
Exploiting Signal Flow and Logic Dependency in
Standard Cell Placement

Jason Cong and Dongmin Xu
Computer Sci. Dept., UCLA, Los Angeles, CA 90024

Abstract -- Most existing placement algorithms consider
only connectivity information during the placement process,
and ignore other information available from the higher levels of
design process. In this paper, we exploit the use of signal flow
and logic dependency in standard cell placement by using the
maximum fanout-free cone (MFFC) decomposition technique.
We developed a containment tree based algorithm for splitting
large MFFCs into smaller ones to get clusters with restricted
sizes. We also developed a placement algorithm, named
MFFC-TW, which first clusters the circuit based on MFFC
decomposition and then feeds the clustered circuit to the
Timberwolf6.0 placement package. Very promising
experimental results were obtained.

1. Introduction

Placement is an important and difficult step in VLSI layout
synthesis. The goal of the placement is to map the circuit
components onto positions of a layout surface. The components
must be placed in such a way that the chip can be routed efficiently
and the timing requirements can be satisfied. Due to the theoretical
and practical importance, the placement problem has been studied
extensively in the past two decades. However, rapid increase in
chip packing density (by a factor of 10 to 100 in the past decade) on
a single VLSI chip and increasing significance of interconnect delay
(affected greatly by the placement result) have led to renewed
interest in new and efficient placement algorithms for handling the
design complexity and performance constraint.

The existing placement algorithms can be divided in two
major categories: constructive placement or iterative placement.
Constructive placement algorithms start with an unplaced netlist
and construct a complete placement. The algorithms in this class
include the cluster growth algorithms, the partitioning-based
algorithms, the analytical placement algorithms, and the branch-
and-bound algorithms. On the other hand, iterative placement
algorithms start with a given complete placement and go through a
number of local refinement steps to obtain an improved placement
solution. The algorithms in the class include the pairwise
interchange methods, the force directed methods, and the simulated
annealing based methods. More detailed survey of the existing
placement algorithms can be found in[PrLo88] and[Le90].

Most of existing placement methods ignore the signal flow
and logic dependency in the circuit, and simply treat the netlist as
an undirected graph or hypergraph, considering only the
connectivity information. The approach proposed in this paper is to
exploit the use of the signal flow and logic dependency to guide the
placement process. Our study shows that the signal flow and logic
dependency provide additional information not captured in the
connectivity measurement. For example, the two small circuits
shown in Figure 1 have the same connectivity. However, cell A
and cell C are closely related in Figure 1(a) as the output of C
depends on the output of A, while cell A and cell C are loosely
related in Figure 1(b) since they can generate output signals

independently and provide them to cell B. Such relationship is
implied by signal flow and logic dependency.

In this paper, we developed an effective circuit clustering
method based on the theory of maximum fanout-free cone (MFFC)
decomposition. The MFFC decomposition technique for
combination circuits was first proposed by Cong and Ding
[CoDi93] for duplication-free area-optimal technology mapping of
lookup-table based FPGAs. Most existing clustering algorithms,
such as the density-based clustering algorithm [CoSm93], random-
walk based clustering [HaKa92], absorption based clustering
[SuS93], and multi-dimensional spectral embedding based
clustering [AlKa93, ChSZ93], use solely the connectivity
information among the components, while MFFC decomposition
considers both signal directions and logic gate dependency in the
circuit. Recently, it has been applied to area-balanced multi-way
circuit partitioning [CoLB94] and showed 30% to 50% reduction of
net cut-size when compared with the well-known K-way FM
partitioning algorithm [Sa89]. These results motivate us to study
the impact of the MFFC based clustering method on circuit
placement.

