
Performance Driven Multiple-Source Bus Synthesis
Using Buffer Insertion

Chia-Chun Tsai+, De-Yu Kao*, Chung-Kuan Cheng, and Ting-Ting Lin*

Department of Computer Science and Engineering
*Department of Electrical and Computer Engineering

University of California at San Diego, La Jolla, CA 92093

Abstract-- A heuristic algorithm for a given topology of a
multiple-source and multiple-sink bus to reduce the signal delay
time is proposed. The algorithm minimizes the delay by inserting
buffers into the candidate locations and sizing the buffers. Exper-
iments show up to 7.2%, 20.7%, and 29.6% improvement in delay
for 2.0, 0.5, and 0.3 micron technologies, respectively.

I. INTRODUCTION

In the design of high-performance VLSI systems, buses
inherently exist in the chip. A multiple-source bus is used to
conserve routing area and number of terminals of functional
blocks. However, the trade-off is a larger loading capacitance
and delay time. Therefore, reducing the signal delay time in a
multiple-source and multiple-sink bus is an important practical
problem.

A conventional approach to reduce the delay between
sources and sinks is sizing the source drivers. For a given
number of sources, engineers manually tune each driver’s size
to reduce the delay times until the timing requirement is
matched.

Many papers [1-6] concentrate on the analogous problem,
transistor or gate sizing, in CMOS and digital circuits. They try
to find the best sizes of a given number of gates/transistors and
to reduce the propagation delay time with analytical or heuristic
methods. Other researchers in [7-10] insert buffers into the
wires to reduce the delay in single-source Steiner tree
distribution.

The multiple-source bus is complicated by its multi-source
and multi-sink characteristics. The best solution for a particular
source and its sinks may result in another source not fulfilling
its timing requirements. This paper is the first effort to reduce
multiple-source bus signal delay by buffer insertion.

Given a set ofN candidate locations for buffer insertion
and timing requirements, our goal is to find a set of locations for
buffers and their sizes to minimize delay. An exhaustive search
of all the combinations of location and sizes of the inserted
buffers is not feasible for industry applications.

We adopt the -optimal approach by Lin and Kernighan
[11, 12] to search for the buffer assignment. We observe that
sizing of buffers belongs to the class of geometric programming
problems. A heuristic iterative improvement method is used to
insert buffers into the candidate locations and to tune the buffer
size. Our algorithm takes the running time of O(N4n ln Wmax),
whereN is the number of candidate buffer locations, Wmax is

λ

the maximum buffer size andn is the total number of sources/
sinks. The results show that averages of 7.2%, 20.7%, and
29.6% time delay improvement for 2.0, 0.5, and 0.3 micron
technologies respectively.

The remainder of the paper is organized as follows. Section
II describes the problem statement. Section III gives the wire
and buffer delay models. The buffer insertion algorithm and its
time complexity are introduced in Section IV. The last two
sections present the experimental results and conclusions.

II. PROBLEM STATEMENT

We first define the following symbols used through this
paper.

pi: The ith terminal in a bus; a terminal may be a source, sink,
or both.
n: number of terminals in the bus.
tij : delay time from sourcei to sinkj without buffer insertion.
aij : actual arrival time from sourcei to sink j with buffer
insertion.
N: number of candidate locations for buffer insertion.
Wmax: maximum buffer size allowed.
Wmin: minimum buffer size allowed; we setWmin = 0 to denote
no buffer inserted.
wbi: buffer size assigned to buffer (source or sink) i.
Rw: wire resistance per unit length.
Rb: output resistance of a unit size buffer.
Cw: wire capacitance per unit length.
Cb: The input capacitance of a unit size buffer.
l(f,g): length of wire (f,g).
Db: intrinsic delay of an inverter.

A bus consists ofn terminals andN bus-wire segments. A
terminal may be a source or sink in different timing periods. In
each timing period, there can be only one working source but
multiple sinks. In the same period, a subset of the wire segments
is used.

Fig. 1 shows an example of a six-terminal bus with 14 wire
segments and four timing periods. In the figure, terminalp1 is
the source in periods 1 and 3. Terminalsp2 and p4 are the
sources in periods 2 and 4, respectively. Note that three sources,
p1, p2, andp4 are also sinks in the different timing periods. Each
source has at least one sink. For instance, sourcep4 has four
sinks, p1, p3, p5, andp6 in the timing period 4. There are 3
source drivers (p1, p2, andp4) and 14 possible buffer locations
with one location on each wire segment.

