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Abstract| In this paper we give a spectral trans-

form interpretation of AND-EXOR representations of

switching functions and related decision diagrams in

the vector space over GF (2). The consideration is

uniformly extended to the Fourier series-like expres-

sions of functions in the complex vector space and

the decision diagrams for integer-valued functions. It

is shown that the multi-terminal decision diagrams,

MTBDDs, and edge-valued decision diagrams, EVB-

DDs, for integer-valued functions are derived by using

the same sets of basic functions already applied for the

decision diagrams attached to some AND-EXOR ex-

pressions, but considered over the complex �eld. The

algebraic transform decision diagrams, ATDDs, are

considered as the integer counterparts of the func-

tional decision diagrams, FDDs, attached to the al-

gebraic transform in the same way as the FDDs are

attached to the Reed-Muller expressions. It is shown

that the EVBDDs are the ATDDs in di�erent nota-

tion.

I. Introduction

It may be said that the motif and interest for the intro-

duction of the decision diagrams, DDs, for integer-valued

functions closely relates to the present renewed interest in

spectral techniques for logic design [6], reinitiated in [11].

For that reason, in this paper we �rst give a spectral

transforms interpretation of the DDs attached to vari-

ous AND-EXOR representations of switching functions.

Then, we extend this group-theoretic approach to Fourier

analysis to provide an uniform interpretation of the multi-

terminal binary decision diagrams, MTBDDs, [3] and the

edge-valued binary decision diagrams, EVBDDs, [7]. It is

shown that EVBDDs are nothing, but a di�erent notation

of the DDs attached to the algebraic transform of switch-

ing functions [8], 1 which is, further, nothing, but the

integer counterpart of the Reed-Muller transform. Thus,

the EVBDDs actually are the integer counterparts of the

positive polarity Reed-Muller decision diagrams with the

1The algebraic transform decision diagrams, ATDDs, [10].

Fig. 1. Reading of f from the Q-tree.

expansion procedure associated to branches instead to the

nodes.

II. AND-EXOR Expressions

The application of the discrete Fourier-like transforms

in the great majority of various tasks in signal processing,

switching theory and logic design reduces to the calcula-

tion of the matrix relation

Sf = QF; (1)

where F = [f(0); : : : ; f(g � 1)]T is the truth-vector of

a signal f on a �nite discrete set of the cardinality g,

Q is a (g � g) invertible transform matrix, and Sf =

[Sf (0); : : : ; Sf (g � 1)]T is the set of the corresponding

Fourier-like spectral coe�cients.

If the switching functions are considered as elements

of the function space on the �nite dyadic group 2 over

the Galois �eld GF (2), then various AND-EXOR expres-

sions, including the complete disjunctive form, can be



interpreted as the Fourier series-like expansions in this

vector space with respect to di�erent bases. The same in-

terpretation extends to the DDs regarded as the graphical

representations attached to some AND-EXOR represen-

tations of switching functions [9].

III. Decision Diagrams for Switching Functions

An uniform interpretation of various AND-EXOR ex-

pansions, systematized in the Sasao's theorem [9], and the

corresponding trees, can be given and their relationship

to spectral representations established if we note that in

a tree labels at branches in each path from the root node

up to a constant node form a product 'i = a1 : : : an,

where ai 2 f1; xi; xig. Relationship of the tree repre-

sentations to the spectral transforms is direct and rather

simple. The products 'i describes a set of functions in

terms of products of switching variables. These functions

can be understood as columns of a (2n � 2n) transform

matrix Q. The constant nodes of a tree representing a

function f given by the truth-vector F, contain the val-

ues of Fourier-like spectrum Sf de�ned by (1).

Example 1 In the case of the Shannon tree the basic

functions are described by minterms, i.e., for n = 3 they

are given by '0 = x1x2x3; '1 = x1x2x3; '2 =

x1x2x3; '3 = x1x2x3; '4 = x1x2x3; '5 =

x1x2x3; '6 = x1x2x3; '7 = x1x2x3. Therefore, the

used basis is the trivial basis whose elements can be iden-

ti�ed as columns of the identity matrix.