In this work, we generalized the MFFC decomposition
method to sequential circuits and developed a containment tree
based algorithm for splitting large MFFCs into smaller ones to
obtain clusters with the certain sizes. To study the impact of such
MFFC based clustering method on standard cell placement, we
developed a placement algorithm, named MFFC-TW, which first
clusters the circuit using MFFC based clustering and then feeds the
clustered circuit to the Timberwolf6.0 placement package
[SeLe87]. Experimental results on MCNC layout benchmark
circuits show that MFFC-TW reduces the total number of tracks by
up to 15.5% (with almost identical width), total wirelength by up to
13.7%, critical path delay by up to 21.2%, and runtime by up to
50.3% when compared to Timberwolf6.0. Our results showed
convincingly that the current placement techniques can be further
improved using additional information, such as signal flow and
logic dependency, available from higher levels of design process.
Our MFFC based clustering technique can also be used with other
placement techniques, such as min-cut or quadratic programming
based placement algorithms.

A

B

C

A

B

C

(a) (b)

Figure 1 Simple examples to illustrate the use of signal
flow and logic dependency

The remainder of the paper is organized as follows. Section 2
reviews the concept of MFFC decomposition and its properties.
Section 3 describes our MFFC clustering based placement
algorithm. The experimental results are presented in Section 4.
Finally, conclusions and future research are included in Section 5.

2. Review of MFFC and Its Properties

The MFFC decomposition technique was first proposed for
combination circuits [CoDi93]. Let input (v) denote the set of
nodes which are the fanins of node v, and output (v) the set of
nodes which are the fanouts of node v. For a node v in the network,
a cone of v, denoted by Cv , is a subgraph of logic gates (excluding
primary inputs (PIs)) consisting of v and its predecessors such that
any path connecting a node in Cv and v lies entirely in Cv . We call
v the root of Cv . A fanout-free cone (FFC) at v, denoted by FFCv ,
is a cone of v such that for any node u≠v in FFCv , output (u) ⊆
FFCv . The maximum fanout free cone (MFFC) of v, denoted by
MFFCv , is an FFC of v such that for any non-PI node w, if
output (w) ⊆ MFFCv , then w ∈ MFFCv . Figure 2 shows the
MFFC of each node (see the smallest shadowed area of that node)
in a network. It is not difficult to show that MFFC is unique for
every node, and any FFC of v is contained in MFFCv . Clearly, if a
gate u is in MFFCv , its value is used solely for generating the
output at gate v (and its descendants). Therefore, it is very natural
to cluster u and v together. In general, all the gates in a single
MFFCv can be considered to be closely related, since they are used
solely for computation of v. The results in [CoDi93, CoDi94b]
showed that MFFCs have the following important properties:

(P1) If w ∈ MFFCv , then MFFCw ⊆ MFFCv .

(P2) Two MFFCs are either disjoint or one must contain another.

Based these results, we can decompose a combinational
circuit N into a set of disjoint MFFCs as follows: (i) choose a
primary output (PO) node v from N and compute MFFCv , (ii) let
N be N−MFFCv and include those nodes in N with fanouts to
MFFCv also as POs of N, and (iii) decompose N recursively. It is
easy to see that such a decomposition is unique. Figure 3 shows the
MFFC decomposition of the network of Figure 2. Note that MFFC
decomposition is different from tree decomposition, because an
MFFC can contain reconvergent fanout. The following results have
been shown for MFFC decomposition:

(P3) For technology mapping of lookup-table (LUT) based
FPGAs, we can compute an area-optimal duplication-free
mapping of each MFFC in the MFFC decomposition of N
independently to get an area-optimal duplication-free
mapping of N [CoDi93].

Figure 2 Maximum fanout free cone (MFFC) of each node

Figure 3 MFFC decomposition of the network in Figure 2

(P4) For acyclic partitioning, if we do not consider the area
constraint, there is an optimal acyclic two-way partition(X,Y)
of N, such that for each MFFCi in the MFFC
decomposition of N, either X ∩ MFFCi = φ or MFFCi ⊆
X [CoLB94]. (i.e. the optimal cut will not cut through any
MFFCs).

