variables ) concerning loop counts in the
method. Instead of the multiple method, any other faster non-
linear programming method can be used to solve the problem
(9).

D. Phase 3: Timing Driven Row Assignment

In phase 3, the cells, which are distributed on the chip in
phase 2, are assigned to cell rows. Now, let R be the number
of cell rows, and letR1;R2; . . . ;RR be the set of cells of each
row. All cells have areas, and let a(M) be the sum of area of the
cells inM. The width of the chip is determined by the width of
the longest cell row, and if the width of all rows are same, then
the width of the chip is minimized. Thus we give the same
capacity, denoted A, to all cell rows, and all cell rows must
satisfy a(Ri) � A; i = 1; . . . ;R. The rows have y coordinates
Y1; Y2; . . . ; YR.

In the proposed row assignment algorithm shown first, the
cells between each two consecutive cell rows are grouped first,
and next for each group, the cells in it are assigned to slots in
the two consecutive cell rows by linear assignment considering
the wire length and the timing constraints(row assignment of y-
direction) (Fig. 6(a)). Next, cell groups are constructed based
on x-coordinate of cells from left to right of the chip, and the
cells in each group are reassigned to slots of the improved re-
gion by linear assignment in a similar way of y-direction (row
assignment of x-direction) (Fig. 6(b)). The above operations
are iteratively performed while the placement is improved. In
the following, row assignment of y-direction is described.

First, we explain how to construct the groups. There are R

groups, G1;G2; . . . ;GR. For each Gi; i = 1; . . . ; R, they have
capacities, which are Ai = A, for i = 2; . . . ; R and A1 = 3A=2.
All cells are sorted by their y coordinates, and the first cells, of
which the sum of the area is equal to the capacity of the first
group, are assigned to the first group. Similarly, the remaining
cells are divided into the groups. Next, the cells are assigned to
slots in cell rows. We transform this assignment problem to a
linear assignment problem. Because of a(Gi) � A, if the cells
in group Gi which are not assigned to slots of the cell row Ri

but slots of the cell rowRi+1, then the cells assigned toRi+1 are
added to the next group Gi+1 and reassigned in the next linear
assignment problem.

The linear assignment problem that the cells in the group Gi
are assigned to slots of the cell rowRi is formulated as follows.

minimize :
P

mj2Gi

P
sk2Si

cjkzjk

subject to :
P

sk2Si
zjk = 1; 8mj 2 Gi;

P
mj2Gi

zjk = 1; 8sk 2 Si;

zjk � 0; 8mj 2 Gi; 8sk 2 Si

where Si is a set of slots in which all cells in Gi are assigned,
and cjk is a cost with which the cell mj is assigned to the slot
sk. The cost cjk is defined as

cjk =
P

ni2Nj

∆li(mj ; sk)f (!i); (10)

where ∆li(mj; sk) is a difference of the wire length of the net
ni connected to the cell mj when the cell mj is assigned from
the current slot to the slot sk, and f (!i) is a function of the crit-
icality!i of net ni and if !i exceeds a preset value, for example
0.9, then it increases rapidly. The timing constraints are con-
sidered by the criticality of the nets. For the timing constraint
t� 2 T , Dreq

�
is the required delay and Dact� is the actual de-

lay. We reflect the degree of the violation on !i as

!i = max8L�=f�jni2N�g
Dact�

Dreq�

: (11)

The timing driven row assignment algorithm is as follows.

[ Timing Driven Row Assignment ]
Step 1 : LoopNumber = 0;

/* Row assignment of y-direction */
Step 2 : Construct groups G1;G2; . . . ;GR based on y coor-

dinates of cells;
Step 3 : i = 1;
Step 4 : For all cells mj 2 Gi, sk 2 Si, compute cjk and

solve the linear assignment problem;
Step 5 : For all cells mj 2 Ri, update their coordinates.
Step 6 : Gi+1 = Gi+1 [Ri+1.
Step 7 : If i < R, then i = i+ 1 go to Step 4, else terminate;

/* Row assignment of x-direction */
Step 8 : Construct groups G01;G

0
2; . . . ;G0R based on x coordi-

nates of cells;
Step 9 : i = 1;
Step 10 : For all cells mj 2 G

0
i; sk 2 Si

0, compute cjk and
solve the linear assignment problem;

Step 11 : For all cells mj 2 Ri
0, update their coordinates.



