
Optimization Methods for Lookup-Table-Based FPGAs

Using Transduction Method

Shigeru Yamashita�,Yahiko Kambayashi� and Saburo Muroga��

�Integrated Media Environment Experimental Lab.,
Faculty of Engineering, Kyoto University.

��Department of Computer Science, University of Illinois.

Abstract| In recent years Field Programmable

Gate Arrays(FPGAs) have emerged as an attractive

means to implement low volume applications and pro-

totypes due to their low cost, reprogrammability and

rapid turnaround times. Therefore, the need for de-

sign methods of FPGAs are getting larger and larger.

In this paper, two methods to optimize networks

which have been mapped for lookup-table-based FP-

GAs are discussed. These methods utilize the notion

of compatible sets of permissible functions(CSPFs) of

Transduction Method. Experimental results show the

e�ectiveness of our methods.

I. Introduction

In recent years, Field Programmable Gate Ar-
rays(FPGAs) have emerged as an attractive means to im-
plement low volume applications and prototypes due to
their low cost, reprogrammability and rapid turnaround
times. FPGAs also o�er new possibility to design digital
systems which can be easily recon�gured[2]. There are
many types of commercially available FPGAs[2]. Lookup-
table-based FPGAs are one of most popular types among
them. Lookup-table-based FPGAs consist of logic blocks
which can generate any functions of �xed numbers of in-
put variables and programmable connections. In this pa-
per, we focus on lookup-table-based FPGAs.

The traditional design ow for FPGAs consists of four
steps[2]. In the �rst step, a logic optimizer performs tech-
nology independent optimization[1]. Then a technology
mapper maps the circuit to logic blocks. Finally, place-
ment and routing are done.

There exist a number of technology mappers for FP-
GAs, including: Chortle[4], mis-pga[7], Xmap[5], DAG-
map[3]. These technology mappers map a Boolean net-
work into a circuit of logic blocks. Since most conven-
tional technology mappers divide networks into sets of
logic blocks without considering the relationship between
functions of logic blocks, there is a possibility to remain
redundancy in mapped networks. In order to remove such
redundancy, two methods, Logic Block Substitution
and Internal Logic Modi�cation are developed in this
paper. These methods utilize the notion of Compatible

Sets of Permissible Functions (CSPF) of Transduction

Method[8]. The former method reduces number of logic
blocks by substituting a logic block for another one. The
latter method optimizes networks with modifying internal
logics of logic blocks. This method is considered especially
suitable for lookup-table-based FPGAs since performance
of a chip is not a�ected only if internal logics of logic
blocks are modi�ed.

These methods were applied to the networks designed
by MIS's technology mapper[7] for lookup-table-based
FPGAs. It is shown that 8% reduction of logic blocks
is obtained by the Logic Block Substitution on aver-
age. Internal Logic Modi�cation attains 1% farther
reduction.

The rest of this paper is organized as follows. In Sec-
tion II, the networks we treat are de�ned and the basic
terminology is explained. Two optimization methods for
lookup-table based FPGAs are discussed in Section III.
Experimental results of our methods are shown in Sec-
tion IV. Our conclusion follows in Section V.

II. Basic Concepts and Definitions

In this section, the networks which we treat are de�ned
and the basic terminology is explained. The main objec-
tive of this paper is to optimize the networks which have
been mapped for lookup-table-based FPGAs. Therefore,
loop-free multi-level combinational networks consisting of
logic blocks and connections between them will be con-
sidered. Logic blocks can realize any function of �xed
numbers of input variables.

A network can be viewed as a directed acyclic graph
which consists of logic blocks as nodes and connections
as edges. Let N be the number of logic blocks, n be
the number of inputs of the network, L = fl1; l2; � � � ; lNg
be the set of logic blocks and C = fcijg be the set of
connections where cij connects the output of li to an input
of lj. A logic block li is an immediate predecessor of
lj if there exists a connection cij . In that case lj is an
immediate successor of li.

IP (li) and IS(li) denote the set of all the immediate
predecessors of li and the set of all the immediate succes-
sor of li, respectively.