For the positive Davio tree the basic functions are the

Reed-Muller functions given for n = 3 by '0 = 1; '1 =

x1; '2 = x2; '3 = x2x3; '4 = x1; '5 = x1x3; '6 =

x1x2; '7 = x1x2x3, representing the columns of the

Reed-Muller matrix.

>From the above discussion, a direct discrete transform

Q is related to the nodes in a tree and, thus, the constant

nodes contain the values of the Q-spectrum of f , while

the inverse mapping is related to the branches of the DD.

Therefore, given a tree, in reading f it represents by using

the corresponding reading rule, 3 we actually perform the

inverse mapping Q�1 and, thus, we get f .

In a tree, if we change the reading rule by the drawing

rule and in that way perform the Q-mapping in reading

f , we will nutralize the impact of the Q�1 related to the

branches of the DD, since QQ�1 = I, and we will read

the Q-spectrum of f . The statement is illustrated in Fig.1

and 2.

Threfore, each tree drawn with respect to a transform

Q de�ned though the corresponding basis f'ig, represent-

2The �nite dyadic group of order 2n, C2n consists of the set
of binary n-tuples (x1; : : : ; xn); xi 2 f0;1g, under the operation of
componentwisemodulo 2 addition , usually denoted as EXOR. This
group can be represented as the direct product of the basic cyclic
groups of order 2, C2 = (f0;1g;�).

3In paractice, we follow the labels at branches.

Fig. 2. Reading of Sf of f from the Q-tree.

Fig. 3. ATDD of f from Example 2.

ing a function f , can be considered as the Shannon tree

representing the Q-spectrum of f .

For example, the positive Davio tree of f is the Shannon

tree of the Reed-Muller spectra Sf of f and vice versa.

A reduced ordered decision diagram is obtained from

the corresponding tree by using some simpli�cation rules

[9]. For example, binary decision diagrams, BDDs, are

derived from the Shannon tree by using the following re-

duction rules

1. Identify two nodes v and v0 in the DD, where the

sub-DDs rooted in v and v0 are isomorphic.

2. Delete a node v whose two outgoing branches point

to the same node and connect the incoming branches

of the deleted node to the corresponding successor.

Functional decision diagrams, FDDs, are derived from the

positive Davio tree by using another appropriate set of



reduction rules [4]. Compared to the reduced FDDs, the

positive Davio tree reduced by the above set of reduction

rules produces the quasi-reduced FDDs, QRFDDs. Thus,

RFDD are derived form QRFDDs by a further reduction.

Since these reduction rules adopted to FDDs can not be

used in the reduction of the BDDs [4], we will consider

in what follows the DDs derived from the corresponding

trees by using the above mentioned reduction rules for

an uniform interpretation. These rules are applicable to

other DDs in the same sense as noted for FDDs.

The above given statement applies to the DDs derived

from the corresponding trees through above mentioned

reduction rules. 4

IV. DDs for Integer-valued Functions

A. Multi-Terminal Binary Decision Diagrams

With the above given spectral interpretation of the DDs

attached to AND-EXOR representations, the extension

of the concept of DDs to the representation of integer-

valued functions is straightforward. The Walsh spectrum

of a switching function is an example of the integer-valued

functions on the �nite dyadic groups. The trivial basis

used with the Shannon tree and, thus, BDDs, is a basis

also in the space of integer, or even complex functions on

the �nite dyadic group, if the values 0 and 1 of switching

variables are considered as the integers and the logical

AND is formally replaced by the multiplication in the

complex �eld. Thanks to that, the MTBDDs were intro-

duced for the representation of the Walsh spectra as a

generalization of the BDDs by permitting the integers as

constant nodes [3]. The MTBDDs are considered in [1]

under the name algebraic decision diagrams, ADDs.

B. Algebraic Decision Diagrams

The BDDs were used in the calculation of the algebraic

transform [5]. Thanks to the above discussion, we will do

just the opposite. We will use the algebraic transform to

de�ne a class of DDs for the representation of the integer-

valued functions including the switching functions as a

particular example.