Given the required timetij and the actual arrival timeaij

+C.C. Tsai is on leave (7/94-7/95) from the Dept. of Electronic Engineering, National
Taipei Institute of Technology, Taipei, Taiwan, ROC. (E-mail: cct@en.tit.edu.tw)

from source i to sink j, we define the slacksij :

sij = tij - aij (1)

We define the slacksBus of the bus as the minimal slacksij
between all possible pair of sourcei to sink j:

sBus= min (sij) = min (tij - aij) (2)
 (i,j) (i,j)

To optimize the system performance, our goal is to maximize
the slacksBus by buffer insertion and sizing.

Fig. 1: An example of a bus with six terminals.

Fig. 2 shows a multiple-source bus with buffer insertion.
There are buffers or bi-directional buffers on some segments of
the bus. The direction of the signal flows are determined by
arbitrators. We assume the wire widths in a bus is invariant,
while the wire width of the control signals can be sized to
match the timing requirements. Note that this is a distributed
control system. For each source, the control signal is generated
from the same block. The control signal triggers arbitrators
which in turn sets the direction of the bi-directional buffers.

Fig. 2: A multiple-source bus with buffer insertion.

For the distributed control bus system (Fig. 2) we adopt
the following assumptions:

(1) The potential buffer insertion locations are given.
(2) All the wire widths in a bus are homogeneous.
(3) The control signals arrive earlier than the data and meet the

minimum setup time.

In this paper, we concentrate on buffer insertion and
sizing. The general problem of bus buffer insertion can be
stated as below:

p4, p5

p3, p6

p2, p3, p5

p1, p3, p5, p6

p5

p1
p2

p3

p4

p6
 (a)

Time interval Source Sinks
p1

p1

p2

p4

 Period 1
Period 2
 Period 3
Period 4

(b)

Sink

Source

Source

&Sink Source
&Sink

Arbitrator

Arbitrator

Sink

Control

Control Control

Bi-directional buffers

&Sink

(Uni-directional) Buffers

Control signal’s buffer

Arbitrator

Bus

Given a bus with N possible buffer locations and required
arrival times tij of all source i to sink j pairs, identify the number
of buffers, buffer insertion locations, and the buffer sizes, wbu,
for each buffer u, to maximize the slack sBus of the bus, with the
constraint that 0< wbu< Wmax.

III. DELAY MODEL

A. Delay Between Active Components

We choose the Elmore delay model [13] to estimate the
signal delay. Fig. 3 shows the delay model of a segment (f,g) of
wire, wherelfg is the length of wire (f,g), andRw andCw are the
resistance and the capacitance per unit wire length,
respectively. The resistancerfg and capacitancecfg of wire (f,g)
arerfg = Rw lfg andcfg = Cw lfg, respectively.

Fig. 3: Delay model of a bus wire.

For the delay from a bufferu to the next active component,
we trace from the output of bufferu to construct a treeTu with
u as the root, and its descendent buffers/sinks as the leaves.
Each branch ofTu corresponds to a wire segment and each
internal node corresponds to a junction. For each leafv, the path
(u,v) from rootu tov is unique. Based on the distributed RC tree
of the Elmore delay model, the wire delay time fromu tov, duv,
can be denoted by

(3)

wherec(Tg) is the lumped capacitance of the sub-tree rooted at
the nodeg. The capacitancec(Tg) can be partitioned into two
terms,cw(Tg) the capacitance contributed by wires andcl(Tg)
the capacitance contributed by the buffers and sinks, calculated
by the following formula:

c(Tg) = cw(Tg) + cl(Tg) (4)

wherecw(Tg) = (cgh + cw(Th)), (5)

andcl(Tg) = Cb
. wbg if g is a buffer or sink,

 = cl(Th) otherwise (6)

whereD(Tg) is the set of children of nodeg.

