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PGA routing has the freedom of routing any pin

to any pad. We proposed an algorithm (EVENPGA)

that generates a monotonic topological routing. The

routing has no detours and is uniformly distributed

optimally. The wire length is also the shortest possible

under the taxicab wiring metric. If the topological

routing is routable, the maximum density of critical

cuts along a ring is the minimum possible. Once the

topological routing is done, physical layout can easily

be obtained using Surf, a rubberband-based routing

system.

I. Introduction

A single-layer pin grid array (PGA) package contains
a chip cavity with a single row of wire-bond pads and a
rectangular array of pins (Fig. 1). At present, most PGA
routing is done manually. As the I/O pin count increases,
routing a PGA becomes a non-trivial task. In this paper
we consider the relationship of pin assignment and routing
of a single-layer PGA package. This routing problem is
di�erent from general area routing in several ways:

� There is no netlist. Each bond pad needs to be routed
to one and only one pin. All pins are equivalent.

� The routing pattern is highly symmetric. The pins
are on a grid with uniform pitch. The whole package

is symmetrical.

� The wires may be routed in all angles.

This paper is the �rst to consider pin assignment in
a package routing. The algorithms proposed in this pa-
per guarantee a planar routing with the most uniform
distribution of wires and shortest wire length in the taxi-
cab wiring metric[1]. Previous work by Ying and Gu[2]
and Tsai and Chen[3] require an input netlist. Both
approaches uses the technique of iterative improvement.
Our algorithm creates a topological routing directly and
with optimal wire distribution. The only previous work
on package routing that considers pin assignment is by
Darnauer and Dai[4].
We start with the proof of an important theorem that

relates a monotonic pin assignment to a monotonic topo-
logical routing. This theorem is the cornerstone of the
routing algorithm. Next we present the routing algorithm

Fig. 1. A conceptual single-layer PGA package.

which generates a monotonic topological routing. The
rest of the paper analyzed the properties of the topolog-
ical routing created by the routing algorithm. The two
important results are uniform distribution of wiring and
shortest wire length.
The transformation of topological routing to detailed

routing including design-rule check and �nal geometry
transformation is done by Surf[5, 6, 7, 8, 9].

II. Monotonic Pin Assignment

Assume a PGA package has T pads X = f1; 2; : : :; Tg
arranged in a clockwise manner starting at the center of an
arbitrary side of the chip cavity (Fig. 1). The package also
has R pin rings � = [Rr=1�r, where each ring r consists
of Pr pins �r = f�r1; �r2; : : : ; �rPrg. Since the pins are
arranged in rings, all arithmetic involving the subscript of
a pin should be modulo Pr. To simplify the mathematics,
we assume that the number of pins of innermost ring, ring
1, is divisible by 8. If the number of pins in ring 1 is 8N ,
we have T = 4R(2N +R� 1) and Pr = 8(N +R� 1).
The problem of routing a single-layer PGA (1LPGA)

can be de�ned as follows:

Problem 1 (1LPGA) The single-layer pin grid array
routing (1LPGA) problem is to create detailed routing

given the set of pins � and the set of pads X in such
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a way that there is no routing allowed in the chip cavity

and each pad is to be connected to one and only one pin.

1LPGA assumes j�j = jXj. 1LPGA can be solved by
�nding a pin assignment and then create a routing.

De�nition 1 A pin assignment is a one-to-one and onto

mapping � : �! X.

De�nition 2 A monotonic topological routing (MTR) is
a topological routing such that all wires w = (�rj ; p) satisfy
the following conditions:

1. Detour Condition intersect at most one cut

(�sk; �
s
k+1) for some k in all the rings s, and

2. Chip Cavity Condition does not intersect cuts

(q; q+ 1) for all q 2 X, and

3. Shortest Path Condition is shortest between pad

p and the cut on ring 1 that intersects w, i.e. the

cut (�1k; �
1
k+1) where �(�

1
k) < p < �(�1k+1). If w is a

connection between p and a pin in ring 1, then w is

the shortest path between the pad and the pin.

MTR is usually the desired routing because the wire
length is the shortest possible. It turns out that each
MTR has a unique monotonic pin assignment (MPA).