It is clear that MFFC decomposition considers both signal
flow and logic dependency. The properties P1-P4 further suggest
that MFFC decomposition produces natural circuit decomposition.
A few other clustering/decomposition methods have been
developed in the past which consider signal directions in the
circuits. These methods include the corolla based decomposition
method by Dey, Brglez, and Kedem [DeBK90] based on the
analysis of convergent fanouts, and the simple cone-based
decomposition by Saucier, Brasen, and Hiol, which allows the
overlapping cones.[SaBH93]. In a very recent work [TsLi95], Tsay
and Lin introduced a cone structure identified by a clustering
heuristic which is similar to MFFC clustering. They applied this
clustering technique to standard cell placement. Their algorithm
searches the cones in the given circuit and merges small cones into
larger clusters first. Then, it uses TimberWolfMC to perform a
macro cell placement which each cone is treated as a soft macro
cell. A mapping procedure is used to map cells in each macros to
the standard cell rows. Finally, TimberWolf 6.0 is used to refine the
placement result by starting it at a low annealing temperature. The
experimental results showed that this method improves the wire
length and track density on most examples with shorter CPU time,
when comparing with TimberWolf6.0.

In general, the properties P1-P4 do not hold for corolla based
decomposition and other cone-based decompositions.

3. MFFC Clustering Based Standard Cell Placement

Our new placement algorithm, MFFC-TW, first computes
MFFC based clustering and then uses TimberWolf6.0 to place the
clustered circuit. It consists of the following procedures:

(i) Use MFFC decomposition technique to obtain a natural circuit
decomposition.

(ii) Use a containment tree based approach to split large MFFCs
into smaller ones.

(iii) Generate linear placement for all cells in each cluster and then
group them as a large cell to obtain the clustered circuit.

(iv) Use TimberWolf6.0 to place the clustered circuit and perform
global routing.

(v) Calculate the critical path delay to evaluate the circuit
performance.

The remainder of this section explains each step in detail.

3.1. MFFC Decomposition

We use the MFFC decomposition method for combinational
circuits from [CoDi93] and extend it to the sequential circuits by
allowing directed cycles in some MFFCs.

Given a combinational or sequential circuit N, we first
remove clock and reset signals, since they are connected to all
sequential elements. Let set Q, initialized to empty, store the
resulting MFFCs from our decomposition. We repeat the following
three steps to obtain MFFC decomposition of network N: (i) choose
an arbitrary PO or the input to a sequential element(SE) v from N,
initialize MFFCv={v}; (ii) construct MFFCv by repeatedly
including a transitive fanin u of v as soon as output (u) ⊆ MFFCv
and stop when no such cell exists. (iii) put MFFCv into Q, let
N=N−MFFCv and update the PO list to include those gates which
fanout to some gates in MFFCv . The process stops when N is
empty. Figure 4 shows the MFFC decomposition of a sequential
circuit. Notice that the left shadowed rectangle is an MFFC with a
signal loop inside. Since this algorithm traverses each connection
only once during the MFFC decomposition, it is not difficult to
show that the time complexity of the MFFC decomposition
algorithm is O(m), where m is the number of connection in N.

FF

Figure 4 MFFC decomposition of a sequential circuit

3.2. Containment Tree Based MFFC Splitting

After MFFC decomposition, an MFFC splitting process is
necessary to split large MFFCs into smaller ones such that the
number of different cell widths is not increased significantly,
compared with that of the original network. If this is not done, the
placement results may be poor, since the exchange of two cells with
different widths will cause a large penalty in the TimberWolf cost
function and make the calculation of total wire length inaccurate.

For standard cell design we assume that cells have the
identical height and variable width. Let NC = {nc 1, nc 2, ..., ncn}
denote all cells in a given network N, W (nci) the width of cell nci
(1≤i≤n). We define a cell width set for network N as CWN = {w 1,
w 2, ..., wd} (d≤n), which holds all different W(nci) (1≤i≤n). Since
we place each cluster in a single row in our current implementation,
the width of the cluster C is defined as

W (C)=
c∈C
Σ W (c).

We define the size of a set S, denoted by |S| to be the number of
elements in S.