We defineruvs as the resistance of the common portion of
the path between path (u,v) and path (u,s). The delayduv in
equation (3) can be formulated as a function of buffer sizewbs
at the leaves.

rfg =Rw lfg

1/2 cfg 1/2 cfg

gf

cfg =Cw lfg

duv rfg
1
2
--- cfg⋅ c Tg

 +
 ⋅

f g,() path u v,()∈
∑=

h D Tg
 ∈

∑

h D Tg
 ∈

∑

duv rfg
1
2
--- cfg⋅ cw Tg

 cl Tg
 + +

 ⋅
f g,() path u v,()∈

∑=

r fg
1
2
--- cfg⋅ cw Tg

 +
 ruvsCbw

bss S Tu
 ∈

∑+⋅
f g,() path u v,()∈

∑=

(7)

whereS(Tu) is the set of leaves inTu, and

. (8)

B. Bus Delay Model

A CMOS inverter can be a buffer where the output signal
is the inverse of the input signal. For simplicity, two cascaded
inverters, named the rear and the front inverters, are considered
to be a buffer and inserted into a bus wire to maintain the signal
polarity. For a bi-directional bus, we place two buffers in
opposite directions and connect them together. Data can only
pass in one direction within any timing period. This is achieved
by using a tri-state inverter for the front inverter controlled by
the control signal.

Fig. 4shows the symbol and the equivalent delay model for
a buffer, whereDb, Rb, andCb represent the intrinsic delay, the
output driving resistance, and the input loading capacitance of
a unit size inverter (1X), respectively. For a sized inverter
(wX), the gate width increases by a factor ofw, the output
driving resistance isRs/w, the input loading capacitance is
Cbw; the intrinsic delayDb is assumed to be a constant
independent ofw.

Fig. 4: (a) A buffer model and (b) the equivalent delay model.

With considering the bufferu, the delayd’uv from bufferu
to bufferv is:

 (9)

whereK0uv = Db + D0uv and . (10)

Given the sourcei and the sinkj, let (pi, b1, b2,...,bs, pj) be
the sequence of buffers along the path (pi, pj). We decompose
the path (pi, pj) into a setBij of buffer (source or sink) pairs,i.e.
Bij = {(pi, b1), (b1, b2),..., (bs, pj)}.

D0uv ruvsCbw
bss S Tu

 ∈
∑+=

D0uv rfg
1
2
--- cfg⋅ cw Tg

 +
 ⋅

f g,() path u v,()∈
∑=

Db

Rb/w1Rb/w2Cb w2

Db

Cb w1

rear inverter front inverter

sizew2
sizew1

(a)

(b)

input output

input output

control signal

d′uv Db

Rb
wbu
---------- c Tu

 duv Db

Rb
wbu
---------- cw Tu

 cl Tu
 +

 duv++=+ +=

Db

Rb
wbu
---------- cw Tu

 Cbwbss S Tu
 ∈

∑+

duv+ +=

D
b

1
w

bu
---------- Rbcw Tu

 R
b

C
b

w
bss S Tu

 ∈
∑+

D0uv ruvsCbwbss S Tu
 ∈

∑+ + +=

K0uv

K1uv
wbu

RbCb
wbu

-------------- wbss S Tu
 ∈

∑ Cb ruvswbss S Tu
 ∈

∑+ ++=

K1uv Rb cw Tu
 =

With buffer insertion, the propagation delay based on the
equation (9) from the sourcei to the sinkj can be expressed as:

(11)

IV. BUS BUFFER INSERTION ALGORITHM

A. Overview

In the problem of bus buffer insertion, we attempt to insert
buffers to maximize the slacksBus. We can formulate the
problem in a nonlinear programing expression:

 Obj: maxsBus (12)

Subject to the constraints derived from equations (1), (2), and
(11):

(13)
wheretij > 0, 1< i, j < n, and 0< wbu, wbs< Wmax.

Note that the coefficientsK0uv, K1uv, Rb, Cb, andruvsin the
left term of (13) are all nonnegative. The expressions are
posynomial (positive polynomial). Let us set a variablezi = ln
wbi for each buffer or sink. Posynomial can be transferred by
an exponential transformation into convex functions. Thus,
given the buffer placement, the sizing of the buffer is classified
as a geometric programming problem [14]. Equation (13) can
be rewritten as

Obj: maxsBus

Subject to

(14)

The second derivatives of the second, third, and fourth
terms in equation (14) with respect tozu andzs are positive. As
a consequence, the equation (14) is a convex function ofzi.
This convexity allows us to associate a stationary point
uniquely with a minimum. Because the unique properties ofzi
make it so suitable for optimization, we callzi a natural
variable. Sincezi is a monotonic function of wbi, a stationary
point with tozi is, of course, also a stationary point with respect
to wbi. This unique property ofzi will make any locally optimal
solution of (14) also globally optimal.