Let f (li) be the logic function realized at the logic block
li. A function f at a logic block is represented with a 2n-

dimensional vector, f = (f (1); f (2); � � � ; f (2
n)) where f (j)

is the value of f in the j-th row of the truth table for f .
f (j) is 1, 0, or �, if the value of f in the j-th row of the
truth table for f is 1, 0, don't care, respectively.
The set of permissible functions[8] of a logic block is

the set of functions, where we can change the output func-
tion of the logic block to a member of them without chang-
ing the functionalities of the primary outputs of the net-
work. There are two types of set of permissible functions,
the maximum set of permissible functions (MSPF) and
compatible sets of permissible functions (CSPF). MSPF
of a logic block contains the largest set of permissible func-
tions. On the other hand, CSPF of a logic block is a sub-
set of its MSPF, where we can change functions of logic
blocks to their CSPF at the same time. Let G(li) be the
CSPF of the logic block li.

III. Optimization Methods

In this section, two methods for reducing the number of
logic blocks, Logic Block Substitution and Internal
Logic Modi�cation are shown.

A. Logic Block Substitution

As described below, Logic Block Substitution uti-
lizes similar concepts of Gate Substitution of Trans-
duction Method[8]. The procedure is formally stated as
follows.

Logic Block Substitution

step1 Select a logic block as li one by one from the out-
puts toward the inputs of the network and go to step
2. If there is no logic block to select, halt.

step2 Select a logic block as lj, such that lj 's level from
the inputs is lower than li's and that G(li) includes
f(lj). If there is not such a logic block, go to step1.
Otherwise, go to step3.

step3 If li is an output of the network, replace li by lj,
and go to step7. Otherwise, go to step4.

step4 Select a logic block as lk from immediate succes-
sors of li one by one and go to step 5. If there is not
such a logic block to select, go to step 7.

step5 If lj is an immediate predecessor of lk, go to step6.
Otherwise, change the connection between li and lk
to the new connection between lj and lk, and go to
step4.

step6 Disconnect li to lk, change the internal logic of lk
properly and go to step 4.

step7 Delete li, along with the fanout free input cones of
li. Go to step 1.

The reason why a lower level logic block lj is selected
at step2 is to avoid increase the number of levels of the
network. Since lj's level from the inputs is lower than li's,

lk cannot be a predecessor of lj . Therefore, there is no
possibility that the procedure makes a loop in a network
at step5.

B. Internal Logic Modi�cation

Logic Block Substitution discussed in Section A.does
not fully utilize the exibility of logic blocks which can
realize any logic functions with �xed numbers of fan-ins.
Therefore, another optimization method called Internal
Logic Modi�cation has been developed. This method
utilizes the exibility of logic blocks.
Although Logic Block Substitution cannot replace

li by lj unless the output function of li is a member of the
CSPF of lj, Internal Logic Modi�cation can replace
li by lj if the following conditions are satis�ed.

� G(li) \G(lj) is not empty.

� f(lj) can be changed to G(li) \ G(lj) only by modi-
fying the internal logic of lj.

The following procedure optimizes a network by modify-
ing internal logics of logic blocks.

Internal Logic Modi�cation

step1 Select a logic block as li one by one from the out-
puts toward the inputs of the network and go to step
2. If there is no logic block to select, halt.

step2 Select a logic block as lj , such that lj's level from
the inputs is lower than li's and G(li) \G(lj) is not
empty. If there is not such a logic block, go to step1.
Otherwise, go to step3.

step3 Change f(lj) to f
0(lj) which is included in G(li)\

G(lj) by SOP(mentioned later). If SOP cannot do
such transformation, go to step1. Otherwise, go to
step4.

step4 If li is an output of the network, replace li by lj ,
and go to step8. Otherwise, go to step4.

step5 Select a logic block as lk from immediate succes-
sors of li one by one and go to step 6. If there is not
such a logic block to select, go to step 8.

step6 If lj is an immediate predecessor of lk, go to step7.
Otherwise, change the connection between li and lk
to the new connection between lj and lk, and go to
step5.

step7 Disconnect li to lk, change the internal logic of lk
properly and go to step 5.

step8 Delete li, along with the fanout free input cones of
li. Go to step 1.

Internal Logic Modi�cation is similar to Logic Block
Substitution except step3. In the rest of this section,
SOP is explained. The binary operation � is de�ned as
Table I.

