
tained if a designer specifies the behavior of the circuit.
However it takes a long time to specify the behavior of a
complex component, in general.

DFT of state machines is another area which has been ac-
tively studied. DFT methods for a single finite state machine
and a sequential circuit containing several finite state ma-
chines are described in [9,10]. They are called logic synthe-
sis for testability (LSFT) since DFT takes place during the
logic synthesis phase by eliminating redundancies of the cir-
cuit. Disadvantages of LSFT are: 1) large CPU time is need-
ed to handle large state machines; 2) in a practical design,
state machines are not always described explicitly. These
methods are extended to general RT circuits introducing par-
titioning and redundancy elimination[11]. This work seems
more practical than previous ones since general RT circuits
including data path circuits can be handled and translated to
fully sequentially testable circuits. However, it still has the
following problems: 1) computing time has been reduced in
comparison with the previous work, but it is expected that in-
hibitive CPU time is necessary to do LSFT for large and
complex circuits; 2) this approach doesn’t work if the circuit
contains logic blocks which are manually designed at gate
level; and 3) even if a circuit is fully testable, ATPG is still
difficult for large circuits.

ADEPT[12] is another type of DFT at RTL which uses
VHDL descriptions. ADEPT reads VHDL and extracts data
path circuits and control circuits automatically. Then a test-
ability measure called testability sequence range (TSR) is
calculated. Based on TSR, ADEPT searches scan insertion
points. If scan insertion is required in a register in a data path
circuit, ADEPT directly replaces it with a scan register, and
if scan insertion is required at a pseudo register placed at the
interface between a data path circuit and a control circuit, the
control circuit is synthesized and gate level DFT takes place
to find a scan insertion point in the control circuit. ADEPT
is more practical than the other work in a sense that it is based
on a typical ASIC design flow including VHDL, a logic syn-
thesis tool, and a sequential ATPG and that it focuses on se-
quential depth which makes sequential ATPG difficult.

Design for Testability Using Register-Transfer Level Partial Scan Selection

Akira Motohara Sadami Takeoka Toshinori Hosokawa Mitsuyasu Ohta,

Yuji Takai Michihiro Matsumoto Michiaki Muraoka

Semiconductor Research Center
Matsushita Electric Industrial Co., Ltd.

3-1-1, Yagumo-Nakamachi, Moriguchi, 570 Japan
Tel: +81-6-906-4933
Fax: +81-6-906-3851

motohara@vdrl.src.mei.co.jp

 Abstract - An approach to top down design for testability us-
ing register-transfer level(RTL) partial scan selection is de-
scribed. We propose a scan selection technique based on
testability analysis for RTL design including data path circuits
and control circuits such as state machines. Registers and state
machines which make gate level ATPG difficult are identified by
the scan selection technique based on RTL testability analysis ef-
fectively. Experimental results for actual circuits are also pre-
sented.

1. INTRODUCTION

Design for testability (DFT) is one of the most important
design techniques for large and complex VLSI chips. DFT
techniques at gate level are widely used. The most popular
one is scan design[1] which reduces the complexity of test
generation to a combinational test generation problem. Par-
tial scan design approaches[2-6] which can reduce area and
performance penalty are also actively studied and are used in
the application areas where requirement of chip cost and/or
performance is severe.

Recently, many papers have been published concerning
DFT at register transfer (RT) or higher levels aiming at reduc-
tion of circuit size and CPU time for DFT and/or automatic
test pattern generation (ATPG). Late 1980’s, the early re-
search on DFT at register transfer level (RTL) was started.
TDES[7] is a knowledge based DFT system at RTL which
handles RTL primitives such as registers, ALU’s and memo-
ries, and DFT schemes such as scan and BIST. TDES can es-
timate testability, chip area, performance, etc., for a circuit
under consideration, with/without assuming some DFT
schemes in the circuit. TDES helps designers to make deci-
sion concerning DFT solutions at RTL. However, it is diffi-
cult to extend the techniques used in TDES to general VLSI
chips containing complex control circuits. Another research
group proposed an approach to DFT at RTL[8]. One of the
most significant features of this method is that behavior of
each component is taken into account and a test flow is ob-

Unfortunately, ADEPT is a data path oriented approach and
is not so effective for circuits containing large control cir-
cuits.

PHITS[13,14] aims at DFT in a high-level synthesis envi-
ronment. PHITS reduces/eliminates sequential depth and
large feedback loops by data path allocation and partial scan
insertion. PHITS is also data path oriented and no special idea
on DFT for control logic circuits is presented.

