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Abstract| This paper proposes an approach to en-

hance Fiduccia-Mattheyses' min-cut algorithm. The

approach includes two new ideas: Look-ahead Weight-

ing and Dynamic Weighting. The former is based

on the concept of VLSI placement method using

quadratic programming. The latter is a technique

to carry the better behavior of move-and-lock im-

provement strategy. Experiments on practical circuits

with 5K�140K cells show that the proposed approach

achieves promising results.

I. Introduction

Fabrication technology increases the circuit size to be
designed very rapidly. Nowadays, a circuit with over 1M-
gate, or over 100K-cell (function block), can be realized in
one chip. MCM and rapid prototyping by FPGA's give a
stimulus to this trend toward large-scale system. To �ght
against it, circuit partitioning becomes more important in
most of design automation arena.
Circuit partitioning can be basically formulated as a

graph-theoretical problem: Given a graph in which a node
and an edge represent a cell and a connection (net) be-
tween cells, respectively, divide the graph into two parts
so that the number of nets spreading both parts is min-
imum. The objective above is called cut value. If the
problem has size limitation to each part, it is in the class
of NP-hard (bounded min-cut) [1].
Kernighan and Lin proposed the �rst practical heuristic

(KL-algorithm) [2] to the bounded min-cut problem. The
heuristic improves the initial bipartitioning by repeating
the swap of two cells (pairwise-interchanging) to reduce
the cut value.
Fiduccia and Mattheyses improved KL-algorithm and

proposed highly e�cient heuristic [3]. It gave a nice
framework for min-cut improvement, and many modi�-
cations have been brought up under the framework [4][5].
Another kind of improvement was done by Goldberg

and Burstein [6]. They found that the results by itera-
tive improvement strategy, such as KL-algorithm, depend
heavily on the edge density, i.e., the ratio of the number
of edges to the number of cells. They reported that KL-
algorithm yields good result if the ratio is higher than �ve.
However, VLSI circuit is usually very sparse. Accordingly,
they suggested the edge-contractions to increase density
and iterative improvement on the resultant dense graph.

Bipartitioning using analytical placement technique
was recently proposed [7]. In the method, cells are roughly
placed on a chip by solving quadratic programming prob-
lem, and the best cut position is sought by scanning the
chip left-to-right or bottom-to-top1. This approach seems
to produce better bisection than eigen-vector-based ap-
proach [8]. However, in comparison with graph-theoretic
algorithm, the required CPU-time is fairly longer owing
to intensive numerical computation.
This paper proposes a new algorithm under Fiduccia-

Mattheyses's framework. It contains two new features:
look-ahead weighting and dynamic weighting. The
former is based on the concept of analytical VLSI place-
ment using quadratic programming. The latter is a tech-
nique to carry the better behavior of conventional move-
and-lock improvement strategy. Both of those ideas act
in harmony toward the global optimum. Experimental
results on practical circuits with 5K�140K cells and the
comparison between the proposed algorithm and previous
works are also included.

II. Background

A. De�nitions and Formulation

In this paper, we deal with the circuit of single VLSI
chip. The following discussion is applicable to larger
circuit at system-level design by regarding each mod-
ule/macro as a cell.
VLSI circuit is represented by a hypergraph G = (C;N).

C and N correspond to the set of cells and the set of
nets in the circuit, respectively. Note that a net n 2 N
may be composed of three or more cells. The set of the
nets connected to a cell c 2 C is denoted by N(c) (� N).
Similarly, the set of the cells connected to a net n 2 N is
denoted by C(n) (� C).
For each cell c 2 C, we represent the size of c by S(c).

As for a net, we should consider the signi�cance of the net.
W(n) denotes that of a net n (the net with larger W(?)-
value is more signi�cant). S(?) and W(?) are de�ned as
positive integers. For the set of cells C0 � C, S(C0) means
the sum of S(c) for all c 2 C0. W(N0) (N0 � N) is de�ned
in the same sense.

1Ref.[7] uses ratio cut measure rather than min-cut objective.
However, the place-and-scan technique can be applied to conven-
tional min-cut bipartitioning.



Given a bipartitioning (C1;C2) (C1 [ C2 = C; C1 \
C2 = �) of G, the set N(C1;C2) de�ned below and
W(N(C1;C2)) are cut and cut value of the bipartition-
ing, respectively.
N(C1;C2) = fn j n 2 N; C(n) \C1 6= �; C(n) \C2 6= �g (1)

In addition, we say that the bipartitioning (C1;C2) lo-
cates a cell c 2 C1 (C2) at the left (right) side.
Using above de�nitions, bounded min-cut bipartition-

ing problem is formulated as follows:
Bounded Min-Cut Bipartitioning Problem

Given a hypergraph G = (C;N) and real numbers � 2
(0;1) and � � 0, �nd the bipartitioning (C1;C2) of G
with minimum value W(N(C1;C2)), subject to the size
balance constraint j � � S(C)� S(C1) j � �.
� is the ratio of the target size of left half to the total

size (it is usually set by 0.5). � is acceptable di�erence
between the target size and the actual size of left half. In
a VLSI placement application, there may exist some cells
whose locations are �xed (e.g., external I/O bu�ers).
The remaining part of this section explains Fiduccia-

Mattheyses' algorithm (FM-algorithm) and the related
works under their framework.

