
Region Definition and Ordering Assignment with the Minimization of the
Number of Switchboxes

Jin-Tai Yan

Department of Computer and Information Science
National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

Abstract----In this paper, a region definition and ordering
assignment (RDAOA) algorithm on minimizing the number of
switchboxes is proposed. The time complexity of the algorithm
is proved to be in O(n) time, where n is the number of line
segments in a given floorplan graph. Finally, several
examples have been tested on the proposed algorithm and
other published algorithms, and the experimental results
show that our algorithm defines fewer switchboxes than other
algorithms.

I. INTRODUCTION

Consider a given building block placement shown in
Fig. 1 and suppose that the regions A, B, C, and D are all
to be defined as channels. As the terminals in region B are
not fixed, region A must be routed before region B. For the
same reason, region B must be routed before region C,
region C must be routed before region D, and region D must
be routed before region A. The iterative phenomenon of the
precedence relations of regions A, B, C and D will
construct a channel precedence cycle. The cyclic constraint
is named a cyclic channel precedence constraint[1].
Clearly, if a building block placement has some cyclic
channel precedence constraints, the routing space will be
not defined into only channels and the placement will be a
nonslicing placement. For a nonslicing placement, the
definition of switchboxes or L-shaped channels is generally
introduced to release these cyclic channel constraints and
guarantees a safe routing ordering in the routing phase.

For region definition and ordering assignment, the
problem of breaking cyclic channel precedence constraints
in a building block placement has been extensively studied

for many years. Various approaches have been proposed and
discussed in previous published papers. First, Otten[2]
restricts the acceptable placements of slicing structures in
order to avoid these cyclic channel precedence constraints.
Hence, it is sure that no cyclic channel precedence
constraint is in a building block placement. On the other
hand, a building block placement may be modified to avoid
these cyclic channel precedence constraints by converting
a nonslicing structure into a slicing structure. For example,
Chiba[3] perturbs the placement to convert a nonslicing
structure into a slicing structure, and Kimura[4] shrinks the
placed modules to perform the same conversion. However,
instead of breaking the cyclic channel precedence
constraints in region definition and ordering assignment,
these restricted and modified techniques only change the
nonslicing structure into the slicing structure for a building
block placement. In recent years, the problem of breaking
cyclic channel precedence constraints have been really
solved by introducing the definition of switchboxes[5-7] or
by combining straight channels into L-shaped channels[1].
In general, for a building block placement, the number of
switchboxes is fewer than the number of L-shaped channels.
Therefore, the definition of switchboxes is always applied
to release all the cyclic channel precedence constraints in
a building block placement.

Since the definition of switchboxes releases all the
cycles in a channel precedence graph and further yields a
safe routing ordering, the routing space will be fully defined
into channels and switchboxes. Consider a cyclic channel
precedence constraint, we can refer again to the placement
shown in Fig. 1. Firstly, the width of region A can be
estimated by the position of pins and local connection in
region A, and the positions of the floating pins between
region A and B are fixed by the crossing distribution of one
"T" type junction[8]. Then region B, region C and region D
can now be sequentially routed as channels in that order.
Finally, region A is routed as a switchbox with a fixed
width and fixed terminals on three sides. Hence, the cyclic
channel precedence constraint will be released by
introducing the definition of a switchbox. For the same
reason, all the cyclic channel precedence constraints in a
building block placement will be released by introducing
the definition of some switchboxes. However, from the
viewpoint of detailed routing, the width of a switchbox in
region definition is fixed and switchbox routing is not
guaranteed. In addition, it is well known that switchbox
routing is more difficult than channel routing. Due to the
consideration of routing success in the routing phase, it is

important for us to minimize the number of switchboxes in
the definition of channels and switchboxes.

To our knowledge, only three algorithms are proposed
to minimize the number of switchboxes in region definition
and ordering assignment. First, a greedy approach[5]
generates the definition of a switchbox whenever a cyclic
channel precedence constraint is detected, and always
generates the definition of unnecessary switchboxes for a
complicated building block placement. Furthermore, Sur-
Kolay and Bhattacharya[6] propose a heuristic algorithm
based on a clique cover-table approach and a greedy
approach to discuss the cycle structure of channel graphs in
nonslicible floorplans. In this approach, the definition of
unnecessary switchboxes for a complicated building block
placement is also generated. Finally, Cai and Wong[7]
propose a graph-based algorithm to find a feedback vertex
set in a channel precedence graph by the transformation
between a reduced digraph and an intersection graph, and
obtain significant improvement on the number of
switchboxes. However, the time complexity of the
algorithm is in O(n3) time.

