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Abstract

A new approach for power analysis of microprocessors has recently
been proposed [1]. The idea is to look at the power consumption
in a microprocessor from the point of view of the actual software
executing on the processor. The basic componentof this approach is
a measurement based, instruction-level power analysis technique.
The technique allows for the development of an instruction-level
power model for the given processor, which can be used to evaluate
software in terms of the power consumption, and for exploring the
optimization of software for lower power. This paper describes
the application of this technique for a comprehensive instruction-
level power analysis of a commercial 32-bit RISC-based embedded
microcontroller. The salient results of the analysis and the basic
instruction-level power model are described. Interesting observa-
tions and insights based on the results are also presented. Such an
instruction-level power analysis can provide cues as to what opti-
mizations in the micro-architecture design of the processor would
lead to the most effective power savings in actual software applica-
tions. Wherever the results indicate such optimizations, they have
been discussed. Furthermore, ideas for low power software design,
as suggested by the results, are described in this paper as well.

1 Introduction

A very large fraction of the applications in all segments of the
electronics industry are being implemented as embedded computer
systems. The basic characteristic of these systems is the presence
of both a hardware and a software component. The hardware com-
ponent consists of application-specific circuits, while the software
componentconsists of application-specificsoftware running on ded-
icated microprocessors. The role of the software component is ac-
tually projected to grow in the future. A large number of embedded
computing applications are power critical, i.e., power constraints
form an important part of the design specification. In light of the
growing role of the software component, it is imperative to consider
the power consumption of this component when analyzing the total
system power consumption. However, most power analysis tools
available today, work at only the lower levels of the design – at
the circuit and logic level. These tools are not suited to accurately
analyze the total power consumption in a microprocessor as it exe-
cutes entire programs. These tools also requires the availability of
lower level circuit details of microprocessors, something that most
embedded system designers do not have access too. This is also
the reason why the power contribution of software and the potential
for power reduction through software modification has either been
overlooked or is not fully understood.

A recent work [1] overcomes these deficiencies by developing
a methodology that provides a means for analyzing the power con-
sumption of a given microprocessor as it executes a given program.

The idea is to use a measurement-based analysis technique for de-
veloping and validating an instruction level power model for any
given processor. Such a model can then be provided by the proces-
sor vendors for both off-the-shelf processors, as well as embedded
cores. This can then be used to evaluate embedded software, much
as a gate level power model has been used to evaluate logic designs.
The ability to evaluate software in terms of the power metric helps
in verifying if a design meets its specified power constraints. In
addition, it can also be used to search the design space in software
power optimization [2].

The initial work in this direction has been in the context of the
Intel 486DX2, a general-purpose CISC architecture. This paper
describes the application of this power analysis methodology for
the Fujitsu SPARClite MB86934, a 32-bit RISC microcontroller [5,
6, 7] targeted for embedded applications. A comprehensive power
analysis of this processor has been performed and an instruction
level power model has been developed. The salient results of the
analysis are described here. Interesting observations and insights
based on the results are also presented. The successful application
of the analysis methodology for two different processors provides
validation for the general applicability of this methodology. This is
reinforced by a recent work based on the application of this analysis
technique for a specialized embedded DSP processor [3].

2 Processor Overview

The SPARClite MB86934 is a SPARC-based microprocessor opti-
mized for use in embedded applications. A full description of the
SPARClite family and of MB86934 (referred to as the ‘934 from
here on) is available from other references [5, 6, 7]. However, some
of the features that are relevant for the remainder of this paper are
briefly mentioned below:

� Technology: 0.5 micron, 3 level metal CMOS technology.
There are three separate power pins for the on-chip phase
locked loop (PLL), internal logic, and I/O, respectively. All
power supply connections can be at 3.3V.

� On-chip floating point unit (FPU): A high-performance on-
chip FPU executes single/double precision operations.

� On-chip FIFOs: FPU instructions can get their operands
from a 32-bit FPU register file, or 6 on-chip FIFOs, which
are fed directly from main memory through DMA.

� On-chip caches: A 8K, 32-byte line, instruction cache, and
a 2K, 16-byte line, data cache. Both caches are 2-way set
associative and employ a write-through policy and a LRU
replacement algorithm. Cache entries can be locked and the
caches can also be disabled.



� Large integer register file: The integer register file consists of
136, 32-bit registers, which are organized into 8 overlapping
windows.

� Software controlled power management: A software mech-
anism is provided to disable the clocks to various functional
units in order to conserve power.

3 Experimental Method

The instruction level power analysis technique relies on the ability
to measure the average current drawn by the processor. This is
motivated by the formulas for the power and energy cost of a pro-
gram. The average power,P , consumed by a microprocessor while
running a certain program is given by: P = I � VCC , where I is
the average current, and VCC is the supply voltage. Since power is
the rate at which energy is consumed, the energy, E, consumed by
a program is given by: E = P � T , where T is the execution time
of the program. This in turn is given by: T = N � � , where N is
the number of clock cycles taken by the program, and � is the clock
period.

For the experimental setup used in this study, VCC was 3.3V
and � was 50ns, corresponding to the 20MHz system clock. Thus,
if the average current for an instruction sequence is I Amperes, and
the number of cycles it takes to execute is N , the energy cost of
the sequence is given by: E = I � VCC �N � � , which equals:
(16:5 � 10�8 � I �N) Joules. Throughout the rest of the paper,
in order to specify the energy cost of an instruction (instruction
sequence), the average current will be specified. The number of
cycles will either be explicitly specified, or will be clear from the
context.