As summarized above, DFT at RTL or higher levels for se-
quential circuits including complex state machines remains
unsolved.

In this paper, we introduce an approach to DFT at RTL for
sequential circuits including state machines. In order to deal
with state machines efficiently, we introduced controllability/
observability analysis at RTL. DFT techniques using gate
level testability measures have been studied and concluded
that they are not successful in achieving high fault cover-
age[15]. However, we started this work for the following rea-
sons,
1) In sequential ATPG procedure, more than two memory el-

ements belonging to a functional units such as registers and
state machines are often required to be justified at a time.
AT RTL, state machines and registers are explicitly de-
scribed and recognized as functional units while gate level
memory elements are scattered over the circuit.

2) As discussed in [6], if the circuit is modified so that the
test sequence which causes state transition between initial
and final states of sequential ATPG can be easily obtained,
ATPG results can be also improved. Complex state ma-
chines can be identified at RTL.

Purposes of this work are:
1) define an RTL circuit model which is efficiently handled

by ESDA tools and a DFT method for RTL design includ-
ing data path circuits and control circuits such as state ma-
chines;

2) present a design flow with DFT at both RT and gate lev-
els; and

3) show the experimental results which support effectiveness
of our approach.

This paper is organized as follows. In Section 2, the circuit
model we deal with is defined. In Section 3, a DFT method
at RTL is described. In Section 4, experimental results are re-
ported. Finally, our work is concluded in Section 5.

2. DEFINITION

One major part of this work is to develop an ESDA tool
which enables practical functional design and DFT at RTL.
We developed a graphical functional design system Bchart.
In this section, we present an outline of Bchart system, the de-
sign flow using Bchart, and RTL circuit model.

2. 1. Bchart

Fig. 1. shows the software architecture of Bchart. Bchart
consists of the following five subsystems.

(1) function diagram editor
(2) diagram consistency checker
(3) interactive simulator
(4) HDL generator
(5) testability analyzer

The function diagram editor is a graphic editor which al-
lows users to do function design entry and modification. The
function diagram editor handles three types of hardware mod-
els, control circuits represented by state transition diagrams,
data path circuits represented by register transfer diagrams,
and combinational circuits represented by truth tables or
boolean expressions. The following graphic windows dedi-
cated to the hardware models are used in the function diagram
editor.

(1) state machine (SM) window: state transition diagram,
(2) register transfer (RT) window: register transfer dia-

gram,
(3) boolean expression (BE) window: boolean expression,

and
(4) condition table (CT) window: truth table.

The circuit model is discussed in Section 2.3 in detail.
The diagram consistency checker checks static errors in the

function diagram such as an undefined variable and an unused
variable.

The interactive simulator enables designers to run function
simulation on the function diagram. Each variable’s status is
shown in RT windows and active states are highlighted in SM
windows. Simulation proceeds step by step in both forward
and reverse time direction. Designers can efficiently verify
the function diagram using this powerful debugging tool.

The HDL generator translates the function diagram to an
HDL file. Users can specify a language type and a logic syn-

Function
Diagram
Editor

Diagram
Consistency
Checker

Interactive
Simulator

HDL
Generator

Testability
Analyzer

Fig. 1. Software Architecture of Bchart

Function
Diagram

thesis tool. Currently, VHDL/Verilog HDL and Mentor Au-
toLogic/Synopsys Design Compiler are supported. The HDL
generator generates an HDL file so that the specified logic
synthesis tool can correctly handle the HDL file. So the HDL
file generated by Bchart is always correctly translated to a
gate level net list by the specified logic synthesis tool. This
is very useful in comparison with the HDL based design,
where designers are often required to modify the HDL file
several times in order to obtain a satisfactory synthesis result.

The testability analyzer plays an important role in generat-
ing RTL circuits which is made easily testable after logic syn-
thesis. In Section 3, the testability analyzer is introduced in
detail.

2. 2. Full Top Down Design Flow

Fig. 2. illustrates a typical design flow of ASIC using
Bchart. In Fig. 2, rectangles and ovals represent design tools
and design data, respectively. The function diagram edited
using the function diagram editor is translated to a HDL file
by the HDL generator. Then the HDL file is translated to a
net list by a logic synthesis tool. For the net list, ATPG tool
generates a test pattern. At the function diagram entry phase,
the testability analyzer performs DFT at RTL. The gate level
DFT can be used to improve testability further.