In our program, we first carry out MFFC decomposition to
obtain the clustered network Nc of a given network N. Then,
TimberWolf is used for the placement of Nc . Note that in general
|CWNc | ≥ |CWN |, i.e. the number of cell widths increases after
clustering due to the new cell widths introduced by the clusters. We

want to control |CWNc |, i.e. the number of cell widths in the
clustered circuit so that it is easy for TimberWolf to exchange two
cells (recall that TimberWolf allows cell overlap. The TimberWolf
cost function penalizes the exchange of cells with different widths,
discouraging this type of move). Therefore, we introduce the
constraint |CWNc | = |CWN | + k to limit the number of new cell
widths being introduced by clustering, where k is the parameter
provided by the designer.

Given a network N to be implemented with standard cell
design, let MFFCS = {MFFC 1, MFFC 2, ..., MFFCm} be the set
of MFFCs in the clustered network Nc after MFFC decomposition
of N. If |CWNc | > |CWN | + k, we choose an MFFC with the largest
size to split. Suppose MFFCi (1≤i≤m) is chosen, then MFFCi is
decomposed into a number of clusters Ci 1, Ci 2, ..., Cip such that
Cik ∩ Cil = φ (1≤k, l≤p) and |Cij | should be as large as possible.
Notice that not all Cij (1≤j≤p) are MFFCs. Let SCi = {Ci 1, Ci 2,
..., Cip}. We define SMi = {Cij | Cij ∈ SCi and Cij is an MFFC}.
In order to take advantage of the inherent features of MFFC, we
want to maximize |SMi |, i.e. we want as many clusters in SCi to be
MFFCs as possible. We can show that when the number of clusters
in SCi is larger than one, there exists at least one cluster in SCi
which is not an MFFC.

After MFFCi is split, the clusters in Nc are updated by
replacing MFFCi with Ci 1, Ci 2, ..., Cip . Then, we update CWNc .
If |CWNc | is still larger than |CWN |+k, we repeat the above process
again by choosing an MFFC with largest size to split. This iteration
is continued until |CWNc | = |CWN |+k.

To describe the MFFC splitting algorithm which can satisfy
the above requirements, we first give some definitions.

For a given MFFC of node v (e.g. MFFCv), we assume that
the MFFCs of all ui∈MFFCv are MFFCu1

, MFFCu2
, ...,

MFFCun
(n=|MFFCv |). For each MFFCui

(1≤i≤n), it may
contain a number of MFFCuj

, e.g. MFFCui
⊇ MFFCuj

(1≤j≤n,
i≠j).
Def 1: MFFCui

directly contains MFFCuj
, if MFFCui

⊇
MFFCuj

and MFFCui
is the smallest MFFC (in size)

containing MFFCuj
.

Def 2: For a given MFFC M, its containment tree, denoted by CTM
= (V,E), is defined as a directed tree, where each vertex
Mi∈V is a vertex which corresponds to MFFCui

(ui ∈ M),
each directed edge (Mi ,Mj) ∈E represents that MFFCui
directly contains MFFCuj

.

To illustrate the above definitions, let us look at a small
circuit with six cells in Figure 5(a). All six cells are grouped in a
MFFC. To split it, we find MFFCs of each node first. We obtain six
MFFCs listed below:

MFFCu1
= {u 1, u 2, u 3, u 4, u 5, u 6}

MFFCu2
= { u 2, u 4 }

MFFCu3
= { u 3, u 5 }

MFFCu4
= { u 4 }

MFFCu5
= { u 5 }

MFFCu6
= { u 6 }

Let vertices M 1 ∼ M 6 in the containment tree correspond to
MFFCu1

∼ MFFCu6
, then the containment tree is shown in Figure

5(b). Note that although cell u 6 is not connected to cell u 1 in the
circuit, there is an edge pointing from M 1 to M 6. A possible

splitting solution for this example is { u 1 }, {u 2, u 4}, { u 3, u 5 }
and { u 6 }.

(a) (b)

u1

u2 u3

u4 u5

M1

M2 M6 M3

u6

M4 M5

FF

Figure 5 Containment tree of an MFFC

Given an MFFC M, let root (M) be the root cell of M. If
we need to split M, we always have {root (M)} as a single cluster.
Then, we traverse all edges of (M, Mi) in the containment tree
CTM to introduce MFFCs, corresponding to each Mi , into the
cluster list. We recompute the cell width and find the next MFFC to
split. This procedure can be carried out recursively until |CWNc | ≤
|CWN | + k.