TABLE I
Binary Operator �

Second element
� 0 1
0 * 0

First element 1 * 1
* * *

SOP (F; f1; f2; � � � ; fi) (SOP means Sum-Of-Products)
returns a sum-of-products of f1; f2; � � � ; fi realizing F if
possible, or Error if impossible, as shown in Figure 1. In
Figure 1, True and False represent the function that is
constantly 1 and 0, respectively. The operators '+' and '�'
mean logical sum and logical product, respectively. These
operators are de�ned to return Error if one of operands
is Error.

SOP (F; f1; f2; � � � ; fi)
if(i = 1)f

if(f1 2 F) return f1

else if(f1 2 F) return f1
else return Error

g
elsef

F1 = F � f1
if(False 2 F1) F1' = False
else if(True 2 F1) F1' = True
else f

F1' = SOP (F1; f2; � � � ; fi)
if(F1' = Error) return Error

g

F0 = F � f1
if(False 2 F0) F0' = False
else if(True 2 F0) F0' =True
else f

F0' = SOP (F0; f2; � � � ; fi)
if(F0' = Error) return Error

g

return (F1'�f1 + F0'�f1)
g

Fig. 1. SOP

f

1f . 1f
_

(* * 1 0) + . (* 1 * *)

_
2f 2f. .(* * * 0) + (* * 1 *)

G ()jlG ()il "A = * 1 1 0

True

False True

3f

2f

1f1 0 1 1

0 1 0 1

0 1 1 1

.1f
_
2f 3f.

jl

f () jl = 0 0 1 0

1f
_

1f .
2f +

_

Fig. 2. Execution of SOP

For example, in the case of Figure 2 the procedure tries
to change f (lj) to (G(li) \ G(lj)), i.e., (�110). Let the
logic functions of the inputs of li be f1, f2 and f3 which
are (1011), (0101) and (0111), respectively. Let the inter-

nal logic of lj be expressed as (f1 � f2 � f3). SOP tries to
expand (�110) at f1, f2 and f3 recursively. Thus, it ex-

pands (�110) to (F1 �f1+F0 �f1) at �rst. F1 is obtained by
calculating (�110)�f1, i.e., (��10). F0 is obtained by cal-

culating (�110) � f1, i.e., (�11�). Next, SOP expands F1

at f2 to obtain (f1 � (���0)+F0 �f1). It expands functions
recursively until the following condition is satis�ed.

� SOP obtains a logic function included in True or
False. It means that no more expansion is needed.

� SOP has no more variable to expand. It means that
SOP fails. In this case, SOP returns Error.

Finally, SOP successfully modi�es the internal logic to
(f1 � f2 + f1) in order to change f(lj) to G(li)\G(lj) in
this case.

IV. Implementation and Experimental Results

We have implemented the methods presented above.
The SBDD package[6] was used to represent logic func-
tions. MCNC benchmark circuits were used for exper-
iments. In the experiments, a 5-input lookup-table ar-
chitecture is assumed. The following commands of MIS's
technologymapper[1] for lookup-table-based FPGAs were
used to generate initial networks.

� xl split -n 5

� xl partition -n 5

� xl cover

Logic Block Substitution and Internal Logic Mod-
i�cation are abbreviated as "BlockSub" and "Logic-
Modify", respectively.
The experimental results are shown in Table II. The

third column in Table II shows the results of "Block-
Sub". The fourth column in Table II shows the results
of "LogicModify".
From Table II, \BlockSub" reduces the numbers of

logic blocks/connections by about 8% reduction on aver-
age. "BlockSub", however, can reduce levels of networks
in only three cases. It is considered that there are too
many critical paths in networks which have been mapped
for lookup-table-based FPGAs.
From Table II, the numbers of logic blocks of "Log-

icModify" are less than that of "BlockSub" by about
1% on average. \LogicModify", however, does not al-
ways show better results than \BlockSub". The rea-
son is considered as follows. "LogicModify" can replace
more logic blocks than "BlockSub", since "LogicMod-
ify" can modify internal logics of logic blocks if necessary.
However, if logic blocks to replace are not selected in good
order, there are such cases that the �nal result may be
worse than that of "BlockSub" as the following exam-
ple. A logic block li which \BlockSub" cannot deal with

TABLE II
Experimental Results

Circuits Initial BlockSub LogicModify
LB conn lev LB conn lev CPU LB conn lev CPU