De�nition 3 A monotonic pin assignment (MPA) is a

pin assignment such that for all r, �(�ri ) > �(�rj ) if and
only if i > j.

Lemma 1 Given a monotonic pin assignment, a mono-

tonic topological routing exists.

Proof: We construct the routing as follows: Starting
with ring 1, we fanout the wires from the pad frame to
the ring using the shortest path possible. The wires are
not allowed to enter the chip cavity. If a pad is assigned
to a pin in ring 1, then make the connection. Otherwise,
place the wire (say from pad p) between the cut of ad-
jacent pins �1i and �1i+1 where �(�1i ) < p < �(�1i+1) or,
if p > �(�1i ) for all i, choose the cut (�

1
1; �

1
Pr
). Arrange

the wire order in each cut between pairs of pins in ring
1 such that, if the ordering is (�1i ; w1; w2; : : : ; wn; �

1
i+1),

then �(pinof(wi)) < �(pinof(wi+1)). Repeat the opera-
tion on ring 2, 3, : : : , R.
It is obvious that each wire w = (�ri ; p) intersects rings

1, : : : , r � 1 only once. So there is no detour. Consider
the whole ring r as a cut. The order of wires and pins on
the cut is in the same order as the wires by construction.
Therefore no wires need to cross each other so the con-
struction will not create wires that enter the chip cavity.
Finally, the shortest path from pad to ring 1 for all

wires guarantees the shortest path condition. 2

Lemma 2 Given a monotonic pin assignment, there is a

unique monotonic topological routing.

Algorithm 1 (EVENPGA)
Algorithm EVENPGA(Set of Pins �;Ordered set of pads X)

For rings r  1 to R

Stepsize k bjXj=Prc : : : (*)

Remainder q  jXj � kPr

Pin number j  1
For pads i 1 to jXj=8

ASSIGN8(X[i]; j; r)

j  j + 1
If i � (q=8)(k + 1)

Then i i+ k+ 1

Else i i+ k

Endfor

Remove all assigned pads from X

Endfor

Subroutine ASSIGN8(i; j; r)
Assign pad i to pin �rj (Sector 1)

Assign pad jXj=4� i+ 1 to pin �rPr=4�j+1 (Sector 2)

Assign pad jXj=4 + i� 1 to pin �rPr=4+j�1 (Sector 3)

Assign pad jXj=2� i+ 1 to pin �rPr=2�j+1 (Sector 4)

Assign pad jXj=2 + i� 1 to pin �rPr=2+j�1 (Sector 5)

Assign pad 3jXj=4� i+ 1 to pin �r3Pr=4�j+1 (Sector 6)

Assign pad 3jXj=4 + i� 1 to pin �r3Pr=4+j�1 (Sector 7)

Assign pad jXj � i+ 1 to pin �rPr�j+1 (Sector 8)

Fig. 2. Algorithm EVENPGA.

Proof: By contradiction. Suppose there are two MTRs
for a given MPA. Then there exists a pin �ri such that
there are two possible topological routing w1 and w2 for
the same assignment (�ri ; p). Since they are topologically
di�erent and the routing is an MTR, there exist two pins
�sj and �tk where s; t < r, such that exactly one of the
wires crosses the cut c = (�sj ; �

t
k). Assume without lost

of generality that w1 crosses the cut and �(�sj ) < �(�tk).
Since w1 crosses c, we have �(�sj ) < p < �(�tk). Also,
since w2 does not cross c, we have either p < �(�sj ) or
p > �(�tk). This is a contradiction. Hence it is impossible
to have two topological routing for an MPA. 2

Combining Lemma 1 and Lemma 2, we have:

Theorem 1 (Existence and Uniqueness) There ex-

ists a unique monotonic topological routing for any given

monotonic pin assignment.

III. Creating an MTR

Since by Theorem 1 an MPA has a unique MTR, all we
need is an algorithm that creates an MPA.
EVENPGA (Fig. 2) takes advantage of the symmetric

geometry of the package and divides it into eight sectors.
Fig. 3 shows the direction of assignment in each sector
and the dividing lines.