The second, third, and fourth terms in equation (13) are
proportional to the buffer sizewbs at the root of each treeTs but
inversely proportional to the buffer sizewbu at the leaf, shown
in Fig. 5. In the figure, equation (14) is convex with respect to
ln wbi. Fig. 6shows the outline of the combination of a set of
equations (14). The solution space is convex.

aij d′uvu v,() Bij∈
∑=

K0uv

K1uv
wbu

RbCb
wbu

-------------- w
bss S Tu

 ∈
∑ C

b
r
uvs

w
bss S Tu

 ∈
∑+ ++

u v,() Bij∈
∑=

K0uv

K1uv
wbu

RbCb
wbu

-------------- wbss S Tu
 ∈

∑ Cb ruvswbss S Tu
 ∈

∑+ ++

u v,() Bij∈
∑

sBus tij≤+

K0uv K1uv e⋅
z– u

RbCb e⋅
z– u

e
zs

s S Tu
 ∈

∑ Cb ruvse
zs

s S Tu
 ∈

∑+ ++

u v,() Bij∈
∑

t
i j
1–

⋅ s
Bus

t
ij
1–

⋅+ 1≤

Fig. 5: Curve variation of the delay timeaij

Fig. 6: The solution space of equation (14) is a convex.

Theorem 1:
The local optimal solution of obj (12) and constraints (14)

is also globally optimal.

We propose a simple heuristic method to improve the bus
buffer insertion iteratively. There are three levels of operations.
At the top level, we try from x = 1 toN, to insertx buffers. The
best result is selected. In the second level, for a givenx, we
search for the best buffer placement of thex buffers
(Subsection IV.B). For each buffer location assignment, a third
level of sizing operation is called to find the best buffer sizes
such that the bus slacksBus is maximized (Subsection IV.C).
The first level of the algorithm forbus buffer insertionis stated
as below:

 Bus_Buffer_Insertion ()
 1 { sBus = -10 -9ns;
 2 Forx = 1 toN, x = x + 1;
 3 { cur_slack= Buffer_Placement (N,x);
 4 sBus= max (sBus, cur_slack);
 5 }
 6 }

B. Buffer Placement

We solve the bus-buffer placement problem according to
the combinatorial optimization approach proposed by Lin and
Kernighan [12,15,16]. Given an initial assignment ofx buffers
and a number 0 < < x, in each iteration, we select buffers
and try the placement of these buffers at all possible buffer
locations. The placement that maximizes the bus slacksBus is
kept. The entire process repeats until no further improvement

ln wbi

Delay timeα [ln wbs + 1/(lnwbu)]

Delay timeα (ln wbs)

Delay timeα 1/(ln wbu)

Delay time

ln wbi

Delay Time

Solution space is a
convex function.

λ λ
λ

is observed.
Lin and Kernighan define the solution to be a -optimal:
-optimal: A solution is -optimal if and only if the

perturbation of any buffers on the buffer location does not
improve the current solution.

To reduce the complexity of the operation, we set to be
one. For each buffer placement, we optimize the buffer sizes.
Therefore, the proposed buffer placement derives a 1-optimal
solution.

The detailed procedure for thebuffer placement is
described below:

Buffer_Placement (N, x)
 1 { Randomly placex buffers intoN buffer locations;
 2 sBus = -109ns;
 3 Repeat
 4 { Fori = 1 tox, i = i + 1;
 5 { slack= 109ns;
 6 Forj = 1 to (N-x), j = j + 1;
 7 { Assign bufferi to thej’th available buffer
 location;
 8 slack1 = Buffer_Size_Decision (x);
 9 Ifslack1< slack
10 { T = j; slack = slack1;
11 }
12 } Assign bufferi to T buffer locations;
13 }
14 } until no improvement insBus is observed;
15 return (sBus);
16 }

Initially, thex buffers are randomly placed intoN candidate
locations. In each outer iteration (lines 3-14), we move each
buffer to its best location until no further move can improve the
slack. The inner iteration (lines 6-12) tries theN-x available
buffer locations for a given buffer and returns the best move.
Finally, the best result of the buffer placement is returned to the
fist level.

C. Buffer Size Decision

Instead of using geometric programming, to simplify the
implementation, we adopt a Gauss-Seidel iteration approach.
Given a buffer placement, we adjust each buffer sizewbu to its
optimal value assuming the rest of the buffer sizes are fixed. We
use binary search based on a slope comparison for sizing the
buffer sizewbu to get a maximum slack. The successive over-
relaxation [17] is used to accelerate the convergence of the
Gauss-Siedel iterations. Letwbu

* be the optimal buffer size of
wbu, we have

wbu
k+1 = wbu

k+ (wbu
*-wbu

k) (15)

wherek is the index of the iteration and is the step size
(; experimentally,).