II. PRELIMINARIES

Basically, a floorplan graph only consists of horizontal
and vertical line segments. In general, each horizontal or
vertical line segment in a floorplan graph will be
represented as one channel. As two rows of terminals
located on a channel are fixed, the channel will be routed
successfully by a channel router. Hence, for one "T" type
junction in a floorplan graph, the base channel of the "T"
type junction must be routed before the top channel of that
according to the specification of channel routing. Based on
the precedence relation in one "T" type junction, we define
a channel precedence graph from a floorplan graph as
follows :
Definition 1 : For a given floorplan graph, F, a channel
precedence graph G(F) = (V, A) is a directed graph defined
as follows : Each line segment in the floorplan graph is
represented as one vertex of V. Each directed edge (u, v) is
in A if and only if the two line segments corresponding to u
and v form one "T" type junction in the floorplan graph, and
the one corresponding to u is the base of the "T" type
junction.

In Fig. 2(a), the floorplan graph for a building block
placement is shown, where vi denotes the i-th vertical line

segment from the left, and the hj denotes the j-th horizontal
line segment from the top. The channel precedence graph G
of Fig. 2(a) is illustrated in Fig. 2(b), where V is { v1, v2,
v3, v4, v5, v6, h1, h2, h3, h4, h5 } and A is { (v1, h1), (v2, h2),
(v3, h2), (v3, h4), (v4, h3), (v5, h3), (v6, h5), (h1, v2), (h2,
v1), (h2, v5), (h3, v3), (h3, v6), (h4, v1), (h4, v4), (h5, v4) }.

Due to the geometrical properties in a floorplan graph,
the generated channel precedence graph has several
available graphical properties to help solve the RDAOA
problem of minimizing the number of switchboxes.
Lemma 1 : Let G(V, A) be a channel precedence graph, G
has the following graphical properties :

(1) Planar.
(2) Bipartite.
(3) Maximum out-degree is equal to 2.
(4) If |V| ≥ 4, then there are at least four vertices whose

out-degree is not more than 1.
(5) The number of edges |A| is at most 2n - 4, where n

is the number of vertices.
From the viewpoint of a channel precedence graph, if a

channel precedence graph is cyclic, a set of vertices will
be removed from the graph to generate a new acyclic
channel precedence graph. Clearly, the set of removed
vertices in a channel precedence graph will correspond to
the definition of switchboxes in a mapped building block
placement. As the set of removed vertices is defined as
switchboxes, all the cyclic channel precedence constraints
in the mapped building block placement will be fully
released by the definition of switchboxes. Furthermore, the
vertices in the remaining acyclic channel precedence graph
will be only defined as channels. Finally, a safe routing
ordering of these channels will be assigned by a topological
sorting, and the ordering of the defined switchboxes will be
further assigned randomly after all of the defined channels.

Therefore, the RDAOA problem of minimizing the
number of switchboxes in a building block placement will
correspond to the problem of minimizing the number of the
set of removed vertices in a generated channel precedence
graph. For a channel precedence graph, the problem of
minimizing the number of the set of removed vertices is
defined as the MFVS problem.
Definition 2 : A feedback vertex set S of a directed graph
G = (V, A) is a subset of V. The vertex removal from G
results in an acyclic directed graph. A minimum feedback
vertex set Smin is a feedback vertex set with minimum
cardinality.

It is well known that the minimum feedback vertex set
(MFVS) problem[9] remains NP-hard for a channel
precedence graph. Since the MFVS problem is to remove a
minimal set of vertices to break all the cycles in a channel
precedence graph, it will be important for the development
of a heuristic algorithm to study the characterization of a
channel precedence cycle in a channel precedence graph.
According to the construction of a floorplan graph, some
graphical properties of a channel precedence cycle are
further described.
Lemma 2 : For a channel precedence graph, three graphical
properties of a channel precedence cycle are as follows :

(1). The length is even.
(2). The length of a minimal cycle is 4.

(3). All vertices are in at most four minimal cycles at
the same time.