3.3. Linear Placement for Cells in the Clusters

After MFFC splitting, we compute a linear placement for all
cells in each cluster to reduce wirelength among them. The cells are
abutted according to the linear ordering to form a large cell. When
the number of cells in each cluster is small (less than 6), we use an
exhaustive searching method to find the optimal linear ordering.
When the number of cells in each cluster is large, we use the second
smallest eigenvector of the Laplacian matrix of the MFFC to
compute a linear placement [Ha70, HaKa91].

3.4. Placement of the Clustered Circuit

In general, we can use any placement algorithm at this stage.
In our implementation, we choose TimberWolf6.0 [SeLe87] to
place the clustered circuit, because of the availability of the tools
and the demonstrated quality of TimberWolf6.0 placement
solutions.

3.5. Timing Analysis

Since TimberWolf6.0 package provides only a global routing
solution, to calculate the critical path delay without implementing
the detailed router, we measure the wirelength using the maximum
bounding box which encloses all pins of a signal net. The gate delay
formula was given below [Ko91]:

delay = delay_constant + delay_fan × output_capacitance

where delay_constant is the intrinsic gate delay from an input pin
to an output pin, delay_fan the equivalent driver resistance, and
output_capacitance the total capacitance seen by the driver.
Parameters delay_constant and delay_fan are specified in the
cell library.

To calculate the wire delay, we used a π-type lumped RC
model.

wire_delay = Rwire × (Cwire /2 + Csinks)

where Rwire and Cwire are the lumped wire resistance and
capacitance, respectively. Csinks is the sum of the gate capacitances

of the sinks. We calculated the maximum delay of a given design
from PIs (or flip-flops) to POs (or flip-flops) as the circuit delay.

According to the MOSIS SCMOS 2.0µ technology file, the
wire width of metal 1 and metal 2 for circuit fract, struct and
biomed are 3 µm. The other parameters are listed in Table 1. The
same delay estimator and parasitic parameters are used to evaluate
the delay of TimberWolf6.0 and MFFC-TW placement solutions.

ii
sheet resistance(Ω/`) capacitance (fF/µm 2)ii

metal 1 metal 2 M1 over sub M2 over subii
0.108 0.045 0.027 0.021iic

c
c
c
c

cc
c
c

c
c
c
c
c

cc
c
c

c
c
c
c
c

Table 1 Parameters of MOSIS SCMOS 2.0µ technology

4. Experimental Results

The algorithm proposed in this paper, MFFC-TW, was
implemented in C under UNIX on SUN SPARC workstations. In
the MCNC standard cell benchmark suite, we found out five circuits
(listed in Table 2) which have signal direction information. Three
of them (fract, struct and biomed) have timing information. The
description of these circuits is shown in Table 2. Column 2 to 4
show the number of standard cells, the number of I/O pads and the
number of nets in the designs, respectively. The fifth column shows
the number of rows used in our tests. Column 6 and 7 show the
number of MFFCs after MFFC decomposition and the number of
clusters after MFFC splitting (with parameter k=2 as defined in
Section 3.2), respectively. Finally, the eighth column shows the
runtime (on SUN SPARC 5) MFFC-TW spends to generate the
clustered circuit, which is negligible comparing to the runtime of
the subsequent step of using TimberWolf6.0 to place the clustered
circuits.

iii
clusters after clusters after

circuit cells pads nets rows
decomposition splitting

runtime(s)
ii

fract 125 24 147 5 60 107 0.8iii
primary1 752 81 904 17 414 705 8.7iii

struct 1888 64 1920 18 1183 1186 28.0iii
primary2 2907 107 3029 29 1117 2429 71.2iii
biomed 6417 97 5742 44 2176 2897 261.8iiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Table 2 Benchmark circuits and efficiency of MFFC based
clustering algorithm