Algorithm 2 (MAKEMTR)
Algorithm MAKEMTR(�;X;�)
For r  1 to R

For i 1 to Pr

Route �ri to �(�ri )

Fig. 3. MAKEMTR and the assignment directions in each sector.

Since each pad is visited once, EVENPGA runs in order
O(jXj). The storage complexity is the size of the output,
i.e. O(j�j) = O(jXj).
Also note that all arithmetics are integer. All divisions

have no remainders except the line marked (*). We can
observe that the number of assigned pins is Pr in each
iteration and both jXj and q are divisible by 8.
It is straightforward to verify that EVENPGA creates

an MPA. After the assignment, we can generate the topo-
logical routing using the simple algorithm MAKEMTR
(Fig. 3).
The routing from �ri to �(�ri ) is created by the

shortest-path algorithm described by Dai, Dayan and
Staepelaere[6].
MAKEMTR is correct because the wire length is the

shortest possible for all wires. Section V.analyzed the
wire lengths of the routing created by EVENPGA. The
time complexity of MAKEMTR is O(jXjS) where S is
the time complexity of routing one wire.

IV. Uniform Wiring Distribution

An important property of EVENPGA is that it dis-
tributes the wires as uniformly as possible around the
rings. The pin assignment ordered the wiring in such a
way that no crossing is necessary. This is a major ad-
vancement over previously proposed algorithms[3, 2].
To simplify the mathematics, we assume that the pin

pitch is 1 unit distance. Let the expression next(�ri ) de-
note the pin on ring r+ 1 that is closest to �ri . Note that
next() is unde�ned for a corner pin. Similarly, prev(�ri )
denote the pin on ring r � 1 that is closest to �ri . We de-
�ne a grid cell gri to be the area bounded by the pins �ri ,
�ri+1, prev(�

r
i ) and prev(�

r
i+1). �

r
i cannot be a corner pin.

If �ri+1 is a corner pin, then the cell is de�ned by the area
bounded by �ri , �

r
i+1, �

r
i+2 and prev(�

r
i ). Intuitively, �

r
i is

at the upper left corner of gri . We de�ne the bottom cut of
a cell gri to be the cut (prev(�

r
i ); prev(�

r
i+1)), the top cut

to be (�ri ; �
r
i+1), the left side cut to be (�ri ; prev(�

r
i )) and

the right side cut to be (�ri+1; prev(�
r
i+1)). Fig. 1 shows

a pin �ri , next(�
r
i ), prev(�

r
i ) and the grid cell gri .

Now we proceed to prove that EVENPGA produces
a uniformly distributed topological routing. The follow-

Fig. 4. Top right quadrant of a PGA package.

ing lemma states that the wires are uniformly distributed
among the cuts in all the rings.

Lemma 3 For all r = 1; : : : ; R;

max
8i

(F (�ri ; �
r
i+1)) �min

8i
(F (�ri ; �

r
i+1)) � 1:

F (�ri ; �
s
j ) is the ow of the cut (�ri ; �

s
j), i.e. the number

of wires intersecting the cut.
Proof: By induction on r. For ring 1, in each iteration

of i, it is incremented by either k or k + 1. Hence the
number of wires between any two adjacent pin in ring 1
is either k � 1 or k. Therefore

max
8i

(F (�ri ; �
r
i+1))�min

8i
(F (�ri ; �

r
i+1)) � k � (k � 1) = 1:

Now assume that it is true for rings 1; 2; : : : ; r. Consider
ring r + 1. Since the pads assigned to the �rst r rings
are removed from the set X, this is exactly the problem
instance (�0; X0) where �0 = [Ri=r+1�i and X0 = X �
all assigned pads. By a similar argument as ring 1, it is
true for ring r + 1. 2

Lemma 3 show that the density along a ring is even.
Now we investigate the side ows. We start with a lemma
that relates the step sizes of adjacent rings.

Lemma 4 Let kr and kr+1 are the values of k in iteration

r and r+ 1 respectively. If R < � then 0 < kr � kr+1 < 3
where � = 1=2� N +

p
3N2 + 3N + 1=4.