In general, the cycles in a channel precedence graph
are divided into the minimal cycles whose length is 4 and
the long cycles whose length is more than 4. According to
the physical structure of a floorplan graph, it may be
assumed that most of the cycles in a channel precedence
graph are minimal cycles. Therefore, it is important for the
MFVS problem to break all the minimal cycles in a
channel precedence graph. The MFVS problem in a
channel precedence graph will be solved by the minimal-
cycle phase and the long-cycle phase[6]. In the minimal-
cycle phase, all of the minimal cycles and most of long
cycles in the channel precedence graph are broken by
removing a minimal of vertices to be defined as
switchboxes. Finally, the remaining long cycles are broken
by an iterative greedy approach in the long-cycle phase.

Since the minimal-cycle phase is important for the
MFVS problem, some available graphs need to be further
defined for the minimal-cycle phase. First, a weighted
channel precedence graph is established to indicate cyclic
information by assigning weight onto the vertices in a
channel precedence graph.
Definition 3 : A weighted channel precedence graph G' =
(V', A') is a channel precedence graph with weight
assigned to V'. For each vertex u in V', a weight value w(u)
is assigned onto the vertex u, where w(u) is the number of
the minimal cycles in which u is contained.

In order to define a set of vertices in a channel
precedence graph as switchboxes in the minimal-cycle
phase, some vertices in a weighted channel precedence
graph are of no use. Furthermore, a cyclic channel
precedence graph is further established to simplify the size
of the weight channel precedence graph by removing the
vertices which are not in any minimal cycle.
Definition 4 : A cyclic channel precedence graph G* =
(V*, A*) is a subgraph of a weighted channel precedence
graph by removing the vertices which are not in any
minimal cycle, where V* is a subset of V, and A* is a
subset of A.

Fig. 3(a) shows a weighted channel precedence graph
of Fig. 2(b), and a cyclic channel precedence graph of Fig.
3(a) is shown in Fig. 3(b). In Fig. 3(b), four minimal cycles

{ h1, v2, h2, v1 } { h2, v5, h3, v3 }, { h3, v4, h4, v3 } and { h3,
v6, h5, v4 } are in the cyclic channel precedence graph.

Furthermore, by Lemma 2, all vertices in a channel
precedence graph are in at most four minimal cycles at the
same time. For the same reason, all vertices in a cyclic
channel precedence graph are in at least one minimal cycle
and in at most four minimal cycles at the same time.
Therefore, one vertex in a cyclic channel precedence graph
will be contained in one minimal cycle, two minimal
cycles, three minimal cycles or four minimal cycles
simultaneously. A k-cycle pattern in a cyclic channel
precedence graph will be defined to optimally find a
minimal set of vertices to be defined as switchboxes in the
minimal-cycle phase.
Definition 5 : A k-cycle pattern is a connected subgraph of
a cyclic channel precedence graph and contains k
connected minimal cycles. The weight of at least one
common vertex in the k-cycle pattern is exactly k.

Clearly, only 1-cycle, 2-cycle, 3-cycle and 4-cycle
patterns will be found in a cyclic channel precedence
graph. All of the possible k-cycle patterns are shown in Fig.
4. For the cyclic channel precedence graph in Fig. 3(b), it
covers one 2-cycle pattern and one 3-cycle pattern. The 2-
cycle pattern is formed by two minimal cycles { h1, v2, h2,
v1 } and { h2, v5, h3, v3 }. The other 3-cycle pattern is
formed by three minimal cycles { h2, v5, h3, v3 }, { h3,
v4, h4, v3 } and { h3, v6, h5, v4 }.

According to the definition of a k-cycle pattern, all of
the minimal cycles in a k-cycle pattern will be broken by
removing one common vertex. Hence, a k-cycle pattern will
be viewed as a processed unit in the minimal-cycle phase.
For any pair of k-cycle patterns in a cyclic channel
precedence graph, the intersection relation will be set by
sharing at least one minimal cycle. Here, a k-cycle
intersection graph is further established by modeling the

intersection relation between any pair of adjacent k-cycle
patterns.
Definition 6 : For a cyclic channel precedence graph, a k-
cycle intersection graph Gk-cycle = (Vk-cycle , Ek-cycle) is an
undirected graph, where Vk-cycle represents all of the k-cycle
patterns in the cyclic channel precedence graph, and Ek-cycle
represents the intersection relations of all pairs of adjacent
k-cycle patterns.
Lemma 3 : For a floorplan graph, the number of defined
switchboxes in the minimal-cycle phase is at most the
number of vertices in its k-cycle intersection graph.