The specification given by MCNC about the design rules was
used for these benchmarks. We compared the results by applying
TimberWolf6.0 to both original and clustered circuit. For each
circuit, we run TimberWolf6.0 five times. The values of the best
designs by TimberWolf6.0 and MFFC-TW were reported in Table
3. In this table, column 3 to 7 show the number of tracks, the total
wire length in meters, the width of maximum cell row in microns,
the critical path delay in nano-seconds and the runtime of
TimberWolf6.0 in seconds. The runtime is recorded on a SUN
SPARC1000 server. The last two rows in Table 3 show the
maximum and average reduction in percentage by MFFC-TW
compared to TimberWolf6.0 for all five circuits, respectively.

From Table 3, we can find that the clustered circuits used
much less CPU time for all the five circuits. The runtime is reduced
by up to 50%. We can also find that MFFC-TW is especially
effective for large circuits. For circuits struct, primary2 and biomed,
the track count is reduced by 15.0%, 6.7% and 15.5%, respectively;
the wirelength is reduced by 5.8%, 2.8% and 13.7%, respectively,

with almost identical maximum row length. For circuit fract, struct
and biomed(the only three circuits with timing information), the
critical path delay is reduced by 21.2%, 12.1% and 18.6%,
respectively. It is not surprising to see that MFFC-TW reduces the
interconnect delay substantially as it groups logically dependent

gates close to each other. Note that TimberWolf6.0 is not a
performance-driven placement algorithm. So, it is reasonable to
expect that our MFFC based clustering algorithm will produce even
better timing results when integrated with a performance-driven
placement algorithm.

ii
circuit algorithm track wireLen(m) width(µm) delay(ns) time(s)ii

TW 40 0.062 1590 64.51 328.8iii
MFFC-TW 38 0.061 1576 50.82 289.6iiifract

DC-TW 37 0.066 1590 60.77 340.3ii
TW 174 1.07 4760 * 1057.0iii

MFFC-TW 175 1.05 4760 * 802.0iiiprimary1
DC-TW 166 1.04 4750 * 851.2ii

TW 177 0.69 5544 699.30 3200.1iii
MFFC-TW 150 0.65 5506 615.04 1589.6iiistruct

DC-TW 174 0.69 5541 698.25 2697.1ii
TW 507 3.89 7972 * 6050.7iii

MFFC-TW 473 3.78 7986 * 5495.5iiiprimary2
DC-TW 479 3.73 8014 * 6517.4ii

TW 756 3.88 10385 173.50 16173.2iii
MFFC-TW 639 3.35 10415 141.30 9999.5iiibiomed

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

DC-TW 758 3.80 10427 238.38 21554.0ii
max. reduction by MFFC-TW -15.5% -13.7% -0.9% -21.2% -50.3%ii
ave. reduction by MFFC-TW -8.3% -5.2% -0.2% -17.3% -26.7%ii
max. reduction by DC-TW -7.5% -4.1% -0.2% -5.6% -19.5%ii
ave. reduction by DC-TW -3.9% -0.5% +0.1% +10.6% +1.9%iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3 Comparison of MFFC-TW and DC-TW with TimberWolf6.0 on MCNC benchmark circuits
(* Delay information was only available for fract, struct, and biomed)

To study the effectiveness of MFFC clustering, we also
implemented the density-based clustering algorithm[CoSm93] and
replaced the MFFC clustering algorithm with this density-based
algorithm in MFFC-TW. This new package is named DC-TW. In
this density-based clustering approach, a netlist is represented by a
graph rather than a hypergraph. An r-terminal net is represented by
an r-clique in the graph. The weighting function of

r
2hh is used to

weight each edge in r-clique. The density of a cluster is defined as

Mc

Ehhh , where Mc= I
L2
cM
O and E is the total weight of the edges in the

cluster. The approach used in[CoSm93] is to collapse small cliques
recursively if the size and density of each clique are larger than the
pre-defined thresholds (the density threshold is defined as αn×D,
where D is the ratio of the total edge weight to I