2. 3. Circuit Model

In this section, the circuit model we deal with is discussed.
The circuit under consideration consists of several subcir-
cuits. Each subcircuit is represented in a graphic window as
described in the previous section. Each subcircuit is catego-
rized into the following three types.

(1) state machine
(2) data path
(3) combinational circuit

Signal communication between the subcircuits is carried
out using variables. A variable has one or more bits of infor-
mation. A variable which has one bit of information is de-
fined as a single bit variable, and a variable which has two
or more bits of information is called a multiple bit variable .

2. 3. 1. State Machine

Each state machine has two or more independent states de-
fined by independent single bit variables. At any time, any
two states can not be active at the same time in a state ma-
chine. A state transition occurs synchronously when a clock
signal defined by a single bit variable changes from zero to
one. Only one clock signal can be used in a state machine.
Destination of state transition from a state is defined by a state
transition edge which has information of a destination state.

The condition of a state transition is defined by a single bit
variable. If one state has two or more destinations, any two
state transition conditions can not be true at the same time. If
no state transition condition is true, no state transition occurs.
The “else” condition is defined as a single bit variable which
is true if and only if all of the other state transition conditions
of a state are false. A state machine must have only one reset
state. A state transition to the reset state occurs asynchro-
nously when a reset signal defined by a single bit variable is
true. A state machine handled by Bchart is Moore type and
only state signals can be referred by other subcircuits. An ex-
ample of a state machine described in the SM window is
shown in Fig. 3.

Function
Diagram

HDL

Gate
Level

Net List

Test
Pattern

Logic
Synthesis

Gate
Level
DFT

Gate
Level
ATPG

Fig. 2. Top Down Design Flow Using Bchart

Function
Diagram
Editor

Testability
Analyzer

HDL
Generator

Bchart

Fig. 3. State Machine

Note that a Mealy type state machine can be described with
a Moore type machine and a condition table which holds re-
lation between current states/state transition condition signals
and corresponding output signals of the Mealy machine. The
condition table is discussed in Section 2.3.3.

2. 3. 2. Data Path

A data path is represented by data transfers between facili-
ties. Each data transfer has information of a source facility, a
destination facility, and an optional transfer condition defined
by a single bit variable. If a data transfer has no transfer con-
dition, a default transfer condition which is always true is as-
sumed.

An example of a data path subcircuit described in a RT win-
dow is shown in Fig. 4.

The following facilities are used in Bchart.

(1) A register is a single or multiple bit variable with mem-
ory. A register receives data on a fanning-in data trans-
fer synchronously when a clock signal defined by a
single bit variable changes from zero to one. If a set or
reset condition defined by a single bit variable exists, the
register state is set or reset asynchronously when a set or
reset signal is true.

(2) A terminal is a single or multiple bit variable without
memory. A terminal receives data on a fanning-in data
transfer asynchronously when a state of the fanning-in
data transfer changes.

(3) An I/O pin is a port used for signal communication with
the outside world of the circuit.

(4) A connect is a port used for signal communication with
the other data path subcircuits.

(5) A standard operation unit such as arithmetic unit
(adder, subtracter, multiplier, etc.) or boolean unit
(AND, OR, NOT, etc.) can be a facility.

(6) A memory such as RAM, ROM can be a facility.
(7) A submodule is used in order to describe the subcircuit

in hierarchy.

2. 3. 3. Combinational Circuit

A combinational circuit which has one output can be de-
scribed in a condition table (CT) window or a boolean ex-
pression (BE) window. The output of a combinational
circuit is a single bit variable and is defined as a label. Labels
are used as a control signal such as a state transition condi-
tion signal or a data transfer condition signal.

Examples of combinational circuits described in a CT and
BE windows are shown in Fig. 5 and 6, respectively.

3. DFT AT RTL

DFT at RTL is performed by the testability analyzer. The
testability analyzer has the following functions.

3. 1. Testability Analysis

The testability analyzer calculates 0-controllability(0-C-
TY), 1-controllability(1-CTY), and observability(OTY) for
each bit of each variable on the circuit model discussed in the
previous section. The calculating rules for each facility in
register transfer subcircuits and combinational subcircuits
are similar to the combinational controllability/observability

Fig. 4. Data Path

calculation rule of SCOPE[16]. Instead of adding cost 1 for
each gate level primitive in SCOPE, a constant value defined
for each facility is added when 0/1-CTY and OTY is calculat-
ed. This constant value is called testability penalty. Testabil-
ity penalty is defined so that sequential facilities such as
registers and state machines have large numbers and sequen-
tial depth is reflected on 0/1-CTY and OTY.