For a k-cycle intersection graph, each vertex represents
a k-cycle pattern. Hence, the vertex set is further divided
into the independent set and the dependent set. For an
independent vertex, the mapped k-cycle pattern will be
independently broken in the minimal-cycle phase. On the
other hand, for a dependent vertex, the mapped k-cycle
pattern will not be independently broken in the minimal-
cycle phase. Here, the definition of an independent vertex
in a k-cycle intersection graph will be applied to define
necessary switchboxes for its related building block
placement. Furthermore, according to the construction of a
k-cycle intersection graph, some graphical properties are
further described.
Definition 7 : For one vertex in a k-cycle intersection
graph, the vertex represents a k-cycle pattern. If there exists
any minimal cycle only in the k-cycle pattern, the vertex
will be defined as an independent vertex. On the other
hand, if all the minimal cycles in the k-cycle pattern are
fully covered by the other k-cycle patterns, the vertex will
be defined as a dependent vertex.
Lemma 4 : For a k-cycle intersection graph, some graphical
properties are as follows :

(1) Planar.
(2) The intersection of two k-cycle patterns has at most

two minimal cycles.
(3) The degree of at least one vertex is less than 3.
(4) One k-cycle pattern is not fully covered in the other

k-cycle pattern.
(5) Any vertex with degree 1 is an independent vertex.

In Fig. 5(a), the floorplan graph of a building block
placement is illustrated and all the k-cycle patterns are
labeled by circles. Furthermore, Fig. 5(b) shows and
explains the related k-cycle intersection graph for the
floorplan graph. For the k-cycle intersection graph, it is
clear that vertex 1, 3 and 6 are independent vertices and
the other vertices are dependent vertices.

III. REGION DEFINITION AND ORDERING ASSIGNMENT

As mentioned above, the RDAOA problem of
minimizing the number of switchboxes in a building block
placement will correspond to the MFVS problem for a
channel precedence graph. Based on the solution of the
MFVS problem for a channel precedence graph, an
efficient RDAOA algorithm for minimizing the number of
switchboxes is proposed. Basically, the solution of the
MFVS problem for a channel precedence graph is obtained
by the minimal-cycle phase and the long-cycle phase.

In the minimal-cycle phase, a channel precedence
graph will be transformed into a k-cycle intersection graph
in O(n) time, where n is the number of vertices in a
channel precedence graph. In the k-cycle intersection
graph, each vertex represents one k-cycle pattern. As one
vertex in the k-cycle intersection graph is selected, all the
minimal cycles in the related k-cycle pattern will be broken
by removing one common vertex to be defined as a
switchbox. Hence, by breaking these selected the k-cycle
patterns, all the minimal cycles in a channel precedence
graph will be broken by removing a minimal set of vertices
to be defined as switchboxes.

However, based on the physical structure of a floorplan
graph, it is clear that some long cycles share vertices with
minimal cycles. Furthermore, it is desirable that most of the
long cycles can be broken at the same time in the minimal-
cycle phase. Hence, in addition to the vertex weight, the
second heuristic in-degree will be introduced to break one
selected k-cycle pattern, that is, if the selected k-cycle
pattern has at least two common vertices, one common
vertex with larger in-degree will be removed to break the k-
cycle pattern. As a result, all the minimal cycles and most
of the long cycles in a channel precedence graph will be
broken at the same time in the minimal-cycle phase, and
the minimal-cycle phase will be solved by the following
Minimal_Cycle algorithm.

In the algorithm, the procedure of removing a minimal
set of vertices to break all the minimal cycles and most of
long cycles is not stopped until the k-cycle intersection
graph is empty. Basically, the operations in a loop
statement are divided into four main steps : (1) Vertex
Selection, (2) Vertex Removal, (3) Vertex Deletion and
(4) Vertex Search. According to the description of the main
steps, the Minimal_Cycle algorithm will be shown in Fig. 6.