C432 122 317 13 109 282 13 25.7 109 277 13 68.0
C499 243 408 11 211 376 11 621.3 217 370 11 821.4
alu2 141 540 22 138 533 22 4.7 137 526 22 4.3
alu4 264 891 25 260 879 24 19.4 258 870 24 18.5

apex7 129 318 7 128 313 7 2.7 128 313 7 4.0

b9 90 197 3 88 191 3 2.1 87 188 3 2.7
c8 87 235 4 84 224 4 1.8 85 228 4 2.2

cordic 55 107 7 50 94 7 1.8 51 96 6 2.1
example2 195 445 5 189 422 4 2.4 192 433 4 5.5

i9 478 1490 9 443 1407 7 50.2 420 1262 9 253.3
lal 83 213 5 73 179 5 1.5 75 183 5 1.8
sct 65 169 4 61 160 4 1.4 62 162 4 1.8

term1 173 553 8 149 460 8 11.8 141 424 8 21.3
too large 352 1250 13 295 1004 13 294.5 280 960 11 7821.3

vda 400 1683 5 355 1458 5 6.8 367 1518 5 11.9

LB: numbers of logic blocks
conn: numbers of connections
lev: numbers of levels of the networks
CPU: CPU time running on a SPARC 10 (sec.)

Bold numbers show better cases.

is replaced by "LogicModify". The con�guration of the
network, however, becomes worse for the later transfor-
mation by replacing the logic block li. In this case, �nal
result may become worse by replacing the logic block li.
In the implemented method, order of logic blocks to apply
"LogicModify" was not considered. Finding the best
order of logic blocks to apply "LogicModify" is a fu-
ture work. We expect that better results can be obtained
if proper order is found.
Although the initial circuits used in our experiments

are not the best possible ones due to availability, we will
try to obtain other circuits for further experiments.

V. Conclusions

In this paper, the notion of Transduction Method was
applied to lookup-table-based FPGAs. Two optimization
methods for lookup-table-based FPGAs, Logic Block
Substitution and Internal Logic Modi�cation, were
presented. Experimental results of our methods were also
presented. The experimental results show that our meth-
ods reduce the numbers of logic blocks by 8 % on average
from initial circuits designed by MIS's technology map-
per. We plan to develop another optimization methods
especially for level reduction and to combine with place-
ment and routing phases.

Acknowledgements

We would thank Shuzo Yajima for permitting to use
the SBDD package developed by his group. This research
was supported by International Research Program : Joint

Research from the Ministry of Education, Science and
Culture in Japan.

References

[1] R. Brayton, E. Detjens, S. Krishna, T.Ma, P. McGeer, L.Pei,
N. Phillips, R. Rudell, R. Seagal, A. Wang, R. Yung, A.
Sangiovanni-Vincentelli," Multiple-level logic optimization sys-
tem", Proceedings of International Conference on Computer-

Aided Design, (Nov. 1986), 356-359.

[2] S.D.Brown,
R.J.Francis, J.Rose, Z.G.Vranesic, "Field-programmable gate
arrays", (Kluwer Academic Publishers, 1992).

[3] K.C.Chen, J.Cong, Y.Ding, A.B.Kahng, P.Trajmar,"DAG-
map:Graph-based FPGA technology mapping for delay opti-
mization", IEEE Design and Test of Computers, (Sept. 1992),
7-20.

[4] R.J.Francis, J.Rose, K. Chung: Chortle," A techonology map-
ping program for lookup table-based FPGAs", Proceedings of

27th Design Automation Conference, (June 1990), 613-619.

[5] K.Karplus," Xmap: A technology mapper for table-lookup
FPGAs", Proceedings of 28th Design Automation Conference,
(June 1991), 240-243.

[6] S. Minato, N. Ishiura, S. Yajima: Shared binary decision dia-
gram with attributed edges for e�cient boolean function ma-
nipulation, Proceedings of 27th Design Automation Confer-

ence,(June 1990),52-57.

[7] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, A.
Sangiovanni-Vinccentelli: Logic Synthesis for Programmable
Gate Arrays, Proceedings of 27th Design Automation Confer-

ence, (June 1990), 620-625.

[8] S. Muroga, Y. Kambayashi, H. C. Lai, J. N. Culliney: The
Transduction Method-Design of Logic Networks Based on Per-
missible Functions, IEEE Transactions on Computers, 38-
10(Oct. 1989), 1404-1424.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