3. 2. Testability Analysis for State Machines

0/1-CTY and OTY of each bit of each input pin and output
pin of a state machine is calculated based on its function. As
described in the previous section, each state corresponds to
the single bit output pin and the reset signal, the clock signal,
and the state transition condition signals are single bit input
pins.

0/1-CTY of each state corresponding to an output pin is cal-
culated according to the following rules:

C1(RS) = C1(R), (1)
C0(S) = C1(R), (2)
C1(NS) = C1(CS) + C1(C) + Cck, (3)
C0(CS) = C1(CS) + C1(C) + Cck, (4)

where C0(A), C1(A) are 0-CTY, 1-CTY of signal line A, re-
spectively. RS, S, R, C, CS, NS and Cck are defined as fol-
lows:

RS: reset state,
S: non-reset state,
R: reset signal,
C: state transition condition,
CS: current state,
NS: next state reached from CS on condition C,
Cck = C0(R) + C0(CK) + C1(CK), (5)
where CK is the clock signal.

When 0/1-CTY of at least one of the input pins of a state
machine is improved, above rules are estimated and the out-
put pins whose 0/1-CTY are improved are given new values.

OTY calculation rules are as follows:

Ob(R) = min(i){C1(Si) +

min{Ob(Si), Ob(RS)}}, (6)
Ob(CK) = min(i, j){C1(CSi) + C1(Cij) +

min(j){Ob(CSi), Ob(NSij)} + C0(R)}, (7)
Ob(Cij) = C1(CSi) + &2(k !b j){C0(Cik)} +

min{Ob(NSij), Ob(ESi)} + Cck, (8)
Ob(PSij) = min(j){C1(Cij) +

&2(k !b i){C0(Ckj)} + Ob(CSj)} + Cck, (9)

where Ob(A) is OTY of signal line A. Si, Cij , CSi, NSij ,
ESij , and PSij are defined as follows:

Si: non-reset state,
Cij : state transition condition,
CSi: current state,
NSij : next state reached from CSi on condition

Cij ,
ESi: next state reached on “else condition”

if “else condition” exists, current state
otherwise,

PSij : previous state from which state transition
to CSj occurs on condition Cij ,

3. 3. Scan Selection Algorithm

Features of our DFT at RTL are as follows:

(1) The unit of scan selection is a memory element at RTL,
namely a register or a state machine. If a register corre-
sponding to a multiple bit variable is selected, it is replaced
with a scan register. In the same way, if a state machine is
selected, it is replaced with a state machine consisting of a
combinational circuit and a scan register. A scan register is
defined as a register whose state can be shifted in and shifted
out by scan operation. We use a term scan element to repre-
sent a scan register or a state machine with a scan register.

(2) Scan selection is performed based on testability analysis.
A memory element cost of a memory element is defined as
a sum of 0-CTY and 1-CTY of output pins and OTY of input
pins of the memory element. A total cost of a circuit is de-
fined as a sum of memory element cost of all memory ele-
ments in the circuit. In our scan selection algorithm, a set of
memory elements which effectively reduce the total cost by
replacing them with scan elements are selected. Fig. 7 shows
the scan selection algorithm written in a pseudo code.

 In Fig. 7, select_scan() is executed with two parameters,
namely the number of scan flip flops numscan and the number
of candidates numcand for each scan selection. This program
repeatedly calls testability analysis subprogram calc_tm() and
worst_ff() which selects numcand memory elements having
the largest memory element cost and makes a memory element
set candidate, and selects one memory element in candidate,
until scan counts comes to numscan. calc_tm() returns the to-
tal cost of the circuit. set_scan() and unset_scan() are used to

Fig. 5. Condition Table

Fig. 6. Boolean Expression

assume scan for a memory element and to cancel assumed scan,
respectively. bit_count() counts the number of flip flops in a
memory element.

4. EXPERIMENTS

We did the following experiments:

(1) RTL DFT(RDFT)
(2) Gate level DFT-1(GDFT-1)
(3) Gate level DFT-2(GDFT-2)

Gate level DFT-1 is the method discussed in [6]. Gate level
DFT-2 in experiment (3) is the same method as RTL DFT,
namely scan flip flops are selected based on gate level con-
trollability and observability. The purpose of experiment (3)
is to compare it with (1), and (2).

We performed the above experiments on ISCAS’89 bench-
mark circuits[17] for gate level DFT and the RTL circuits
summarized in Table 1. Cir1 is a 8 bit microprocessor[18].
Cir2 is a bus controller which contains few primary input and
output pins and complex state machines and counters in it.
Cir3 is an image processing “data path oriented” circuit.