Algorithm Minimal_Cycle
Input : a channel precedence graph;

Begin
Call the CPG-CCPG algorithm;
Call the CPG-KIG algorithm;
While (KIG is not empty)

Begin
{ Vertex Selection }
If (there exists any independent vertex u in KIG)

Retrieve the vertex u ;
Else

Retrieve any vertex u with degree 2;
Endif
{ Vertex Removal }
Select the vertex v with maximal (vertex-weight, in-degree) in

the related k-cycle pattern P(u);
Mark the broken minimal cycles in the cyclic channel

precedence graph;

Smin = Smin ∪ { v };
{ Vertex Deletion }
Modify the k-cycle intersection graph by deleting the vertices

which connect the vertex u and whose unbroken
minimal cycles are fully covered by one adjacent
k-cycle pattern;

{ Vertex Search }
Find new independent vertices from adjacent dependent

vertices;
End

Return the vertex set, Smin;
End

Fig. 6 The Minimal_Cycle algorithm.

On the other hand, the remaining long cycles in the
channel precedence graph will be broken by an iterative
channel/switchbox definition and ordering assignment in the
long-cycle phase. If there exists one vertex with in-degree
0, the vertex will be removed from the channel precedence
graph, defined as a channel and assigned a routing order. If
there exists one vertex with out-degree 0, the vertex will be
removed from the channel precedence graph, defined as a
channel and pushed into a stack. Based on the physical
structure of a floorplan graph, the remaining long cycles
may share vertices each other. In order to minimize the
number of switchboxes in the long-cycle phase, the first
heuristic out-degree and the second heuristic in-degree are
applied to break the remaining long cycles. Until there
exists no vertex with in-degree 0 or out-degree 0, one vertex
with the largest (out-degree, in-degree) will be removed
from the channel precedence graph and defined as a
switchbox. As the channel precedence graph is empty, the
channels in the stack will be popped and assigned a routing
order. Finally, all the vertices defined as switchboxes will
be randomly assigned routing orders. According to the
description of the algorithm, the RDAOA algorithm is
shown in Fig. 7.

Algorithm RDAOA
Input : a floorplan graph;
Begin

ORDER = 1; Smin = ∅ ; Stack = ∅ ;
Call the FG-CPG algorithm;
{ The minimal-cycle phase }
Call the Minimal_Cycle algorithm and Return a minimal set of vertex for the

minimal cycles, Smin;
Define all of the vertex in S min as switchboxes;
Assign the crossing pins for the switchboxes;
Construct a new channel precedence graph by deleting S min from the original

channel precedence graph;
{ The long-cycle phase }
While (the channel precedence graph is not empty)

Begin
While (there exists any vertex w with in-degree 0 in the channel

precedence graph)
Begin

Define the vertex w as a channel;
Assign the order of the channel as ORDER;
ORDER = ORDER +1;

Remove the vertex w from the graph, and change the in-degree value of
the related vertices;

End
While (there exists any vertex w with out-degree 0 in the channel

precedence graph)
Begin

Define the vertex w as a channel;
Push the vertex w into Stack;
Remove the vertex w from the graph, and change the out-degree value

of the related vertices;
End

Retrieve the vertex w with the largest (out-degree, in-degree);
Define the vertex w as a switchbox;

Smin = Smin ∪ { w };
Assign the crossing pins for the switchbox;
Remove the vertex w from the graph, and change the in-degree value of the

related vertices;
End

While (Stack is not empty)
Begin

Pop one vertex w in Stack;
Assign the order of the channel as ORDER;
ORDER = ORDER + 1;

End
While (S min is not empty)

Begin
Retrieve any vertex w in S min;
Assign the order of the switchbox as ORDER;
ORDER = ORDER + 1;

End
End

Fig. 7 The RDAOA algorithm.

Theorem 1 : The time complexity of the RDAOA algorithm
is in O(n) time, where n is the number of line segments in a
floorplan graph.

IV. EXPERIMENTAL RESULTS

Our proposed algorithm has been implemented using
standard C language and run on a SUN workstation under
the Berkeley 4.2 UNIX operating system. Thirty examples
including example Ex6 in the Cai and Wong's paper[7] are
applied to measure the number of switchboxes in the
RDAOA problem. On the other hand, an exhaustive
algorithm based on the detection of all the cycles in a
channel precedence graph and the exhaustive search of the
clique cover problem is implemented to obtain the optimal
solution of the number of switchboxes for these tested
examples. Based on the optimal results of the exhaustive
algorithm, a greedy algorithm[5] and the three versions,
namely first, last, and arbitrary, of the Cai and Wong's
algorithm[7] are also implemented to compare the number
of switchboxes in the RDAOA problem. In the experimental
results, the results of the greedy algorithm and the best
result on these three versions of the Cai and Wong's
algorithm are applied to compare the number of
switchboxes with the results of our proposed algorithm.