3.1 Current Measurement

From the above discussion it is evident that to measure the energy
cost of a program, the average current drawn by the CPU during the
execution of the program has to be measured. The measurement
method employed was based on the test and measurement capabil-
ities of a commercial IC tester. The program under consideration
was first simulated on a VERILOG model of the CPU. This pro-
duces a trace file consisting of vectors that specify the exact logic
values that would appear on the pins of the CPU for each half-cycle
during the execution of the program. The tester then applies the
voltage levels specified by the vectors on each input pin of the CPU.
This recreates the same electrical environment that the CPU would
see on a real board. The current drawn by the CPU is monitored
by the tester using an internal digital ammeter. Now, the current
drawn by the CPU varies over the execution of a program, and so
the ammeter may not yield a steady visual reading. To overcome
this, the method used in the case of the 486DX2 is applied [1]. The
programs being considered are put in infinite loops. Thus, the re-
sulting current waveforms are now periodic. The ammeter averages
current over a window of time (about 100ms) for the purpose of
analog to digital conversion. If the period of the current waveform
is much smaller than this window, a stable reading is obtained.

3.2 Instruction Level Power Analysis

The above method make it feasible to measure the power cost of a
given program. By designing special programs and measuring their
power cost, it is possible to obtain the basic information needed
for an instruction level power analysis of the processor, based on

the following hypothesis. Consider a program consisting of several
instances of a certain instruction. Since the CPU is executing the
same instruction over and over again, it seems intuitive that the
entire activity in the CPU can be attributed to that instruction. The
power cost of the CPU for that program can be considered as the
basic power cost of the given instruction. In real programs there
may be other effects involving more than one instruction that can
impact the power cost, e.g., the effect of circuit state, pipeline stalls
and cache misses. By designing programs where these effects occur
repeatedly can similarly provide a way for assigning power costs to
these effects too.

This hypothesis has been validated for the Intel 486DX2. It
has also found to be applicable for the ‘934, as the subsequent
sections will show. The instruction level power model that has been
developed for the two processors has the same basic components.
The first of these is the set of base costs of instructions. The base cost
of a given instruction is obtained by creating a program consisting
of several instances of the instruction executing in a loop. The
other component of the power model is the power costs of inter-
instruction effects. The first of these is the effect of change of circuit
state between consecutive instructions. During determination of the
base costs, the same instruction is executed again and again. It can
be expected that the change in circuit state between consecutive
instructions will be less here, than for the case in which consecutive
instructions differ. The quantity circuit state overhead is introduced
to account for this effect. Given a pair of instructions, the current
for an alternating sequence of the two instructions is measured. The
difference between this current and the average of base costs of
the two instructions is defined as the circuit state overhead for the
pair. This effect is illustrated in some of the later sections and is
discussed in detail in Sections 10 and 11. The power cost of other
inter-instruction effects like pipeline stalls and cache misses can
also be obtained through appropriate experiments.

4 Power Analysis of the ‘934

In the subsequent sections, the specifics of the instruction level
power model for the ‘934 are presented. Other results that high-
light the characteristics of the power consumption, as it relates to
instructions and software are also reported. For the sake of clar-
ity, the experiments are divided into several categories, each of
which is treated in a separate section. The results include the power
costs of the important instructions, and examples that illustrate the
power model that is used for the estimation of power consumption
of instruction sequences. The power costs of external memory ac-
cesses, and the effect of the caches on the overall power cost is also
explored. Results are also provided for the impact of software con-
trolled power management on the power cost of instructions. The
salient observations and interesting insights based on the results of
each sections are also briefly discussed. One of the benefits of an
instruction-level analysis is that it provides cues as to what opti-
mizations in the micro-architecture design would lead to the most
effective power savings in actual software applications. Wherever
the results indicate such optimizations, they have been discussed.
Furthermore, ideas for low power software design, as suggested by
the results, are also described.

The following observations are valid for all experiments re-
ported in this paper. Repeated runs of an experiment at different
times resulted in only a very small variation in the observed aver-
age current values. The variation was in the range �1 mA. The
current drawn by the power pin connected to the on-chip PLL was



Table 1: Sample integer ALU instructions: caches enabled.

no. instruction register contents I1 I2
(mA) (mA)

1 or %g0,0, %l0 177 21
2 or %g0,0xfff,%l0 174.5 21
3 or %g0,%i0,%l0 (%i0=0) 177.5 21
4 or %g0,%i0,%l0 (%i0=0xfff) 173.5 21
5 add %i0,%o0,%l0 (%i0=0, %o0=0) 178 21
6 add %i0,%o0,%l0 (%i0=0, %o0=0xfff) 174 21
7 add %i0,%o0,%l0 (%i0=0xfff, %o0=0) 174 21
8 add %i0,%o0,%l0 (%i0=0xfff, %o0=0xfff) 173 21
9 add %o0,%i1,%l2 (%o0=0, %i1=0x555) 174.5 21

10 srl %i0,%o0,%l0 (%i0=0xfff, %o0=0x1) 179 21
11 srl %i0,1,%l0 (%i0=0xfff) 176 21
12 srl %i1,%o5,%g3 (%i0=0x555, %o5=1) 174.5 21
13 or %g0,%r16,%i0 (%r16=0) 178 21
14 orcc %i1,%o0,%l1 (%i1=0x555, %o0=0xaaa) 173 21
15 subx %g0,%r16,%i0 (%r16=0) 172 21
16 xor %g0,%r16,%i0 (%r16=0) 177.5 21
17 xor %g0,%r17,%i0 (%r17=0) 176 21
18 andcc %g1,0xAAA,%l0 (%g1=0x555) 179 21
19 sll %o4,0x7,%o6 (%o4=0xf0) 173.5 21
20 umul %i0,0x2,%o3 (%i0=0xaaa) 174.5 21
21 mul %g0,%r29,%r27 (%r29=0) 177 21

very small and below the measuring range of the tester. The current
drawn by the power pins connected to the internal logic and I/O
circuitry is denoted by I1 and I2, respectively. The symbol & used
in the tables below for an instruction pair i&j denotes an instruction
sequence where instructions i and j are executed alternately.