HDL and the design tools used in our experiments are as
follows:

HDL: Verilog HDL
ESDA: Bchart

Logic synthesis: Synopsys Design Compiler
Sequential ATPG: Mint[19]

Table 2 shows the results. In Table 2, “Fault Coverage”,
“DFT Time”, and “ATPG Time” represent fault coverage,
CPU time on Sun SPARCstation 20 for scan selection and
test generation, respectively. “No Scan” is the ATPG results
for the original circuits. “Partial Scan (20%)” shows the
above four DFT experimental results where 20% of flip flops
are replaced with scan flip flops. Both “numscan” and “num-
cand” in Fig. 7 are set to the number of final scan flip flops.

ATPG and gate level DFT results for two ISCAS’89 cir-
cuits which have many flip flops and are hard to test are used
to show the ATPG capability and effectiveness of gate level
DFT. The results show that our gate level tools are compa-
rable with the previously published most successful ATPG
and DFT tools such as [5] from the point of view of fault cov-
erage. One problem is that our gate level DFT tool uses se-
quential ATPG to find 1-Hamming distance states and very
long CPU time which is comparable to the ATPG time for the
original circuits is consumed.

RDFT achieves higher fault coverage than GDFT-1 in
much shorter CPU time. In comparison with GDFT-2 where
scan flip flops are selected according to the gate level
SCOPE values, effectiveness of scan selection is much bet-
ter. This fact supports that our testability analysis which di-
rectly calculates the difficulty of state transition reflects the
difficulty of sequential ATPG at gate level. For Cir3,
GDFT-2 resulted in a good fault coverage. This is the case
where even gate level SCOPE values are good enough in
finding scan flip flops since it contains no state machines. In
other cases, GDFT-2 seems less practical.

The experimental results can be summarized as follows:

(1) Proposed method(RDFT) offers high fault coverage and
short ATPG time.

(2) In comparison with ATPG based gate level DFT(GD-
FT-1)[6] which achieves highest fault coverage among
published work, high fault coverage is obtained with a
DFT time which is more than two orders of magnitude
shorter.

(3) DFT based on gate level testability measure(GDFT-2) are
not very effective.

select_scan(numscan, numcand)
{

for (i = 0; i < numscan; i += scan_bits) {
total = calc_tm();
candidate = worst_ff(numcand);
best_gain = 0;
for (each ff in candidate) {

set_scan(ff);
temp = calc_tm();
unset_scan(ff);
bits = bit_count(ff);

best_ff = ff;
scan_bits = bits;

}
}
set_scan(best_ff);

}
}

Fig. 7. Scan Selection Algorithm

if (> best_gain) {total - temp
bits

best_gain = ;total - temp
bits

2
16
12
24
40
45

64

RTL

Gate
Level

Circuit Cir1 Cir2 Cir3
State Machine

Primary In
Primary Out

Register
Primary In

Primary Out
Primitive
Flip Flop

560

2
3
4

22
3
4

126
511

0
18
7

65
40
55

236
629

TABLE 1
PROFILE OF RTL CIRCUITS

5. CONCLUSION

In this paper we described an approach to design for test-
ability at RTL. Major contributions are as follows:

(1) We defined an RTL circuit model which enables efficient
description in an ESDA tool and testability analysis
which leads to effective partial scan selection for RTL de-
sign including data path circuits and control circuits such
as state machines.

(2) We introduced a method of partial scan selection at RTL
which selects critical registers and state machines based
on RTL testability analysis.

(3) We did experiments to verify the effectiveness of our DFT
approach.

According to the experimental results, our gate level DFT
achieves high fault coverage comparable with the previously
published most successful DFT methods, and DFT at RTL re-
sulted in higher fault coverage than gate level DFT at much
shorter CPU time.

REFERENCE

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital Systems
Testing and Testable Design,” Computer Science Press, 1990.
[2] H.-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentelli,
“An Incomplete Scan Design Approach to Test Generation for Sequential
Machines,” Proc. Int. Test Conf., pp.730-734, Sep. 1988.
[3] K.-T. Cheng and V. D. Agrawal, “A Partial Scan Method for Sequential
Circuits with Feedback,” IEEE Trans. Comp., pp.544-548, Apr. 1990.
[4] M. Abramovici, J. J. Kulikowski, and R. K. Roy, “The Best Flip-flops to
Scan,” Proc. Int. Test Conf., pp.166-173, Oct. 1991.
[5] V. Chickermane and J. H. Patel, “A Fault Oriented Partial Scan Design
Approach,” Proc. Int. Conf., Computer-Aided Design, pp.400-403, Nov.