In Table I, the experimental results of twelve
representative examples with different sizes will be shown
and compared on the exhaustive algorithm, the greedy
algorithm, the Cai and Wong's algorithm and our proposed
algorithm. From the viewpoint of the numerical results, the
contribution of our proposed algorithm is not only in the
theoretical reduction of time complexity but also in the
number of switchboxes for the tested examples.

First, as mentioned above, the time complexity of our
proposed algorithm in the RDAOA problem of minimizing
the number of switchboxes is reduced from O(n3) described
in the Cai and Wong’s paper to O(n) time. Second, an

optimal ratio γoptimal is further applied to measure optimal
degree of a proposed algorithm for any tested example such
as

γoptimal(Alg, Ex) =
Nopt (Ex)

N(Alg, Ex)
 x 100%,

where Noptimal(Ex) is the number of switchboxes by an
exhaustive algorithm for the example Ex, and N(Alg, Ex) is
the number of switchboxes by a proposed algorithm Alg for
the example Ex. The definition of the optimal ratio is
applied to the greedy algorithm the Cai and Wong's
algorithm and our proposed algorithm for all the tested
examples. It is clear that our proposed RDAOA algorithm
attains 100% optimal ratio for all the tested examples. The
fact proves that the proposed algorithm is efficient for
minimizing the number of switchboxes in the RDAOA
problem.

For example 39x43, it contains 39 vertical line
segments and 43 horizontal line segments in a floorplan
graph, and these line segments will construct 37 minimal
cycles and 9 long cycles in the floorplan graph. As a result,
37 minimal cycles and 9 long cycles will be broken in the
minimal-cycle phase and 0 long cycle will be broken in the
long-cycle phase. By running our algorithm, 14 switchboxes
are defined to break all of the minimal cycles for the
RDAOA problem and the experimental result is shown in
Fig. 8. Furthermore, for example Ex6 in the Cai and Wong's
paper[7], the experimental result is obtained by our
algorithm and shown in Fig. 9. The floorplan graph of
example Ex6 contains 71 vertical line segments and 65
horizontal line segments. By the detection of an exhaustive
search, the floorplan graph contains 35 minimal cycles and
12 long cycles. As a result, 24 switchboxes indicated by
thick lines and 112 channels are defined to break all the
minimal cycles and the long cycles.

REFERENCES

[1] W. M. Dai, T. Asano and E. S. Kuh, "Routing Region
Definition and Ordering Scheme for Building-Block
Layout" IEEE Trans. on Computer Aided Design, vol.
4, pp189-197, 1985.

[2] R. H. J. M. Otten, "Automatic Floorplan Design" Proc.
19th Design Automation Conference, pp261-267, 1982.

[3] T. Chiba, N. Okuda, T. Kambe, I. Nishioka, and S.
Kimura, "SHARPS : A Hierarchical Layout System for
VLSI" in Proc. 18th Design Automation Conference,
pp. 820-827,1981.

[4] S. Kimura, N. Kubo, T. Chiba, and I. Nishioka, "An
Automatic Routing Scheme for General Cell LSI",
IEEE Trans. on Computer Aided Design, vol.2, pp.285-
292, 1983.

[5] B. P. Preas and W. M. vanCleemput, "Routing
Algorithm for Hierarchical IC Layout," Proc.
International Symposium Circuits and Systems, pp.
482-485, 1979.

[6] S. Sur-Kolay and B. B. Bhattacharya, "The Cycle
Structure of Channel Graphs in Nonslicible Floorplans
and A Unified Algorithm for Feasible Routing Order,"
International Conference on Computer Design, pp.
524-527, 1991.

[7] Y. Cai and D. F. Wong, "Channel/Switchbox
Definition for VLSI Building-Block Layout," IEEE
Trans. on Computer Aided Design, vol. 10, pp. 1485-
1493, 1991.

[8] J. T. Yan and P. Y. Hsiao, "Routability Crossing
Distribution and Floating Terminal Assignment for T-
type Junction Region," Fourth Great Lakes
Symposium on VLSI, pp.162-165, 1994.