5 Integer ALU Instructions: Caches Enabled

Table 1 shows the base costs for some integer instructions. The
caches, prefetch, and write buffers are enabled. The base costs are
shown in terms of the I1 and I2 current. All the instructions shown
execute in one cycle, except entry 20, which executes in 2 cycles.

Observations and comments

Integer ALU instructions tend to have very similar costs, as shown
in the above table. They vary in the range of 170 - 180 mA, in
terms of I1 current. I2 current is mostly stable around 21 mA.
The reason for the low I2 current is that the caches are enabled,
and thus, after one iteration of the loop, the instructions are always
available in the instruction cache, and there is no traffic on the I/O
pins.

The I1 current shows a limited variation depending upon the
actual value of the data operands used. Variation due to the use of
different registers is not significant. Entries 1 and 2 show the cost
for an OR instruction for two different immediate operand values.
Entries 3 and 4 show the costs for the OR instruction when only
register operands are used, but the content of one of the registers
is different. Entries 5 to 9 show the costs for an ADD instruction
for different combinations of the operands. There seems to be a
correlation between the number of 1’s in the binary representation of
operands and the base cost – more the 1’s, lesser the cost. However,
the overall range of variation is very limited, and thus the use of
average base costs for instructions should suffice for program energy
estimation purposes. This in fact is the only option in cases where
the exact value of operands cannot be determined until runtime.

� An interesting observation leading from the above results is
that the cost of the ALU instructions doesn’t seem to depend
much on the ALU operation that is being performed. The
cost of an OR, SHIFT, ADD, or MULTIPLY all seems to
be about the same. This is somewhat counter-intuitive. For
instance, it is expected that the logic for an OR should be

Table 2: Integer ALU instructions: caches disabled vs. enabled.

disabled enabled
no. instruction register contents I1 I1

(mA) (mA)
1 or %g0,0,%l0 187.5 177
2 or %g0,0xfff,%l0 184 174.5
3 1&2 196 192
4 or %g0,%i0,%l0 (%i0=0) 188 177.5
5 or %g0,%i0,%l0 (%i0=0xfff) 184 173.5
6 4&5 192 187.5
7 srl %i0,%o0,%l0 (%i0=0xfff, %o0=0x1) 188.5 179
8 srl %i0,1,%l0 (%i0=0xfff) 184 176

much less than that for an ADD, thus leading to a variation
in the current drawn for these operations.

The reason for the similarity of the costs may have to do with
the way ALUs are traditionally designed. All the different
ALU sub-functions are fed by a common bank of inputs, and
the outputs of the appropriate module are selected by a multi-
plexor structure. Now, in any given cycle, the results of only
one sub-function are needed. Thus, the circuit activity in the
other sub-functions is a waste of power. The design can be
modified for low power by extending the principles of auto-
matic power management. If the inputs of the sub-functions
that are not needed are prevented from switching, the power
consumed in these sub-functions can be saved. This obser-
vation motivates the concept of guarded evaluation, which
has been explored in detail in another reference [4].

6 Integer ALU Instructions: Caches Disabled

Table 2 shows some of the same instructions as the previous
table. However, in this case, the on-chip caches have been disabled.
Prefetch and write buffers are also disabled. These modules can be
enabledor disabled by writing into a specific system control register.
The number of memory wait states is zero. Column 4 shows I1
current in this case. The I2 current was 134 mA for all entries.
Column 5 shows the I1 current for the case when the caches are
enabled. The I2 current in this case was 21 mA.

Observations and comments

Since the instruction cache is disabled, every instruction access goes
to the external I/O pins. The I2 current is therefore higher than when
caches are enabled. The I1 current (internal logic current) is also
about 10 mA higher. Entries 3 and 6 show what happens when
different instructions are executed together. This will be discussed
in greater detail in Section 10.

In terms of overall current, disabling the instruction cache leads
to a total CPU current increase of about 123 (= 10 + (134-21))mA,
i.e., about 64%. However, when the cache is disabled in the ‘934,
every instruction fetch takes two cycles, even for a zero wait state
system. Thus, in terms of energy, disabling the instruction cache
leads to at least about a 124% increase in the energy consumption.
This points to two things:

� Accessing the cache is much more energy efficient than ac-
cessing external memory. Thus, attempts to increase the
cache hit rate through software modifications will be very
beneficial. It is further indicated that attempts to increase the
hit rate through architectural transformations may also help
reduce the overall energy consumption.

� In certain embedded applications, the designer may choose
to disable the caches. This is usually done to improve the



Table 3: Load and store instructions: caches enabled and locked.
no. instruction register contents I1 I2

(mA) (mA)
1 ld [0x0],%i0 (%i0=0) 191.5 21
2 ld [0xffc],%i0 (%i0=0) 187 21
3 ld [%l0],%i0 (%i0=0, %l0=0) 192 21
4 ld [%l0],%i0 (%i0=0xfff, %l0=0) 189.5 21
5 ld [%l0],%i0 (%i0=0xffffff, %l0=0) 187.5 21
6 ld [%l0],%i0 (%i0=0xffffffff, %l0=0) 185 21
7 ld [%l0],%i0 (%i0=0, %l0=0xffc) 191 21
8 ld [%l0],%i0 (%i0=0, %l0=0xfffffc) 188 21
9 ld [%l0],%i0 (%i0=0, %l0=0xfffffffc) 185 21

10 st %i0,[0x0] (%i0=0) 173 21
11 st %i0,[0xffc] (%i0=0) 169 21
12 st %i0,[%l0] (%i0=0, %l0=0) 175 21
13 st %i0,[%l0] (%i0=0xfff, %l0=0) 173.5 21
14 st %i0,[%l0] (%i0=0, %l0=0xffc) 172 21
15 ldub [%l0],%i5 (%i5=0xaaa, %l0=0) 192.5 21
16 3&4 206 21
17 3&5 213 21
18 3&6 216 21
19 3&7 202.5 21
20 3&8 207 21
21 3&9 211 21
22 12&13 185 21
23 12&14 183 21

performance predictability for real-time systems. However,
this will lead to a penalty in terms of the system energy
consumption, and thus, the battery life. This fact has to be
understood and weighed in, when deciding on whether the
caches should be disabled.