Consider the functions Reed-Muller functions repre-

senting the basis for the PPRMs and FPRMs expressions,

as the integer-valued functions. This set of functions is a

basis in the complex vector space over the �nite dyadic

groups which permits the de�nition of the so-called alge-

braic expressions or the algebraic transform [8].

As in the case of PPRM expressions, the coe�cients

of these algebraic polynomials are de�ned by a relation

corresponding to (1)

Af (n) = S(n)F; (2)

4The DDs are the canonical representations.

Fig. 4. EVBDD of f from Example 2.

where

S(n) =

nO
i=1

Si(1); Si(1) =

�
1 0

�1 1

�
; (3)

since Si(1) is the inverse of Ri(1) over the complex �eld.

From there, it follows that the algebraic tree can be de-

�ned thanks to the function expansions

f = 1 � f0 + xif1; (4)

f = 1 � f0 + xi(f1 � f0); (5)

derived easily from the matrix de�nition of the algebraic

transform.

These expansions should be used as reading and draw-

ing rules for the algebraic DDs, ATDDs, in the same way

as that was done above in the case of other DDs. The AT-

DDs are introduced in [2] from a di�erent point of view

under the name binary momnt decision diagrams BMDs.

As in the case of MTBDDs, the reduction of ATDDs can

be carried out by using the Shannon reduction rules.

Example 2 Fig.3 shows the reduced ATDDs represent-

ing the function f(x1; x2; x3) = 3� 4x1+ 4x1x2+ x1x3�

2x2 + x2x3 taken from Example 1 in [7].

The constant nodes contain the algebraic spectra of f

given as a vector by Af = [3 0 � 2 1 � 4 1 4 0]T . The

ATDD was drawn by using the drawing rule (5). The

reading rule is given by (4) and, thus, this ATDD repre-

sent the function

f = 1 � (1 � (1 � 3 + x3 � 0) + x2 � (1 � (�2) + x3 � 1))

+x1(1 � (1 � (�4) + x3 � 1) + x2 � (1 � 4 + x3 � 0))

= 3� 2x2 + x2x3 � 4x1 + x1x3 + 4x1x2:

The same ATDD represent the algebraic spectrum Af

of f , which can be determined if the drawing rule is used

as the reading rule. Thus, if the reading rule is Af =

1 �Af0 +xi(Af1 �Af0 ), the ATDD in Fig.3 represents the



function which is the algebraic polynomial representing

the algebraic spectra Af of f

Af = 1 � (1 � (1 � 3 + x3 � (0� 3))

+x2 � (1 � (�2) + x3 � (1 � (�2))

�(1 � 3 + x3 � (0� 3))))

+(1 � (1 � (�4) + x3 � (1� (�4)))

+x2 � (1 � (�4) + x3 � (1 � (�4))

�(1 � 4 + x3 � (0� 4)))

�1 � (1 � 3 + x3 � (0� 3))

+x2 � (1 � (�2) + x3 � (1 � (�2))

�(1 � 3 + x3 � (0� 3))))

= 3� 3x3 � 5x2 + 6x2x3 � 7x1 + 8x1x3

+13x1x2 � 15x1x2x3:

C. Edge-valued Decision Diagrams

As is stated in [7], the EVBDDs are de�ned by using

the algebraic function

x(vl + fl) + (1 � x)(vr + fr); (6)

instead the Shannon expansion. The concept will be in-

troduced though the example.

Example 3 Fig. 4 taken form [7] shows the EVBDD for

the function f = 3�4x1+4x1x2+x1x3�2x2+x2x3 from

Example 2.

Note that, as is de�ned in [7], the reduction is carried

out by using the same set of the reduction rules as with

MTBDDs and ATDDs.

The values of constant nodes in EVBDDs are set to 0

and the calculation procedure is not related to the nodes,

which are denoted by switching variables, but is trans-

ferred to branches (edges) 5 by taking the advantage from

the recursive structure of the algebraic transform matrix.

That is achieved by attaching the corresponding value vl
to the left outgoing branches, while the vr is enforced to

be 0 to provide the canonical representation as was said

in [7]. That can be interpreted as follows.