L2
nM
O, n is the total

number of vertices in the graph, αn=4.5 when n≤1000, and αn=10
when n>1000). In our implementation, since we just need small
clusters, the recursive process of the original algorithm is removed
so as to avoid producing large clusters. We calculated the density of
all cliques with the size of 3 to 5. For a clique, if its density is
greater than the density threshold, we group all cells in this cluster
as a large cell so as to obtain the clustered circuit. The results of this
clustering algorithm is shown in Table 4. In Table 4, column 6
shows the number of clusters after the density-based clustering.
Column 7 shows the runtime on SUN SPARC 5. We can find that
the runtime is much longer for large circuits, when comparing with
our MFFC clustering algorithm shown in Table 2. The comparison
of DC-TW with TimberWolf6.0 is also shown in Table 3. We can
see that the results of DC-TW are comparable with those of
TimberWolf6.0. However, it spent even longer CPU time for large
circuits, such as primary2 and biomed. Also the critical path delay
is nearly same as or larger than that of TimberWolf6.0. So, we

conclude that the MFFC clustering method is more effective than
the density-based clustering algorithm.

ii
no. of clusters

circuit cells pads nets rows
after clustering

runtime(s)ii
fract 125 24 147 5 73 0.9ii

primary1 752 81 904 17 733 14.5ii
struct 1888 64 1920 18 1170 22.5ii

primary2 2907 107 3029 29 2670 1221.5ii
biomed 6417 97 5742 44 3650 476.9iic

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Table 4 The clustering results of the density-based algorithm

Recently, TimberWolf7.0 has been developed and reported
to produce better placement in terms of total wirelength and critical
path delay [SuS93]. The source codes of TimberWolf7.0 is not
available to us at this point so that we have not integrated the MFFC
based clustering algorithm with TimberWolf7.0. We expect to see
better results by MFFC-TW when TimberWolf7.0 is used. It is
clear that our MFFC based clustering algorithm can be used with
other placement algorithms, such as min-cut based algorithm or
analytical placement algorithms like Gordian/Domino [KlSJ91,
DoJS92], or Ritual [SrCK91].

5. Conclusions

We have presented a new MFFC clustering approach for
large row-based standard cell designs. Because of the inherent
properties of MFFC decomposition, the logic dependency relation
of cells is carefully maintained in each MFFC cluster. To apply
MFFC clustering technique to standard cell designs, we split large
MFFCs into smaller ones. We developed a containment tree based
MFFC splitting algorithm: MFFC-splitting, to accomplish this

task. Experimental results on MCNC layout benchmark circuits
indicate that MFFC-TW is very effective. In many cases, we
achieved substantial improvement on total number of tracks, total
wirelength, and critical path delay. To study the effectiveness of
MFFC clustering, we also implemented the density-based clustering
algorithm[CoSm93] and found that the MFFC clustering approach
is more effective.

Currently, we plan to perform a floorplan step to handle the
clustered circuit, making splitting unnecessary after MFFC
decomposition. The outline of our approach is to partition the given
netlist based on the MFFC decomposition solution first, followed by
floorplan sizing and floorplan ordering. The final placement will be
generated based on the obtained floorplan result.

Acknowledgments

This work was partially supported by ARPA/CSTO under
Contract J-FBI-93-112 for Computer Aided Design of High
Performance Wireless Networked Systems.

REFERENCES
[AlKa93] Alpert, C. J. and A. B. Kahng, ‘‘Geometric

Embeddings for Faster (and Better) Multi-Way Netlist
Partitioning,’’ Proc. ACM/IEEE Design Automation
Conf., pp. 743-748, June 1993.

[ChSZ93] Chan, P., M. Schlag, and J. Zien, ‘‘Spectral K-Way
Ratio-Cut Partitioning and Clustering,’’ Proc. 30th
ACM/IEEE Design Automation Conf., June 1993.

[CoDi93] Cong, J. and Y. Ding, ‘‘On Area/Depth Trade-off in
LUT-Based FPGA Technology Mapping,’’ Proc. 30th
ACM/IEEE Design Automation Conf., pp. 213-218,
June 1993.