7 Load and Store Instructions: Caches En-
abled and Locked

Table 3 shows the cost of some instructions that reference mem-
ory. Since the ‘934 is a RISC, load-store machine, the only instruc-
tions that explicitly reference memory are the loads and the stores.
The above results are for the specific case when the cachesare active
and the entries in the data cache are locked. This implies that every
data access is a cache hit. In addition, since the cache entries are
locked, the store (write) instructions also don’t go out to external
memory. Note that the ‘934 has a write-through cache, and thus in
the normal case, each data write also goes out to the external bus.
Since there is no traffic on the I/O pins, the I2 current is low. Each
instruction also executes in one cycle in this case.

Observations and comments

Entries 1 and 2 are direct loads and entries 10 and 11 are direct stores.
The rest of the instructions utilize the indirect addressing modes.
The results indicate that there is not much difference between these
two addressing modes, in terms of base current. Entries 3 to 6
show the variation in the cost of a load for a fixed address but
differing data operands. Entries 3, 7, 8, and 9 show the variation
for a fixed data operand but differing addresses. Entries 12, 13, and
12, 14, show the corresponding variation in the case of stores. The
general trend points to the correlation between base cost and the
number of 1’s in the binary representation of the data operand and
the memory address. More the 1’s, lower the cost. The variation in
the costs, though, is limited. Entries 16 to 23 show what happens
when different instructions execute together. The data and address
registers used for each instruction in the pair were different, but
the register contents were the same as shown in the individual
instruction entries. Entry 16 is for the case when the instructions
in entry 3 and 4 execute alternately. The current is higher than the
average of the two base costs. This is due to the effect of circuit

state overhead. 12 data operand bits flip between entries 3 and 4.
The entries 17 and 18 show the results for greater data flips. Entries
19 to 20 show the results when the address bits flip between adjacent
instructions. The results indicate a positive correlation between the
number of bit flips, and the increased effect of circuit state.

The results also lead to the following interesting observations:

� A comparison between Tables 2 and 4 shows that cache ac-
cesses aren’t much more costly than register accesses. Cache
reads are about 10 mA more costly, and cache writes are
about the same cost as register accesses. Since both cache
and register accesses take one cycle, the energy comparison
shows the same relation. This observation is in stark contrast
to what was observed in the case of the Intel 486DX2, where
cache accesseswere much more costly than register accesses.
The reason for the similarity in the cost of cache accessesand
register accesses in the ‘934 is most likely due to the large
size of its register file. The ‘934 is a RISC, load-store ar-
chitecture, and it is characteristic for this architectural style
to use a large number of registers. The register file has 136
registers. In addition, it is multiported, and is windowed. In
contrast the 486DX2 has a simple register file with only 8
registers.

This observation illustrates an interesting CISC vs. RISC
trade-off with regards to power. On one hand, the availability
of a larger number of registers can help reduce the use of
memory operands, leading to power reductions. But on the
other hand, the larger register file causes each register access
itself to be costlier.

� The data also points to the fact that micro-architectural or
circuit transformations to optimize the register file for low
power, will be very beneficial in terms of overall power
reductions. The load-store design of the ‘934 involves very
heavy usage of the registers, and a lower power cost of
accessing registers will translate into power reductions for
all programs.

� It should be noted that the use of memory operands does
have a high cost even in the ‘934, due to the possibility of
cache misses. Also, if the cache is unlocked, stores will
incur additional cost in terms of I2 current (as shown in the
next section), and memory system current. Thus, the use
of memory operands should certainly be avoided. This also
points out that the cache locking feature should be exploited
as far as possible, for applications where energy consumption
is a design constraint.

8 Store Instructions: Caches Enabled and Un-
locked

Table 4 shows the costs of some store instructions when the
caches are enabled but are unlocked. Since the data cache is write-
through, all the stores also reference the external main-memory.
The number of memory wait states is zero. However, the design of
the ‘934 imposes an extra cycle for every bus transaction. During
this cycle the bus is idle.

Observations and comments

Most typical applications do not lock the data cache. Thus, the
stores in these applications will go out to the external bus, leading



Table 4: Store instructions: caches enabled and unlocked.
no. instruction register contents I1 I2

(mA) (mA)
1 st %i0,[%l0] (%i0=0, %l0=0) 198 148
2 st %i0,[%l0] (%i0=0, %l0=0xffc) 191 115
3 st %i0,[%l0] (%i0=0, %l0=0xfffffc) 185 71
4 st %i0,[%l0] (%i0=0, %l0=0xfffffffc) 181.5 46
5 1&2 198 137
6 1&3 199 116
7 1&4 200 106
8 st %i0,[%l0] (%i0=0xfff, %l0=0) 193 148
9 st %i0,[%l0] (%i0=0xffffff, %l0=0) 191 150

10 st %i0,[%l0] (%i0=0xffffffff, %l0=0) 189 150
11 1&8 203 173
12 1&9 207 193
13 1&10 211 206.5

to higher I2 current, as shown in the table. This table, therefore,
reflects the more typical cost of memory writes. Note that there will
also be an additional system energy penalty due to the current being
drawn by the external memory.