1991.
[6] S. Takeoka, A. Motohara, T. Hosokawa, and M. Ohta, “Scan Flip-Flop
Selection Based on State Transition for Automatic Partial Scan Insertion,”
Proc. SASIMI’92, pp.282-291, Apr. 1992.
[7] M. Abadir and M. A. Breuer, “A Knowledge-Based System for Design-
ing Testable VLSI Chips,” IEEE Design & Test of Comp., pp.56-68, Aug.
1985.
[8] M. Crastes de Paulet, M. Karam, and G. Saucier, “Testability Expertise
and Test Planning from High-Level Specifications,” Proc. Int. Test Conf.,
pp.692-699, Aug. 1989.
[9] S. Devadas, H.-K. T. Ma, and A. R. Newton, “A Synthesis and Optimi-
zation Procedure for Fully and Easily Testable Sequential Machines,” IEEE
Trans. CAD., Vol.8, pp.1100-1107, Oct. 1989.
[10] S. Devadas, H.-K. T. Ma, and A. R. Newton, “Redundancies and Don’t
Cares in Sequential Logic Synthesis,” Journal of Electronic Testing: Theory
and Applications, Vol.1, pp.15-30, Feb. 1990.
[11] A. Gohsh, S. Devadas, and A. R. Newton, “Sequential Logic Synthesis
for Testability using Register-Transfer Level Descriptions,” proc. Int. Test
Conf., pp.274-283, Oct. 1990.
[12] V. Chickermane, J. Lee, and J. H. Patel, “Design for Testability Using
Architectural Descriptions,” Proc. Int. Test Conf., pp.752-761, Oct., 1992.
[13] T.-C. Lee, N. K. Jha, and W. H. Wolf, “Behavioral Synthesis of Highly
Testable Data Paths under the Non-Scan and Partial Scan Environments,”
Proc. 30th ACM/IEEE Design Automation Conf., pp.292-297, June 1993.
[14] T.-C. Lee, N. K. Jha, and W. H. Wolf, “A Conditional Resource Sharing
Method for Behavioral Synthesis of Highly Testable Data Path,” Proc. Int.
Test Conf., pp.744-753, Oct. 1993.
[15] V. Chickermane and J. H. Patel, “An optimization based approach to
the partial scan design problem,” Proc. Int. Test Conf., pp.377-386, 1990.
[16] L. H. Goldstein, “Controllability and Observability Analysis of Digital
Circuits,” IEEE Trans. Circuits and Systems, Vol. CAS-26, No.9,
pp.685-693, Sep. 1979.
[17] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profile of Se-
quential Benchmark Circuits,” Proc. Int. Symp. Circuits and Systems, pp.
1929-1934, May 1989.
[18] H. Kanbara, “KUE-CHIP: A Microprocessor for Education of Comput-
er Architecture and LSI Design,” Proc. IFIP Workshop on Design & Test of
ASICs, pp.15-18, 1990.
[19] A. Motohara, T. Hosokawa, M. Muraoka, H. Maekawa, K. Kayashima,
Y. Shimeki, and S. Shin, “A State Traversal Algorithm Using a State Cova-
riance Matrix,” Proc. 30th ACM/IEEE Design Automation Conf.,
pp.97-101, June 1993.

Circuit Method No Scan
RDFT GDFT-1 GDFT-2

S1423

S5378

Cir1

Cir2

Cir3

88.85
0

3373

18.06

0
1684

88.28
0

4443

88.05

0
8204

77.95
0

24435

92.21
17

2077

91.05

12
223

96.56
109

272

91.42
11534

5169

89.88

10389
1436

96.27
27622

884

95.78

5121
890

98.85
18242

441

91.14
4

3428

28.15

4
1443

96.13
13

3228

89.50

2
1378
81.88

20

1783

Fault Coverage (%)
DFT Time (sec)

ATPG Time (sec)

Fault Coverage (%)

DFT Time (sec)
ATPG Time (sec)

Fault Coverage (%)
DFT Time (sec)

ATPG Time (sec)

Fault Coverage (%)

DFT Time (sec)
ATPG Time (sec)

Fault Coverage (%)
DFT Time (sec)

ATPG Time (sec)

TABLE 2

Partial Scan (20%)

EXPERIMENTAL RESULTS

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