[CoDi94b] Cong, J. and Y. Ding, ‘‘On Area/Depth Trade-off in
LUT-Based FPGA Technology Mapping,’’ IEEE
Trans. on VLSI Systems, Vol. 2, pp. 137-148, June
1994.

[CoLB94] Cong, J., Z. Li, and R. Bagrodia, ‘‘Acyclic Multi-Way
Partitioning of Boolean Networks,’’ Proc. ACM/IEEE
31st Design Automation Conf., pp. 670-675, June
1994.

[CoSm93] Cong, J. and M. Smith, ‘‘A Bottom-up Clustering
Algorithm with Applications to Circuit Partitioning in
VLSI Designs,’’ ACM/IEEE Design Automation Conf.,
pp. 755-760, June 1993.

[DeBK90] Dey, S., F. Brglez, and G. Kedem, ‘‘Corolla Based
Circuit Partitioning and Resynthesis,’’ Proc. 27th
Design Automation Conf., pp. 607-612, June 1990.

[DoJS92] Doll, K., F. M. Johannes, and G. Sigl, ‘‘Placement
Improvement by Network Flow Methods,’’
International Workshop on Layout Synthesis, Vol. 2,
pp. 179-182, May 1992.

[Ha70] Hall, K. M., ‘‘An r-dimensional Quadratic Placement
Algorithm,’’ Management Science, Vol. 17, pp. 219-
229, 1970.

[HaKa91] Hagen, L. and A. B. Kahng, ‘‘Fast Spectral Methods
for Ratio Cut Partitioning and Clustering,’’ Proc. IEEE
Int’l Conf. on Computer-Aided Design, pp. 10--13,
1991.

[HaKa92] Hagen, L. and A. B. Kahng, ‘‘A New Approach to
Effective Circuit Clustering,’’ Int’l Conf. on
Computer-Aided Design, pp. 422-427, Nov. 1992.

[KlSJ91] Kleinhans, J. M., G. Sigl, F. M. Johannes, and K. J.
Antreich, ‘‘GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization,’’ IEEE Trans.

on Computer-Aided Design, Vol. 10(3) pp. 356-365,
March 1991.

[Ko91] Kozminski, K., ‘‘Benchmarks for Layout Synthesis -
Evolution and Current Status,’’ Proc. ACM/IEEE
Design Automation Conference, pp. 265-270, 1991.

[Le90] Lengauer, T., Combinatorial Algorithms for Integrated
Circuit Layout, John Wiley & Sons (1990).

[PrLo88] Preas, B. and M. Lorenzetti, Physical Design
Automation of VLSI Systems, The Benjamin/Cummings
Publishing Company, Inc., Menlo Park, CA (1988).

[Sa89] Sanchis, L., ‘‘Multiple-Way Network Partitioning,’’
IEEE Trans. on Computers, Vol. 38, pp. 62-81, 1989.

[SaBH93] Saucier, G., D. Brasen, and J. Hiol, ‘‘Partitioning With
Cone Structures,’’ Proc. of ICCAD-93, pp. 236-239,
1993.

[SeLe87] Sechen, C. and K. W. Lee, ‘‘An Improved Simulated
Annealing Algorithm for Row-Based Placement,’’
Proc. IEEE Int’l Conf. on Computer-Aided Design, pp.
478-481, Nov. 1987.

[SrCK91] Srinivasan, A., K. Chaudhary, and E. S. Kuh,
‘‘RITUAL: Performance Driven Placement Algorithm
for Small Cell ICs,’’ Proc. IEEE Int’l Conf. on
Computer-Aided Design, pp. 48-51, Nov. 1991.

[SuS93] Sun, W.-J. and C. Sechen, ‘‘Efficient and Effective
Placement for Very Large Circuits,’’ Proc. of ICCAD-
93, pp. 170-177, 1993.

[TsLi95] Tsay, Y. and Y. Lin, ‘‘A Row-Based Cell Placement
Method That Utilizes Circuit Structural Properties,’’
IEEE Trans. on CAD, pp. 393-397, March 1995.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