Entries 1, 8, 9, and 10 show the variation in the cost of the stores
for a fixed address but varying data. There is a minor decrease in
both the I1 and I2 current for increasing number of 1’s. Entries 11
to 13 consider instruction sequenceswhere different stores alternate.
For example, entry 11 shows the cost for a sequence consisting of
the instructions in entry 1 and 2 appearing in succession. The I1
and I2 currents are greater than the average of the current costs for
the individual instructions. This is another illustration of the effect
of circuit state overhead. The I1 overhead represents the effect of
the circuit state in the internal logic circuits, while the I2 overhead
represents the effect of switching on the data pins. Entry 11 involves
12 bit flips at the data lines, while entries 12 and 13 involve 24 and
32 bit flips respectively. As expected, greater number of bit flips,
result in greater current. The increase in current is greater in the
case of I2 current. This too is expected, since the I/O pads typically
involve larger capacitive loads.

Entries 1 to 4 show the variation in the cost of stores for a
fixed data value but varying addresses. The I1 current decreases
with an increase in the number of 1’s in the binary representation
of the address. The I2 current also decreases, but the decrease is
very drastic. For example, consider entries 1 and 4. Entry 1 has
no 1’s in the address, and entry 4 has 30 1’s. The difference in
the I2 current is 102 mA. This translates into about 3.3 mA per
each occurrence of "0" in the binary representation of the address.
Comparisons between the other entries also yields the same result.
This observation seems strange, since if the same address is being
put on the bus for every instruction, the address pins should not
switch. However, the address pins do switch due to the following
reason. Every memory transaction involves an extra cycle during
which the bus is idle. During these bus idle cycles, the ‘934 pulls
up the address pins, i.e., the pins go to logical value 1. Thus, even
if back to back store instructions use the same address, there is an
intervening cycle when the address pins are all 1’s. This means that
the pins corresponding to the address bits that are 0 will switch each
time. More 1’s in the address value means less switching, and thus
lower I2 current.

Entries 5 to 7 show another illustration of this effect. The I2
value for a pair of stores is about the same as the average of the I2
values of the individual stores. There is no circuit state overhead.
The reason being that the intervening bus idle cycle, in which the
address pins are pulled up, isolates the two stores from each other.

The above results lead to the following observations:

� The above results show that occurrence of 0’s in the address
values means greater current cost, on the order of 3.3 mA of

Table 5: Floating point instructions: caches enabled.

no. instruction register contents n I1
(mA)

1 fitos %f4,%f0 (%f4=0) 1 177.5
2 fitos %f4,%f0 (%f4=0xfff) 1 177.5
3 fmovs %f4,%f0 (%f4=0) 1 175
4 fmovs %f4,%f0 (%f4=0xff) 1 175
5 fmovs %f4,%f0 (%f4=0xffff) 1 174
6 fmovs %f4,%f0 (%f4=0xffffff) 1 175
7 fitod %f4,%f0 (%f4=0) 1 178
8 fadds %f8,%f4,%f0 (%f8=0, %f4=0) 1 175.5
9 fadds %f8,%f4,%f0 (%f8=0xffff, %f4=0xffff) 1 176

10 fadds %f8,%f4,%f0 (%f8=0x555555,%f4=0xaaaaaa) 1 177
11 fadds %f8,%f4,%f0 (%f8=0xffffff, %f4=0xffffff) 1 178
12 faddd %f8,%f4,%f0 (%f8=0, %f4=0) 1 177
13 faddd %f8,%f4,%f0 (%f8=0xffff, %f4=0xffff) 1 177.5
14 faddd %f8,%f4,%f0 (%f8=0x555555,%f4=0xaaaaaa) 1 177.5
15 ld [0x0],%f8 (%f8=0) 1 205
16 ld [0x0],%f8 (%f8=0x4b7ff) 1 198
17 ld [0x0],%f8 (%f8=0x4b7fffff) 1 193
18 ldd [0x0],%f8 (%f8=0,0) 1 214
19 ldd [0x0],%f8 (%f8=0x416fffff, e0000000) 1 200
20 ldd [0x0],%f8 (%f8=0x4b7fffff, 4b7fffff) 1 192
21 fmuls %f8,%f4,%f0 (%f8=0, %f4=0) 1 174
22 fmuls %f8,%f4,%f0 (%f8=0xfff, %f4=0xfff) 1 175
23 fmuls %f8,%f4,%f0 (%f8=0x555555,%f4=0xaaaaaa) 1 175
24 fdivs %f8,%f4,%f0 (%f8=0xaaaaaa, %f4=0x555555) 13 167.5
25 fdivs %f8,%f4,%f0 (%f8=0xffff, %f4=0xffff) 13 168
26 fdivs %f8,%f4,%f0 (%f8=0, %f4=1) 13 167.5
27 26 & 1 nop 13 181.5
28 26 & 4 nop’s 13 181.5
29 26 & 12 nop’s 13 182
30 26 & 1 add 13 179
31 26 & 12 add’s 13 177.5
32 fsqrts %f4,%f0 (%f4=0xfe01) 13 173
33 fsqrts %f4,%f0 (%f4=0xaaaaaa) 13 173.5
34 fsqrts %f4,%f0 (%f4=0) 13 174
35 34 & 1 nop 13 184
36 34 & 4 nop’s 13 184.5
37 34 & 12 nop’s 13 185
38 34 & 1 add 13 181
39 34 & 12 add’s 13 180.5

I2 current for each occurrence of a 0. This suggests that if
data and instructions are stored at the higher end of memory,
the program energy cost may be reduced. The reason being
that, in that case, on the average, addresses will have lesser
0’s in them. The power reduction can potentially be very
significant.