[9] M. R. Garey and D. S. Johnson, Computer and
Intractability : A Guide to The Theory of NP-
Completeness. New York, NY : W.H. Freeman, 1979.

Fig. 1 Cyclic channel precedence constraint.

A

BC

D

Fig. 2 (a) A given floorplan graph.
 (b) A channel precedence graph.

h1

h2

h3

h4

h5

v6

v1

v2

v3

v4

v5

h1

h2

v1

h3

v4

v5

h4

v2

v6v3

h5

(a) (b)

Fig. 3 (a) A weighted channel precedence graph.
 (b) A cyclic channel precedence graph.

h1 v2

h2

v1

v5

v3 h3

v4h4

v6

h5

1 1

1

1

1

12

2

2

1

3

h1 v2

h2

v1

v5

v3 h3

v4h4

v6

h5

1 1

1

1

1

12

2

2

1

3

(a) (b)

(a) 1-cycle pattern (b) 2-cycle pattern

(c) 3-cycle pattern

(d) 4-cycle pattern

Fig.4 All possible k-cycle patterns.

1 2

3

4
5

6

7

8

9

10

(a)

2

1

3

4

5
9

10

11

6

7
8

(b)

Fig. 5 (a) A given floorplan graph.
 (b) A k-cycle intersection graph.

C1

C2

C10

C4

C3
C5

C6 C7

C11
C12

C13

C8

C16

C17
C18

C14

C19

C15

C9

11

Circle 1 => { C1, C2, C10 }

Circle 2 => { C2, C4, C10, C11 }

Circle 3 => { C3, C4, C5, C6 }

Circle 4 => { C4, C6, C11, C12 }

Circle 5 => { C6, C7, C12, C13 }

Circle 6 => { C10, C11, C16, C17 }

Circle 10 => { C14, C15 }

Circle 9 => { C7, C8, C13, C14 }

Circle 8 => { C12, C13, C18, C19 }

Circle 7 => { C17, C18 }

12

13

13

12

Circle 12 => { C15, C19 }

Circle 11 => { C8, C9 }

Circle 13 => { C5, C9 }

Fig.9 An example 71 x 65 (Ex6)

 Example
(#V x #H)

6 x 6

13 x 12

16 x 18

23 x 21

37 x 40

39 x 43

51 x 49

71 x 65

 # long
 cycle

0

1

 0

 1

 7

 9

 8

12

Exhaustive
 Search

#S

 Greedy
 Algorithm

#S

2

4

4

6

14

14

16

24

Table I The Experimental Results

Fig. 8 An example 39 x 43

20 x 24

28 x 35

32 x 42

45 x 50

 3

 4

 6

9

10

15

10 21

γoptimal

5

8

15

32

41

49

20

24

33

45

40.0%

50.0%

36.4%

40.0%

45.0%

41.7%

45.5%

43.8%

41.2%

46.7%

39.0%

49.0%

 Cai and Wong's
 Algorithm

γoptimal

2

4

4

6

15

14

17

25

9

10

16

22

 100%

 100%

 100%

 100%

 100%

 100%

93.8%

93.3%

 100%

95.5%

94.1%

96.0%

#S

 Our RDAOA
 Algorithm

γoptimal

2

4

4

6

14

14

16

24

9

10

15

21

 100%

 100%

 100%

 100%

 100%

 100%

 100%

 100%

 100%

 100%

 100%

 100%

#S

1 1

34

3

9

10

11

38

37

54

35

16

21

31

46

minimal
 cycle

Time Time Time Time

14.2m

2.1 h

1.7 h

5.2 h

8.5 h

31.3m

45.6m

1.2 h

3.7 h

0.3 s

1.5m

6.1m

 0.6 s

1.7 s

1.8 s

2.6 s

3.0 s

 0.9 s

 1.2 s

1.4 s

2.4 s

0.1 s

0.2 s

0.3 s

 0.8 s

2.3 s

2.7 s

3.5 s

4.1 s

 1.2 s

 1.6 s

1.8 s

3.1 s

0.1 s

0.2 s

0.5 s

 0.7 s

2.0 s

2.2 s

2.8 s

3.2 s

 1.0 s

 1.4 s

1.7 s

2.6 s

0.1 s

0.2 s

0.4 s

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