Proof: The result can be derived easily by recognizing
that at iteration r, jXj = T � 4(r � 1)(N + r � 2) and
R � r. 2

Since � > N=2 and in most packages R is far less than
N , this requirement is not a strong constraint. From now
on we will assume that R always satisfy this requirement.



Fig. 5. The ows of a grid cell.

We will now derive a relationship between the step sizes
of adjacent rings. The following lemma states that the
maximum di�erence is at most 2. This is because of the
relative magnitudes of the remainder q.

Lemma 5 Let T r
i be the ow of the top cut of a cell gri

and Br
i be the ow of the bottom cut of the same cell.

Then 1 � Br
i � T r

i � 2 if R < �.

Proof: Since kr � 1 � T r
i � kr and kr�1 � 1 � Br

i �
kr�1, we have B

r
i � T r

i � kr�1 � kr + 1. By Lemma 4,
either kr�1 � kr = 1 or kr�1 � kr = 2. If kr�1 � kr = 1,
Br
i � T r

i � 2. Otherwise we have jXrj = krPr + qr and
jXr�1j = kr�1Pr�1+qr�1. We can show that qr�qr�1 > 0
if R < �.
On each ring, EVENPGA �rst make steps of k + 1 for

q=8 pins and then switch to steps of k. If qr > qr�1, we
can divide the i-loop into three regions.

Region I j � qr�1. B
r
i � T r

i = kr � kr�1 = 2.

Region II qr�1 < j � qr. B
r
i �T r

i = kr�(kr�1�1) = 1.

Region III j > qr. B
r
i �T r

i = (kr � 1)� (kr+1� 1) = 2.

The argument is similar for kr�1 � kr = 2. Hence in
any case, 1 � Br

i � T r
i � 2. 2

From Lemma 5, we can bound the di�erence of neigh-
boring side cuts. Let the ow through the left and right
side cut of the grid cell gri be Lr

i and Rr
i respectively. If

the number of pins connected to a wire in the cell is a, we
have the following equation.

Lr
i +Br

i = T r
i + Rr

i + a) Rr
i � Lr

i + a = Br
i � T r

i (1)

Fig. 5 illustrates three types of cells based on the possi-
ble ows within the cell. We only need to investigate the
change of cell type along the top center edge towards the
top right corner because the package is symmetrical.
We start with the �rst cell in ring r. Cell gr1 can be

any type. Note that Lr
1 = 0. Since Br

1 � T r
1 is at most 2,

Rr
1 = 0. a = 1 if Br

1 � T r
1 = 1 and a = 2 otherwise.

Now consider the cell gri and g
r
i+1. There are four cases.

Case I gri is Type 3 and B
r
i+1�T r

i+1 = 1. Rr
i+1�Lr

i+1 = 0
because a = 1 for a Type 3 cell. This means that gri+1
is also a Type 3 cell.

Case II gri is Type 3 and Br
i+1 � T r

i+1 = 2. Since the
left neighbor of gri+1 is Type 3 and since Lr

1 = 0
and Lr

i does not change between neighboring Type
3 cells (Case I), Lr

i+1 = 0. Since gri is Type 3, �ri+1
must be connected within gi+1r. If Rr

i+1 > 0, then
�ri+2 will not be connected because Br

i+1 � T r
i+1 �

Connection of �ri+1 = 1. It is impossible to connect
this pin in the next cell, gri+2, because the wire leaving
the right side cut will block any possible connection
in gri+2. Therefore R

r
i+1 must be 0. g

r
i+1 is a Type 2

cell.

Case III gri is Type 2. Lr
i+1 = 0 by Case II. Note that

�ri+1 is connected within gri . Therefore g
r
i+1 can only

be a Type 1 cell. Rr
i+1�Lr

i+1 = 1 if Br
i+1�T r

i+1 = 2
and Rr

i+1 � Lr
i+1 = 0 otherwise.

Case IV gri is Type 1. gri+1 must be a Type 1 cell be-
cause �ri+1 is already connected in gri . R

r
i+1�Lr

i+1 =
1 if Br

i+1 � T r
i+1 = 2 and Rr

i+1 �Lr
i+1 = 0 otherwise.