� It should be noted that the higher current cost of 0’s in the
address is a manifestation of the effect of circuit state (in
other words, switching) on the address pins. Now, most real
systems utilize wait states, since memory access times are
usually slower than the CPU clock period. If the number
of wait states increases, there will be a greater number of
bus idle cycles. We know that during the bus idle cycles,
the address pins are at a constant 1. Thus, more wait states
means that on the average, the address pins will switch less
often, leading to a lesser impact on the overall system energy
cost. This is in line with the observation in the case of the
486DX2, where it was noted that for real systems, switching
on the external pins had limited impact on the overall energy
cost of programs.

9 Floating Point Instructions

Table 5 shows the costs for some typical floating point instruc-
tions. The caches were enabled and unlocked in all experiments.
The FPU is pipelined and Column 4 shows the throughput for each
instruction. Column 5 shows the I1 current. The I2 current was 21
mA for all cases. The energy cost of an instruction is proportional
to the product of the total current and the number shown in Column



4.

Observations and comments

The results indicate that most instructions that involve the FPU
have similar cost. For example, consider entries 1 to 14, and 21 to
23, all of which take one cycle, and don’t cause any FPU pipeline
interlocks. The dependence of the value of operands is almost
negligible, and this may have to do with the circuit design of the
FPU. In addition, the dependence of current on the type of FPU
operation is also not exhibited. This maybe due to the same reason as
discussed in Section 5. Instructions for loading values into floating
point registers (entries 15 to 20) result in costs that are similar to
those seen in the case of integer registers. The trend with respect to
the current cost and the number of 1’s in the data operands is also
similar.

Entries 24 to 26 show floating point divide instructions, and
entries 32 to 34 show square root instructions. The current variation
for different operand values is negligible. These instructions take 13
cycles in a particular FPU pipeline stage. This leads to 12 pipeline
interlocks. This means that an FPU instruction that immediately
follows one of these instructions will have to wait for 12 cycles.
However, the integer pipeline may not be held up in most cases,
and can continue to execute. Entry 27 shows what happens when a
NOP instruction (internally treated as an integer instruction) appears
after a divide instruction. The execution of this instruction is hidden
within the 12 interlock cycles of the divide. Entries 28 to 31 show
other examples when integer instructions follow a divide instruction,
and entries 35 to 39 show the same for the square root instruction.
These entries show that the current cost in this case isn’t much more
than when no integer instructions are executed in the FPU interlock
cycles. This leads to the following insights:

� When integer instructions are executed during the FPU inter-
lock cycles, the current doesn’t increase much beyond what
it is when the interlock cycles are completely idle. This sug-
gests that during the FPU interlock cycles, switching activity
doesn’t completely stop in the other parts of the CPU. If this
activity is useless, then eliminating it can result in power re-
duction during the interlock cycles. This represents another
opportunity where automatic power management or guarded
evaluation may be useful.

� The results also show that for the current implementation of
the ‘934, it is beneficial to execute integer instructions dur-
ing the FPU interlock cycles. The current cost is not much
higher than when the integer instructions are executed inde-
pendently. Therefore, the decrease in the number of execu-
tion cycles translates into actual energy reduction. Execution
cycles are reduced, since the cycles required to execute the
integer instructions are overlapped with, and thus, hidden in
the FPU interlock cycles. Software optimizations to achieve
this can therefore be considered as both performance as well
as energy optimizations.

10 Effect of Circuit State Overhead and In-
struction Reordering

The purpose of Table 6 is to illustrate and quantify the effect of
the circuit state on the energy cost of instruction sequences. Base
costs of several instructions as well as the costs for pairs of instruc-
tions are shown in the table. Only the I1 current is shown. The

Table 6: Effect of circuit state overhead.

no. instruction register contents I1 Ovh.
(mA) (mA)

1 or %g0,0,%l0 177
2 or %g0,0x001,%l0 174
3 or %g0,0x00f,%l0 174
4 or %g0,0x0ff,%l0 174.5
5 or %g0,0xfff,%l0 174.5
6 1&2 1 opcode flip 178 2.5
7 1&3 4 opcode flips 184.5 9
8 1&4 8 opcode flips 191 15
9 1&5 12 opcode flips 192 16

10 or %g0,%i0,%l0 (%i0=0) 177.5
11 or %g0,%o0,%l0 (%io=0xfff) 173.5
12 10&11 12 data flips 187.5 12
13 or %g0,%r16,%i0 (%r16=0) 177.5
14 or %g0,%r17,%i0 (%r17=0) 176
15 or %g0,%r15,%i0 (%r15=0) 175.5
16 or %g0,%r23,%i0 (%r23=0) 176
17 13&14 1 opcode flip 177.5 1
18 13&16 3 opcode flips 180 3
19 13&15 5 opcode flips 180.5 4
20 subx %g0,%r16,%i0 (%r16=0) 172
21 xor %g0,%r16,%i0 (%r16=0) 177.5
22 xor %g0,%r17,%i0 (%r16=0) 176
23 20&21 4 opcode flips 191.5 17
24 20&22 4 opcode flips 192 18
25 or %i1,%o0,%l1 (%i1=0x555, %o0=0) 174.5
26 add %o0,%i1,%l2 (%i1=0x555, %o0=0) 174.5
27 or %o5,0x555,%l4 (%o5=1) 170
28 srl %i1,%o5,%g3 (%i1=0x555, %o5=1) 174.5
29 25&26 185 10.5
30 26&27 182 9.5
31 27&28 191 19
32 28&25 184.5 10.5
33 fmuls %f8,%f4,%f0 (%f8=0,%f4=0) 174
34 nop 176
35 33&34 202 27
36 andcc %g1,0xaaa,%l0 (%g1=0x555) 179
37 33&36 210 33.5
38 ld [0x555],%o5 192.5
39 sll %o4,0x7,%o6 (%o4=0x707) 173.5
40 38&39 202.5 19.5
41 or %g0,0xff,%l0 176
42 33&41 207 32
43 fadd %f10,%f12,%f14 (%f10=0x123456, 176

%f12=0xaaaaaa)
44 38&43 212 28

I2 current was 21 mA in all cases. For entries with pairs of in-
structions, Column 4 shows the current for the combined sequence,
and Column 5 shows the circuit state overhead. This value is the
difference between the actual current cost of an instruction, and the
average of the base costs of the individual instructions.