The procedure ofbuffer size decision is described as
follows:

λ
λ λ

λ

λ

α

α
α 1≥ α 1.2=

 Buffer_Size_Decision (x)
 1 { k = 1;
 2 Repeat
 3 { Foru =1 tox, u = u + 1
 4 { wbu

* = Opt_Buffer (u);
 5 wbu

k+1 = wbu
k+ (wbu

*-wbu
k);

 6 }
 7 k = k + 1;
 8 } untilwbu converges;
 9 return (SBus);
10 }

For each buffer, we calculate the best buffer size with
binary search (line 4). And then overshooting the buffer size
(line 5) to accelerate the convergence. In practice, the front
inverter should be sized before the rear inverter for faster
convergence rate. Finally, the best results is returned to the
second level, the buffer placement procedure.

D. Time Complexity

The bus buffer insertion algorithm consists of three
hierarchical levels, the outer loop (Subsection IV.A), buffer
placement (Subsection IV.B), and buffer size decision
(Subsection IV.C). In the outer loop, it takes O(N) iterations
since only one for-loop with 1< x < N is called, whereN is the
number of buffer locations in a bus. In the procedure of the
buffer placement, the number of iterations depends on the
number ofx buffers, 1< x <N. Since two hierarchical for-loops
with the number of (N-x) and x are involved, the time
complexity of the buffer placement is O(c1N

2), whereN is the
number of buffer locations andc1 (experimentally,c1 < 4) is
the number of repeat-loops. In the procedure of the buffer size
decision, the for-loop takes O(N) and the subroutine of
Opt_buffer() needs O(n ln Wmax) since the binary search with
maximum buffer size,Wmax, is adopted. Thus the time
complexity of the buffer size decision is O(c2nN ln Wmax),
where c2 (experimentally,c2 < 5) is the number of repeat-
loops.

In summary, the time complexity of the bus buffer
insertion algorithm based on the combination of three
hierarchical levels will be O(nN4 ln Wmax).

V. EXPERIMENTAL RESULTS

The algorithm of bus-buffer insertion has been
implemented in C language and runs on a PC-Pentium (60
Mhz) under MS-DOS 6.2. We adopt the CMOS technologies
based on 2.0, 0.5, and 0.3 micron design rules [18]. For 0.5
micron technology, the input capacitance and output resistance
of a unit size buffer areCb=1.725fF andRb=3170 Ohm,
respectively. We suppose that the intrinsic delay is kept
constant 230ps for any buffer sizes. For 0.3 micron technology,
the input capacitance and output resistance of a unit size buffer
are Cb=0.621fF andRb=3170 Ohm respectively, and the
intrinsic delay is kept constant 150ps for any buffer sizes. In
addition, the wire resistance is 0.05 Ohm per square area and
the wire capacitance is 0.1fF per micron. To represent a buffer

α

sizing without size limitation, we set the maximum buffer size
Wmax to 250X. For a wire segment with bi-directional
transmission, a bi-directional buffer is placed (if any) at the
middle of the segment to balance the delay times contributed
by the segment. But for a wire segment with uni-directional
transmission, a buffer is placed at the end of the segment on the
side of the sources. We also assume that all the sources driving
capability can be adjusted but all the sinks have a fixed unit
size loading.

Since there are no standard benchmarks available, test
cases have been created and used to evaluate our algorithm.
Table I summarizes the data of the test cases. The bus is
assumed to reach the four edges of the chip core. The length of
the critical path is measured along the path contributing the
longest time delay. The number of locations is the sum of the
number of the segments and sources. In all cases, the bus
topologies are different and the required arrival times of all
sinks are set to be 90% of the delay of critical path without
buffer insertion. Case 1 has the simple source-sink pairs, Case
2 has the minimum die size, and Case 8 has more complicated
bus structure.