We summarize the cases into the following lemma.

Lemma 6 The right neighbor of a cell can only be of cer-

tain type.

1. The right neighbor of a Type 1 cell must be a Type 1

cell.

2. The right neighbor of a Type 3 cell can be a Type 3

cell or a Type 2 cell.

3. The right neighbor of a Type 2 cell is a Type 1 cell.

Fig. 4 shows the types of cells in the second ring. The
chain breaks at the corner cell g313. In general, if the �rst
cell in the ring is Type 1, then all the cells up to top

right corner is Type 1. If the �rst cell is Type 2, all the
cells except the �rst is Type 1. If the �rst cell is Type 3,
somewhere along the path the chain of Type 3 cells will
end with a Type 2 cell (where Br

i � T r
i = 2) and then

after the Type 2 cell everything is Type 1.
From all four cases the maximumdi�erence between Rr

i

and Lr
i is 1. Therefore we have the following lemma.

Lemma 7 The change of ow between two neighboring

side cuts is at most 1.

From the four cases we can see that only Type 1 cells
can have Rr

i �Lr
i > 0. So the maximumow on side cuts

from the top center to the top right corner is less than or
equal to the number of Type 1 cells with Br

i � T r
i = 2.

From the proof of Lemma 5, we know that Br
i � T r

i = 2
happens only in Region I and III if qr > qr�1 and in
Region II if qr�1 > qr.



If qr > qr�1, the number of cells where Br
i � T r

i = 2
is equal to qr�1 + (kr�1 � qr) < kr�1. If qr�1 > qr, the
number of cells is equal to qr�1 � qr < kr�1. Therefore
we have the following conclusion.

Lemma 8 The maximum ow of a side cut between rings

r and r + 1 is less than kr.

Now we have rather tight bounds on the cuts in the
rings and on all the side cuts. To show that EVENPGA
generates a even wiring distribution, we measure the dens-
est cuts within the grid cells along a ring. Since the cuts
within a ring has a uniform density (Lemma 3), the crit-
ical cut within a grid cell and its density is determined
by the amount of side ow. There are only two compet-
ing cuts within the cell that can be the critical cut of the
cell|the bottom cut and the diagonal cut which have the
larger ow. At the center of an edge, the side ow is 0.
The critical cut is (�r1; �

r
2). This cut is critical because at

least kr � 1 and at most kr wires intersect it. At a corner
cell, wires enter the cell from both the bottom and a side
and leaves from the top and the other side. The diagonal
cut, either (�ri ; prev(�

r
i+1)) or (�ri+1; prev(�

r
i )), become

more critical because up to 2(kr � 1) wires may intersect
it. The densities of the critical cuts of cells from the top
center to the top right corner is bounded by the density
of the critical cut of the cell at the center and that at the
corner because the amount of side ow increase mono-
tonically from center to corner. Therefore the maximum
di�erence of densities of critical cuts across the ring is the
di�erence of densities of critical cuts between a center cell
and a corner cell. The following lemma summarizes the
arguments.

Lemma 9 The critical cuts of ring r is either the bottom

cut (�r1; �
r
2) or the diagonals (�r+1

Pr=8
; prev(�r+1

Pr=8+1
)) and

(�r+1
Pr=8+1

; prev(�r+1
Pr=8

)).

The optimal wire distribution is such that the maxi-
mum di�erence of densities of the critical cuts in all the
cells among a ring is less than 1.

Theorem 2 (Even Wiring) EVENPGA generates a

topological routing such that

� = max
8i

(D(crit(gri ))) �min
8i

(D(crit(gri ))) < 1

if kr < 3 + 2
p
2.

Proof: By Lemma 9, � = jD(bottom cut) �
D(diagonal)j. The density of the bottom cut of the cell
in the center of the top edge is kr. The density of the
diagonal cut at the top right corner cell is less than or
equal to 2(kr � 1). Hence � = j2(kr � 1)=

p
2� krj. This

is less than 1 if 1 < kr < 3 + 2
p
2. 2

Since kr > kr+1, Lemma 9 implies that the critical cuts
of the whole package is on ring 1.