Observations and comments

The existence of circuit state overhead can be attributed to the fact
that each instruction executes in the context of the circuit state set by
the previous instruction. The greater the change in the circuit state
between instructions, greater should be this overhead. While the
change in the circuit state can result from any part of the processor,
the common notion is that it is basically due to the change in the
opcodes of adjacent instructions. Entries 6 to 9 in Table 6 show
this quantitatively with an example. With increasing number of bit
flips in the opcodes of adjacent instructions, the overhead increases.
However, Table 6 also shows that switching of the opcodes is not
the only source of circuit state overhead. For example, entries 18,
19, and 23, 24 involve almost the same number of opcode flips.
However, entries 23 and 24 have a much higher overhead cost.

Table 6, and some of the examples presented in Section 7, as
well as the next section, quantify several instances of circuit state
overhead. These and several other examples indicate that the over-
head varies between 0 and about 34 mA. The overhead between
integer instructions is typically below 20 mA. The overhead be-



Table 7: Example of instruction reordering.

no. instruction register contents
1 fmuls %f8,%f4,%f0 (%f8=0, %f4=0)
2 andcc %g1,0xaaa,%l0 (%g1=0x555)
3 faddd %f10,%f12,%f14 (%f10=0x123456, %f12=0xaaaaaa)
4 ld [0x555],%o5
5 sll %o4,0x7,%o6 (%o4=0x707)
6 sub %i3,%i4,%i5 (%i3=0x7f, %i4=0x44)
7 or %g0,0xff,%l0

sequence I1(mA)
a 1, 2, 3, 4, 5, 6, 7 206.5
b 1, 3, 5, 7, 2, 4, 6 203
c 1, 4, 7, 2, 5, 3, 6 205
d 2, 3, 7, 6, 1, 5, 4 207
e 5, 3, 1, 4, 6, 7, 2 202.5

Table 8: Program energy estimation example.
no. instruction register contents I1 I2

(mA) (mA)
1 st %i0,[%l0] (%i0=0xaaa,%l0=0) 176 21
2 orcc %i1,%o0,%l1 (%i1=0x555,%o0=0) 173 21
3 ldub [%l0],%i5 (%i5=0xaaa,%l0=0) 192.5 21
4 umul %i0,0x2,%o3 (%i0=0xaaa) 174.5 21
5 1&2 203 21
6 2&3 196.5 21
7 3&4 192.5 21
8 4&1 187.5 21

Measured current 196 21

Estimate using base costs 178.1 21
Overhead estimate 16 0
Final estimate 194 21

tween floating point and integer instructions is higher, typically in
the range 25 - 34mA. The most important aspectof this observation
is that the range of the variation in this overhead is small, compared
to the overall CPU current cost.

A recent idea in the area of software design for low power is
to reorder instructions to reduce the power cost of a program. This
can be seen as an attempt to reduce the average current cost of a
program by minimizing the circuit state overhead. Our experiments
based on actual energy measurements on the ‘934, however, reveal
that this technique does not translate into significant overall energy
reduction. The reason is that the circuit state overhead is bounded
in a small range and does not show very significant variation. Thus,
different instruction schedules will not vary significantly in their
current costs.

Table 7 illustrates this with an example. Entries 1 to 7 show a
set of instructions. Entries a to e show the current cost of different
sequences consisting of these instructions. The order of the instruc-
tions in the sequences is shown in Column 2 and the I1 current cost
is shown in Column 3 (I2 current was 21 mA in all cases). The
maximum variation in the current is only 4 mA, or about 1.9%.
Since all the sequences take the same number of cycles, the energy
variation is also 1.9%.

Similar observations were also made in the case of the Intel
486DX2 [2]. It appears that this is characteristic of large, com-
plex CPUs, where a major part of the circuit activity is common
to all instructions, e.g., instruction fetch, pipeline control, clocks,
etc. However, it may be the case that instruction reordering can
result in significant variation in smaller processors, like DSPs, and
processors with complex power management features. This bears
further investigation.

11 Program Energy Estimation Example

The results of the previous section quantify the parameters of
the instruction-level energy model of the ‘934. It consists of base

energy costs of individual instructions, and energy costs of effects
that involve more than one instruction, e.g., effect of circuit state,
pipeline, and write buffer stalls. This model forms the basis for
estimating the energy cost of a given program. For this, the base
cost of each instruction, weighted by the number of times it will be
executed, is added up to give the base cost of the program. To this
the circuit state overhead for each pair of consecutive instructions,
weighted by the number of times the pair is executed, is added. The
energy contribution of other inter-instruction effects is finally added
to give the final energy estimate. The purpose of this section is to
illustrate the validity of this model with the help of a very simple
example shown in Table 8.