In the ATDDs de�ned by using the algebraic expan-

sion rules (4) and (5), as the reading and drawing rules

for ATDDs, the constant nodes contain the values of the

algebraic spectrum Af of f . To get the zero at the con-

stant nodes in the EVBDD these values should be sub-

tracted, and just that was actually done recursively at the

branches of the EVBDD by the additive correction xvl in

(6). Note that in [7] the inverse notation is used in which

the left outgoing branch corresponds to the logical 1 and,

5The terms branches is usually used in the consideration of FFT

ow-graphs. Since we are giving the spectral interpretation of DDs,

we will continue to use this term instead of the edge.

Fig. 5. Relationship among the nodes of ATDDs and EVBDDs.

Fig. 6. Complete EVBDD of f from Example 2.

respectively, the right outgoing branch corresponds to the

logical 0.

Written as f = xv1 + f0 + xi(f1 � f0), since vr = 0,

the drawing rule (6) for the EVBDDs, equals that of the

ATDDs, except for the additive constant xv1 introduced

to transfer the calculation procedure to the branches and

to set the values of the constant nodes to zero. More pre-

cisely, in each node of the ATDD we are implementing the

algebraic transform with respect to a particular variable,

which, by de�nition of the algebraic transform, results

into the values f0 for x = 0 and f1 � f0 for x = 1. These

values should be subtracted at the right and left outgoing

branch in the EVBDD to achieve the zero at the constant

nodes. This is the reason that the value at the right out-

going branch is always determined as vr = f0 � f0 = 0,

while the value at the left outgoing branch is calculated

as vl = f1 � f0. Note that the value at the dinging



Fig. 7. Partial algebraic transform matrices

branch at the root node is f(0 � � �0) which is by de�ni-

tion Af (0 � � �0). Therefore, if the constant nodes are set

to zero and the calculation procedure is related to the

branches as that was done in the EVBDDs, an ATDD

node shown in Fig.5a) translates into the node at Fig.5b),

and further into the EVBDD node in Fig.5c) for the in-

verse notation used in the EVBDDs. In that way the

calculation procedure for the determination of labels in

the EVBDD goes from the right to the left side of the

DD, as we show by the shadows in the Fig.5.

The explanation becomes obvious if we consider the

calculation of the values vl at a complete EVBDD.

Example 4 Fig.6 shows the complete EVBDD of the

function from Example 1 and the calculations of the val-

ues vl.

Relation to the values of the spectra of the corresponding

partial algebraic transforms is shown by using the matrix

representations of these transforms given in Fig.7.

Thus, by using the rule f = xiv1+ f0+xi(f1� f0), the

EVBDD in Fig. 6 represents the function

f = f000 + x1(f100 � f000) + x2(f010 � f000)

+x2x3(f011 � f010 � f001 + f000)

+x1(x2(f110 � f100) + x3(f101 � f100)

+x2x3(f111 � f110 � f101 + f100)

�x2(f010 � f000) � x3(f001 � f000)

�x2x3(f011 � f010 � f001 + f000))

which is, by de�nition, the algebraic polynomial of f .

As in the case of ATDDs, a given EVBDD of f repre-

sents at the same the algebraic spectrum Af of f , which

can be read from the EVBDD by using the drawing rule

as the reading rule. To show the relationship to the AT-

DDs, the reading rule for determination of the algebraic

spectrum Af from the EVBDD of f can be written for-

mally as Af = 1 � 0 + Af0 + xi � (0 � 0 + Af1 � Af0 ), or

Af = 1 � 0 + v0 + xi � (0 � 0 + v1), since by de�nition,

v0 = Af0 and v1 = Af1 �Af0 . Note that, as with ATDDs,

we use Af instead of f in the formulation, since we are

considering the determination of an integer-valued func-

tion which is the algebraic polynomial representing the

algebraic spectrum of another integer-valued function.