Step 12 : G
0
i+1 = G0i+1 [R

0
i+1.

Step 13 : If i < R0, then i = i + 1 and go to Step 10;
Step 14 : If there is no improvement

or LoopNumber = (preset number), then terminate,
else LoopNumber =LoopNumber + 1 go to Step 2;
2

IV Experimental Results

We have implemented the proposed placement method
called POPINS and performed some experiments. All exper-
iments are done on a SPARC server1000 (135.5MIPS). Table
I shows the tested data. Among them, “fract” � “avq.large”,
are the MCNC benchmarks, and “s1494”�“s35932” and
“C1”�“C7” are ISCAS benchmarks. For ISCAS benchmarks,
logic synthesis and technology mapping were performed by
SIS1.2[16]. In this table, “#cons” is the number of timing
constraints. As the timing constraints, we gave a clock cycle
time for “fract“, “biomed”, “s1494”�“s35932”, “C1”�“C7”.
The clock cycle time of “fract” and “biomed” was determined
by that determined from a placement produced by a non-
performance driven placement method multiplied by 0.8�0.9.
Those of “s1494”�“s35932” and “C1”�“C7” were given.
“primary1”, “primary2”, “avq.small”, and “avq.large” have 16-
bit registers, thus we gave the timing constraints so as to syn-
chronize the arrival time of all flip-flops in the same registers.

We compared POPINS with RITUAL[17]. RITUAL is one
of the most powerful performance driven placement algorithms
which can satisfy a given clock cycle. The interconnection de-
lay model is similar to ours, except the wire resistance is not
assumed. But to compare with our results, we evaluated the
result by our model. Moreover, in RITUAL, a cell which has
more than one output pins is not permitted, so we could not
test “fract”�“avq.large”. The results of POPINS and RITUAL
are shown in Table II. In Table II, #vio. is the number of vi-
olated timing constraints, Delay Max., defined as Delay Max.
= max8t

�
2T Dact

�
=Dreq

�
, is called the maximal violation ra-

tio and if it is less than or equal to 1.0, the placement satisfies
all timing constraints. Delay Ave. is an average violation ratio,
i.e., Delay Ave. = 1

jT j

P
8t�2T

Dact
�
=Dreq

�
and length is the

total wire length estimated by the Manhattan distance (�). We
uniformly generated 15 cut lines for each direction and counted
the number of nets crossed the corresponding cut line (Fig. 7).
#h-cuts Max. and Ave. are the maximum and average cut sizes
of the horizontal(x) direction, respectively. Similarly, #v-cuts
Max. and Ave. are the maximum and average cut sizes of the
vertical(y) direction, respectively. time is the running time by
SPARCserver1000 (seconds).

From the results of Table II, POPINS improved the total wire
length by a 19.4% on average and a 36.0% in maximum com-
pared with RITUAL. Form #h-cuts and #v-cuts, POPINS also
produced the smaller and more uniform cut size placements
than RITUAL. As a results, the proposed method can produce
better placements in points of the maximal/average violation
ratio, the total wire length, and the cut size. For the CPU time,
if the nonlinear programming method used in the phase 2 can
be improved or replaced with more superior one, for exam-
ple, some commercial packages, the computation time can be

cu
t l

in
es

cut lines

(a) the horizontal direction (b) the vertical direction

Fig. 7. The cut sizes of the horizontal and vertical directions.

TABLE I
Characteristics of experimental data.

Data #cells #nets #I/Os #rows #cons
fract 125 163 24 6 38

primary1 752 1266 81 16 398
primary2 2907 3817 107 36 877
biomed 6417 7052 97 40 1302

avq.small 21854 22124 64 70 6064
avq.large 25114 25384 64 72 6064

s1494 390 425 27 9 70
s9234 917 1028 75 12 412
s38417 7572 7734 134 37 2619
s35932 11838 12228 355 45 3488

C1 493 607 73 8 82
C2 590 1277 373 9 270
C3 682 804 72 10 246
C5 1081 1560 301 13 334
C6 1037 1516 301 14 334
C7 2150 2678 315 18 405

#cons : the number of timing constraints.

shorter. However, for large size data “s35932” which has 11838
cells and 12228 nets, POPINS can obtain a 16.1 % better result
within the shorter computation time than RITUAL. From above
experiments, the results of POPINS are much better than those
of RITUAL.