Entries 1 to 4 show a program consisting of a sequence of four
instructions. The caches were enabled but the entries were locked
in. Columns 4 and 5 show the base current costs of instructions.
Instruction 4 takes 2 cycles to execute while instructions 1 to 3 take
1 each. The measured current for the full sequence is also shown.
The first step is to estimate the cost for the sequence using just the
base costs. Multiplying the I1 currents by the number of cycles
for each instruction, summing these up, and then dividing by the
total number of cycles, gives an estimate for the I1 current for the
sequence:

(176:0 � 1 + 173:0 � 1 + 192:5 � 1 + 174:5 � 2)=5 = 178:1mA

The estimate for I2 is obviously 21 mA. The inter-instruction
effects should now be accounted for, which in this example only
include the effect of circuit state. This effect is modeled by con-
sidering the circuit state overhead between each pair of consecutive
instructions. The measured cost for each pair is shown in entries
6 to 8. The circuit state overhead between instructions 2 and 3 is
given by (196.5-(173.0+192.5)/2) = 13.75 mA. Between 3 and 4 it
is given by (192.5-(192.5+2*174.5)/3)*3/2 = 18.0mA. The reason
for multiplying by 3/2 is that for an alternating sequence of instruc-
tions 3&4, the overhead occurs twice during 3 cycles. In a similar
way, the overheads between 1&2 and 4&1 are seen to be 28.5 mA
and 18.75 mA, respectively. The average overhead is 16 mA for
I1 and 0 mA for I2. When these overheads are added to the base
cost estimates, we obtain 194 mA for I1 and 21 mA for I2. A
comparison of entries 9 and 12 shows the close correspondence of
the estimate predicted by the instruction-level power model and the
actual estimate. Such a close correspondence was also obtained for
other experiments involving other instruction sequences.

The basic energy model developed in the precious sections
and demonstrated above is remarkably similar to the model for the
486DX2. In fact, like in the case of the 486DX2, a quick yet
efficient way of dealing with circuit state overhead would be to
use a constant value for it (18 mA is a good candidate), since the
variation in this quantity is limited. Therefore, the program energy
estimation methodology that was developed for the 486DX2 [1] can
be directly applied to the ‘934.

12 Software Controlled Partial Power Down

One of the unique features of the ‘934 is a facility for powering
down certain CPU modules that are not needed. This is achieved by
setting the appropriate bits in a system control register known as the
Power-Down Register. The modules that can be powered down are
the SDRAM interface (SDI), the DMA module, the floating-point
unit (FPU) and the floating-point FIFOs. Bits in the Power-Down
Register that are set to 1 cause the clock input of the corresponding
module to be disabled. Clearing the bits re-enables the clock input.



Table 9: Software controlled partial power down.

or %i0,0,%l0 ld [%l0],%i0
3-6 no. powered-down units I1 % saved I2 % saved

(mA) (mA)
1 None 177 0.0 192.5 0.0
2 SDI 164 7.6 188.5 2.1
3 DMA 164 7.6 188 2.3
4 FPU 155.5 12.1 180 6.5
5 FIFO 155.5 12.1 180 6.5
6 DMA, FPU 151.5 14.4 174 9.6
7 DMA, FIFO 151.5 14.4 175 9.1
8 FIFO, FPU 142 19.8 166 13.8
9 DMA, FIFO, FPU 138 22.0 162.5 15.6

10 SDI, DMA, FIFO, FPU 133 25.0 157 18.4

Table 9 shows the results of experiments that study the effect
of powering down specific modules, or combinations of modules.
The I1 currents for two different instructions, an OR and a LD are
shown in Columns 3 and 5, respectively. The percent reduction
in current for each entry is shown in Columns 4 and 6. Entry 1
shows the results when nothing is powered down. Powering down
different modules leads to different power savings, the maximum
being the case when all the four modules, SDI, DMA, FIFO, and
FPU are powered down.

Observations and comments

� As can clearly be seen, powering down of unneeded modules
can lead to significant power savings. However, powering
down and later powering up a module through software in-
volves the execution of a certain number of control instruc-
tions. These instruction themselves consume energy. Thus,
powering down of modules will lead to energy savings only
if the modules are powered down long enough to compensate
for the overhead involved in powering them down and then
up.

� The previous observation also indicates that automatic power
management of modules will be more effective in saving
power. The overhead of powering up and down will be
negligible if it is controlled by logic internal to the CPU. Plus,
the temporal resolution of the power management strategy
can then be much finer - it can even be performed on a cycle
by cycle basis.

� An interesting observation leading from the above table is
that the power saving achieved by powering down a combi-
nation of modules doesn’t necessarily equal the sum of the
individual power reductions. For example, for the OR in-
struction, power savings in entry 10 are not equal to the sum
of the savings shown in entries 2 to 5. This is because circuit
activity in different modules may be correlated for this in-
struction. Powering down one module also eliminates some
activity in another module. Thus, powering down these
modules together, results in different savings than what is
expected from the savings achieved by powering then down
individually.

This actually illustrates the fact that power estima-
tion/analysis methods have to account for correlations be-
tween the activities in various modules for each instruction.
A power estimation method based on summing up typical
power consumptions of separate modules, while disregard-
ing correlations, may be very inaccurate. Thus, either the
exact correlations have to be known, or methods which es-
timate/analyze the power consumption of the entire CPU as

a whole, should be used. The measurement based analysis
method described in this paper is such a method. It implicitly
accounts for all correlations between internal modules, since
it is based on measurements made at the boundaries of the
processor.

13 Conclusions

This paper describes the application of a new power analysis tech-
nique for analyzing the power consumption of the Fujitsu SPAR-
Clite MB86934, a RISC processor. This technique had earlier been
applied to the Intel 486DX2, a CISC processor. The successful
application of this technique for both these processors points to its
general applicability for other processors. This study reveals that
the basic instruction-level power model of the ‘934 is very similar
to that of the 486DX2. This power model can be used to effectively
evaluate the power cost of software, without requiring knowledge
of the proprietary lower level details of the processor. The results
of the analysis also provide valuable information about the power
consumption in the ‘934. Besides suggesting several ideas for the
design of power efficient software, this information reveals other
avenues for power reduction in the processor’s design.
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