If we want to continue to follow the analogy to the AT-

DDs, we can say that the determination procedure goes

from the bottom to the top, as in the case of ATDDs, but

from the left to the right nodes, for the inverse notation

used in [7]. The constant nodes are passed 6 �rst. It is

assumed, from the de�nition of EVBDDs, that after the

nodes at the level i are passed, they becomes the constant

nodes for the level i � 1 and, therefore, should be set to

zero. In that way, the calculation always concerns the val-

ues at the branches. Therefore, it may be said that the

EVBDDs are nothing, but the ATDDs with the modi�ed

notation in order to achieve the savings in the storage of

the constant nodes at the price of the storage of the val-

ues attached to the left outgoing branches. However, it

remains to estimate whether the average number of nodes

is greater or lower than the number of values attached to

branches for functions of a considerable number of vari-

ables. As is noted in [7], in functions where the number

of distinct terminal nodes is small, the MTBDDs, may be

the space more e�cient. The following general comment

may be given.

The complexity of a MTBDD depends upon the func-

tion f , i.e., upon the structure of its truth-vector F. We

will denote that as the representation complexity of f ,

which is determined by the number of di�erent values of f

in the �eld of integers or the complex �eld, and the even-

tual periodicity of the function values in F. If a value

repeats in F, and if a sequence of 2k elements repeatly

appears in F with same period, then the representation

complexity of f decrease and the corresponding MTBDD

is simpler.

The complexity of ATDDs depends upon the represen-

tation complexity of the algebraic spectrum Af of f in the

same way. In that respect the function f from Example

2 is not convenient for the representation by the ATDDs

nor MTBDDs.

However, the complexity of EVBDDs depends in the

same way upon the complexity of the truth-vectors of

the partial algebraic transforms appearing as the inter-

6In the ATDDs we should say processed, but here the constant
nodes are set to zero by de�nition and we should simply pass them

and calculate with the values at edges.



mediate truth-vectors in the calculation of the algebraic

transform of f through the FFT-like algorithms, since the

values v1 in the EVBDDs take the corresponding values

of these truth-vectors of the partial algebraic transforms

as is shown in Fig.7.

The ATDDs o�er a possibility for the optimization by

using the negative algebraic expansion f = 1 �f0+xi(f0�

f1) in the same way as that was done by using the negative

Davio expansions in the case of FPRMs representations

in the vector space over GF (2).

By using the nodes corresponding to di�erent possible

expansion rules in the complex vector space a variety of

polynomial representation and the corresponding decision

diagrams can be de�ned.

The ATDDs are a concept de�ned as a particular ex-

ample of a general theory originating in the Fourier series

representations of signals.

Regarding a particular application, the representation

of Walsh spectra of switching functions, the Walsh deci-

sion diagrams, WDDs, [10], o�er some advantages com-

pared to the both MTBDDs and EVBDDs providing that

the f0; 1g ! f�1; 1g coding of f is performed.

Note that the WDDs are de�ned with respect to the

Reed-Muller functions considered over the complex �eld,

as in the case of MTBDDs, EVBDDs and ATDDs, but in

the f0; 1g ! f�1; 1g coding. Just that property was the

mathematical base permitting the writing of the proce-

dures for the calculation of Walsh spectra from OBDDs

and synthesis of OBDDs from the Walsh spectra.

Regarding the mentioned application, it is important

to note that there are some restrictions on the sets where

the Walsh coe�cients can take their values. For exam-

ple, the Walsh coe�cients of the three-variable switching

functions can take 9 di�erent values f0;�2;�4;�6;�8g

[6]. Moreover, there are allowed three di�erent sets of

the Walsh spectral coe�cients f0;�4g; f0;�8g;f�2;�6g,

and it is requested that the sum of Walsh coe�cients of

a function must be equal �8 [6]. Therefore, there are at

most three di�erent constant nodes in the WDD repre-

senting a three-variable switching function and there are

no other values to be stored.

V. Closing Remarks

The decision diagrams for integer-valued functions, as

for example the MTBDDs, EVBDDs, ATDDs, WDDs, are

nothing, but the integer counterparts of the correspond-

ing decision diagrams attached to some AND-EXOR ex-

pressions, since they are derived with respect to the same

basic sets of functions, but considered over the complex

�eld in the direct or f0; 1g ! f�1; 1g coding.

The use of some other spectral transforms, possibly

non-linear, but invertible, as for example, the sign trans-

form permits the derivation of new classes of spectral

transforms decision diagrams which do not have the

proper counterparts in the AND-EXOR related DDs.
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