Fig. 6. A wire intersecting two cells between a pair of rings.

An optimally even distribution means the maximum
density around a ring is minimal. Lemma 3 showed that
the maximum di�erence of ow of an MTR created by
EVENPGA is less than or equal to 1. Since k1 = bT=8Nc,
the MTR of EVENPGA exactly equals the minimum and
maximumow requirements. Therefore we have following
conclusion.

Theorem 3 If the MTR created by EVENPGA is

routable, the maximum density of the critical cut is min-

imum if 1 < k1 < 3 + 2
p
2.

V. Wire Length Analysis

Intuitively, the wire length generated by EVENPGA is
short. MPA guarantees an MTR which means no detours
for any net. In this section, we will derive a bound for the
wire length of all nets.
First we �nd the bound on the number of side, bottom

and top cuts of the grid cells a wire may intersect. Let
�(w) be the total number of side, bottom and top cuts
of cells w intersected. Since no detouring is allowed by
the de�nition of MTR, a connection w = (�ri ; p) must
pass through exactly one cut on ring 1, 2, : : : , r � 1. So
�(w) � r � 1 for all w.
Next we will show that a wire intersects at most one

side cut between any pair of adjacent rings. To show that
this is true, we need the following lemma:

Lemma 10 A grid cell gri is always one of the three types

as shown in Fig. 5.

Proof: The proof can be derived easily be recognizing
that the connecting wire always come from the left side
cut instead from the bottom cut in Type 1 cells. 2

By Lemma 10, the wire that makes the connection in a
cell gri always partitions the cell vertically into two disjoint
parts. Hence any wire can only intersect at most one side
cut between two bottom/top cuts. Therefore a wire may
intersect two cells between a pair of adjacent rings by
intersecting a side cut (Type I Intersection) or it may



Fig. 7. 600 pin single-layer PGA and a quadrant.

intersect only one cell between a pair of adjacent rings
by not intersecting any side cut (Type II Intersection).
�(w) � 2(r � 1) where r = ringof(w). We de�ne �1(w)
to be the number of Type I intersections and �2(w) to be
the number of Type II intersections. We have �1(w) +
2�2(w) = �(w) and �1(w) + �2(w) = r � 1 where r =
ringof(w). From this result we can state the following:

Lemma 11 The wire length of a wire w within the pin

grid is less than or equal to �1(w) +
p
2�2(w).

Proof: Fig. 6 shows the wire in the cells. The maxi-
mum wire length of w is bounded by the diagonal length
which is

p
2 in Euclidean metric. Therefore if the wire

w intersects �1(w) cells orthogonally and �2(w) cells di-
agonally, the wire length of w is bounded by �1(w) +p
2�2(w)=2. 2

Since the total number of cells a wire intersect does not
exceed the number of rings beneath the pin of the wire,
0 < �1(w) < r� 1. From Lemma 11 the bounds of a wire
is r � 1 < length(w) <

p
2(r � 1).

The taxicab wiring metric[1] is de�ned as (jy+xj+ jy�
xj)=2 for a point (x; y). The length of the diagonal of a
square is the same as its side. The length of a wire inter-
secting a cell is 1 under this metric. Hence all wires con-
nected to a given ring has length r� 1. This is minimum
because the minimum number of cells a wire intersects is
also r � 1. Hence we have the following theorem.

Theorem 4 (Minimum Wire Length)

EVENPGA produces a topological routing where each wire

is of minimum length in taxicab wiring metric.

VI. Implementation and Results

Fig. 7 is a 600 pin PGA routed with EVENPGA in
the Surf environment. EVENPGA was implemented as
a router module of Surf[5]. The run-time of EVENPGA
is negligible compared to the generation of topological
routing (MAKEMTR) and enforcing design rules.

VII. Conclusion

This paper introduced MTR for PGA routing and gave
an algorithm to produce a uniformly distributed and
shortest wire length MTR. We have shown that the key
to good topological routing is a good pin assignment. The
routing can be used as a base for improvement for perfor-
mance constraints such as delay and crosstalk.
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