TABLE I
THE DATA OF TESTCASES

Tables II, III, and IV show the results of both source driver
sizing and bus buffer insertion based on 2.0, 0.5, and 0.3
micron technologies, respectively; where “Delay” is the
maximum time delay from sources to sinks, “Bsizes” is the
summation of all the inserted buffer sizes, and “Cputime” is the
running time measured by Pentium-60MHz. From the tables,
the “Delay” based on the buffer insertion approach is always
less than that of the source driver sizing, but takes more buffer
sizes. From the experiments, the average improvement in delay
(Delay saving) is 7.2% for 2.0 micron technology, but 20.7%
and 29.6% for 0.5 and 0.3 micron technologies, respectively at
the expense of larger total buffer area.

TABLE II
RESULTS OFBOTH DRIVER SIZING AND BUFFERINSERTION FOR 2.0

Example
Core Size

(m x m)
Term

Number
Critical

Path(m)
Source
Number

Sink
Number

 Location
Number

Case 1 10000 x 14000 3 17000 2 2 5

Case 2 10000 x 5000 4 10000 3 3 9

Case 3 17000 x 10000 5 12000 3 3 10

Case 4 12900 x 7000 6 18900 3 5 17

Case 5 12000 x 10000 6 16000 4 4 16

Case 6 17000 x 15000 7 23000 7 6 18

Case 7 18000 x 15000 8 25000 5 4 17

Case 8 18000 x 14000 11 23000 9 7 26

Example
Driver Sizing Buffer Insertion

Delay
Saving

 Delay Bsizes Cputime Delay Bsizes Cputime

Case 1 3.973 ns 35 1 s 3.875 ns 48 4 s 2.5%

Case 2 3.579 ns 39 1 s 3.561 ns 40 16 s 0.5%

Case 3 4.448 ns 55 1 s 4.141 ns 66 44 s 6.9%

Case 4 4.411 ns 43 1 s 4.327 ns 59 399 s 1.9%

Case 5 5.480 ns 48 1 s 5.015 ns 76 333 s 8.4%

Case 6 7.926 ns 77 8 s 6.885 ns 126 778 s 13.1%

Case 7 7.335 ns 69 12 s 6.282 ns 167 1653 s 14.4%

Case 8 8.820 ns 96 84 s 7.960 ns 206 3796 s 9.8%

Average - - - - - - 7.2%

µ µ µ

µm

TABLE III
RESULTS OFBOTH DRIVER SIZING AND BUFFERINSERTION FOR 0.5

TABLE IV
RESULTS OFBOTH DRIVER SIZING AND BUFFERINSERTION FOR 0.3

We use the same topology but different bus length to
compare the impact of core size on the bus buffer insertion.
Fig. 7 shows the comparison for Case 5 for 0.5m technology.
The x-axis represents the percentage of the core size with
respect to the original core size. From the figure, we observe
that the delay time with the buffer insertion is reduced as the
core size shrinks.

Fig. 7: Variations of the different core sizes of Case 5 with/without size
limitation in delay and buffer size for 0.5m technology.

VI. CONCLUSION

The bus buffer insertion algorithm has been proposed and
implemented. The algorithm is designed to minimize the clock
period by inserting buffers in the multi-source and multi-sink
bus. As wire resistance increases with larger chip sizes and
finer wire widths, bus buffer insertion yields greater
improvements in performance. In our experiments, the
improvements increase from 7.6% to 20.7% and 29.6% when
we move the technology from 2.0 microns to 0.5 and 0.3
micron technologies.