Furthermore, our method is superior to RITUAL in the fol-
lowing points. First, we assume the more exact interconnec-
tion delay model, so our method can be used in wider tech-
nologies, but RITUAL has a restriction in technologies which
it can be applied to because of its timing model. Second, the
timing constraint we assume is the set of pin to pin constraints
while that of RITUAL is a clock cycle time, so our method can
be used for more complex timing constraints such as a circuit
with multi phase clock. Moreover, to improve the performance
of an existing placement which is produced by a placement al-
gorithm without considering timing constraint, the phase 2 of
our method is very effective. Finally, it is easy to introduce par-
allel processing into phases 1, 2, and 3 so that the algorithm can
easily handle very large scale cell-based ICs. From the above
consideration, the proposed method is more effective than other
existing performance driven placement methods in point of the
interconnection delay model and its extendability.

V Conclusions

In this paper, we proposed a new performance driven lay-
out method for designing high performance VLSI chips. The



TABLE II
The results of the proposed method POPINS and RITUAL.

Data Method #vio.
Delay

length(�)
#h-cuts #v-cuts time

Max. Ave. Max. Ave. Max. Ave. (sec)

fract POPINS 0 0.85 0.32 45225 34 24 33 26 2361
primary1 POPINS 0 0.69 0.21 1128245 164 119 137 96 2237
primary2 POPINS 0 0.60 0.36 4128324 448 241 320 223 3680
biomed POPINS 0 0.54 0.34 4128324 510 341 391 308 9168

avq.small POPINS 0 0.88 0.18 23848188 1463 949 1715 1143 250884
avq.large POPINS 0 0.84 0.20 28323022 1643 1151 1380 1019 281593

s1494
POPINS 0 0.67 0.39 257863 90 61 79 58 2477
RITUAL 0 0.65 0.40 373477 150 88 120 93 285

s9234
POPINS 0 0.70 0.31 509156 146 100 129 93 9437
RITUAL 0 0.67 0.31 583559 178 111 186 143 250

s38417
POPINS 0 0.70 0.23 4434695 519 339 308 244 8890
RITUAL 0 0.58 0.24 6930625 793 539 566 393 10172

s35932
POPINS 0 0.74 0.31 9759746 928 636 547 410 21640
RITUAL 0 0.75 0.35 11630953 567 733 831 1089 132542

C1
POPINS 0 0.58 0.53 243765 92 71 81 62 2803
RITUAL 0 0.59 0.54 303696 116 83 128 111 45

C2
POPINS 0 0.70 0.38 375022 166 133 165 122 2432
RITUAL 0 0.67 0.36 442748 123 94 315 274 108

C3
POPINS 0 0.71 0.39 475808 132 98 119 91 6580
RITUAL 0 0.69 0.39 550509 160 113 175 137 163

C5
POPINS 0 0.65 0.28 1051320 321 226 291 196 3133
RITUAL 0 0.63 0.29 1286249 330 257 458 376 243

C6
POPINS 0 0.65 0.29 994319 304 218 259 194 2666
RITUAL 0 0.65 0.28 1186017 347 245 441 372 627

C7
POPINS 0 0.80 0.36 1462247 298 217 248 192 18145
RITUAL 0 0.72 0.35 1727330 276 190 409 348 436

#vio. : the number of timing violations #h-cuts : the cut size of the horizontal direction
#v-cuts : the cut size of the vertical direction

proposed method can satisfy the performance requirements of
the circuit by satisfying the timing constraints. And in the pro-
posed method, we adopted the Elmore delay model as the in-
terconnection delay model, which is one of the most accurate
models used in existing performance driven placement meth-
ods. Experimental results showed the effectiveness of the pro-
posed method.
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