Example
Driver Sizing Buffer Insertion

Delay
Saving

 Delay Bsizes Cputime Delay Bsizes Cputime

Case 1 2.190 ns 152 1 s 1.874 ns 257 3 s 14.4%

Case 2 1.751 ns 143 1 s 1.693 ns 155 36 s 3.3%

Case 3 2.560 ns 200 1 s 2.142 ns 333 190 s 16.3%

Case 4 2.484 ns 103 1 s 2.035 ns 263 873 s 18.1%

Case 5 3.298 ns 117 1 s 2.666 ns 349 814 s 19.2%

Case 6 4.866 ns 179 7 s 3.596 ns 515 1273 s 26.1%

Case 7 5.150 ns 232 5 s 3.486 ns 597 2835 s 32.3%

Case 8 5.988 ns 186 14 s 3.857 ns 516 10753 s 35.5%

Average - - - - - - 20.7%

Example
Driver Sizing Buffer Insertion

Delay
Saving

 Delay Bsizes Cputime Delay Bsizes Cputime

Case 1 1.770 ns 285 1 s 1.439 ns 493 4 s 18.7%

Case 2 1.339 ns 251 1 s 1.286 ns 276 55 s 4.0%

Case 3 2.131 ns 312 1 s 1.601 ns 822 254 s 24.9%

Case 4 2.125 ns 128 2 s 1.583 ns 507 1243 s 25.5%

Case 5 2.767 ns 202 1 s 1.928 ns 669 1413 s 30.3%

Case 6 4.292 ns 349 10 s 2.718 ns 866 1677 s 36.7%

Case 7 4.727 ns 544 9 s 2.365 ns 1324 3783 s 50.0%

Case 8 5.114 ns 452 21 s 2.728 ns 1117 13940 s 46.7%

Average - - - - - - 29.6%

µm

µm

µ

20%
1
2
4

Delay time(ns)

50% 200%100% 150%

6
8

10

12

ratio of the size of Case 5

 buffer insertion
 driver sizing

driver sizing withWmax=16
buffer insertion withWmax=16

µ

Besides delay reduction, buffer insertion can remedy noise
and cross talk problems. Bus buffer may restore the signal
before the noise corrupts the data. The inverting buffer can be
used to change the phase of signals and thus reducing cross talk.
Future work includes area limitation and power consumption.

REFERENCES

[1] J. P. Fishburn and A. E. Dunlop, “TILOS: a posynomial programming
approach to transistor sizing,”IEEE International Conference on Com-
puter-Aided Design,pp. 326-328, 1985.

[2] P. K. Chan, “Algorithm for library-specific sizing of combinational logic,”
Proc. of 27th ACM/IEEE Design Automation Conference,pp. 353-356,
1990.

[3] M. R. C. M. Berkelaar and J. A. G. Jess, “Gate sizing in MOS digital circuits
with linear programming,”Proc. of European Design Automation Confer-
ence,pp. 217-221, 1990.

[4] A. C. H. Wu, N. Vander Zanden, and D. Gajski, “A new algorithm for tran-
sistor sizing in CMOS circuit,”Proc. of European Design Automation
Conference,pp. 589-593, 1990.

[5] S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, “An exact solu-
tion to the transistor sizing problem for CMOS circuits using convex opti-
mization,”IEEE Trans. on Computer Aided Design,Vol. 12, No. 11, 1993,
pp. 1621-1634.

[6] S. Mehrotra, P. Franzin, and W. Liu, “Stochastic optimization approach to
transistor sizing for CMOS VLSI circuits,”Proc. of 31th ACM/IEEE
Design Automation Conference, pp. 36-40, 1994.

[7] L. V. Ginneken, “Buffer placement in distributed RC-tree networks for min-
imal Elmore delay,”Proc. of International Symposium on Circuits and
Systems, pp. 865-868, 1990.

[8] J. D. Cho and M. Sarrafzadeh, “A buffer distribution algorithm for high-
speed clock routing,”Proc. of 30th ACM/IEEE Design Automation Con-
ference, pp. 537-543, 1993.

[9] S. Pullela, N. Menezes, J. Omar, L. Pillage, “Skew and delay optimization
for reliable buffered clock trees,”Proc. of IEEE International Conference
on Computer-Aided Design,pp. 556-562, 1993.

[10] J. Chung and C. K. Cheng, “Skew sensitivity minimization of buffered
clock tree,” Proc. of IEEE International Conference on Computer-Aided
Design,pp. 280-283, 1994.

[11] S. Lin and B. W. Kernighan, “Heuristic solution of a concentrator location
problem,”Bell Lab. Technical Memorandum,1976.

[12] S. Lin, “Effective use of heuristic algorithms in network design,”Proc. of
Symposia in Applied Mathematics,Vol. 26, pp. 63-84, 1982.

[13] W. C. Elmore, “The transient response of damped linear networks with par-
ticular regard to wide-band amplifiers,”Journal of Applied Physicals,
19(1), pp. 55-63, Jan. 1948.

[14] C. S. Beightler and D. T. Phillips,Applied geometric programming, Wiley,
New York, 1976.

[15] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the trav-
eling salesman problem,”Operations Research, 21 (2), pp. 498-516,
1973.

[16] S. Lin, “Heuristic programming as an aid to network design,”Networks5
(1), pp. 33-45, Jan. 1975.

[17] Sergio Pissanetsky,Sparse Matrix Technology, Academic Press Inc. LTD.,
London, 1984.

[18] NCR ASIC Data Book, NCR Corporation, Dayton, Ohio, USA, Jan. 1987.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