B. Fiduccia-Mattheyses' Heuristic

Fiduccia and Mattheyses [3] modi�ed KL-algorithm by
moving a cell from current side to opposite side at a time.
Their criterion to select the cell to be moved next is called
gain. Gain is the attribute of each cell and de�ned as the
decrease of cut value by moving the cell. For example, the
gains of cells A and B of Fig.1 are +1 and +2, respectively.
The gain of a cell c is denoted by GFM(c).
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Fig. 1. Cell gain in FM-algorithm

Let T(n; L) (T(n;R)) be the number of such terminals
of a net n that they are located in the left (right) side.
Then, the gain GFM(c) is expressed as follows:

GFM(c) =
X

n 2 N(c)
T(n; s(c)) = 1

W(n) �
X

n 2 N(c)

T(n; s(c)) = 0

W(n) (2)

where s(c) and s(c) stand for the current side (L or R) and
the opposite side (R or L) of cell c, respectively. There
holds the inequality below as to the range of GFM(c):

j GFM(c) j �
X

n2N(c)

W(n) (3)

The outline of FM-algorithm is as follows (it assumes
that an initial bipartitioning is given):

Step.1: Make all cells unlocked except for the cells with
prede�ned location.

Step.2: Select the cell from each side which is not
locked, has the highest gain in the side, and does
not violate the balance constraint by moving it.

Step.3: If no cells can be selected, then exit.
Step.4: Choose the cell with higher gain among the se-

lected at most two cells, breaking ties by choosing
the one which gives better balance.

Step.5: Swap the side of the cell which is �nally selected
at Step.4, and lock it.

Step.6: Update gains of the cells which are not locked.
Step.7: Repeat Steps 2 through 6 until exit at Step.3.

After these seven steps (called one-pass) are performed,
we can try one or more passes to the best bipartitioning
obtained thus far to improve it still more. The iteration
is called multi-pass FM-algorithm.
Steps 2 and 6 are the dominant processes as to com-

putational time. Fiduccia and Mattheyses managed the
gains of cells on each side using bucket structure. Note
that gain is an integer which satis�es the inequality (3).
This data structure makes the cell selection and the up-
date of buckets be performed in constant time per move.
Re-calculating gains can be e�ciently done since only the
cells which are adjacent to the moved cell require their
gains to be updated. Ref.[3] proved that one-pass takes
the time proportional to the total number T of terminals
in given circuit (T =

P
n2N jC(n) j).

C. High-Order Gain

Krishnamurthy [4] pointed out the randomness of cell
selection in FM-algorithm: The de�nition of GFM(?)
yields many cells with same gain, and hence, the selection
of best cell is done somewhat arbitrarily. Fig.2 illustrates
his observation. The gains of both cells A and B of Fig.2
are +1. However, the cell B is preferable choice since
B's move will lead the cell C to be moved in subsequent
process (A's move does not directly lead other cells).
He resolved the randomness by introducing gain vec-

tor GKR(c) = hG
(1)
KR

(c);G
(2)
KR

(c); � � � ;G
(k)
KR

(c)i for each cell

c. The �rst-order gain G
(1)
KR

(c) equals to GFM(c). The

subsequent i'th-order gain G
(i)
KR

(c) (2 � i � k) indicates

how much the cell c will assist other cells in moving to de-
crease cut value. Namely, it is a kind of look-ahead gain.
Consider the cell B of Fig.2. After moving it to right side,

G
(1)
KR

(C) will be changed from 0 to +1. In other words,

B'move indirectly decreases cut value by 1 via the cell C,

and hence, G(2)
KR

(B) is +1. G(i)
KR

(?) is formally de�ned as

follows:

G
(i)
KR

(c) =
X

n 2 N(c)
�(n; s(c)) = i

�(n; s(c)) > 0

W(n) �
X

n 2 N(c)
�(n; s(c)) > 0

�(n; s(c)) = i � 1

W(n) (4)



where �(n; s), called binding number, represents how
tightly the net n is bound to the side s and is de�ned
using the number �locked(�unlocked) = the number of the
terminals of n each of which belongs to a locked (unlocked)
cell on side s:

�(n; s) =

n
�unlocked if �locked = 0
1 otherwise

(5)

He suggested distinguishing the e�ects of cells using
GKR(?) (the order of two vectors is de�ned in lexicograph-
ical manner) and concluded that the time complexity of
FM-algorithm with GKR(?) is O(k�T) and a small number
between 2 and 3 is su�cient for the value of k.
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Fig. 2. Randomness induced by FM-gains

D. Net-Crossing Model

Sechen and Chen [5] proposed an objective function to
calculate gains. As stated at Section IIA, cut value is de-
termined by whether a net is cut or not rather than how
the net is cut. Let us consider a 4-terminal net n. If n is
cut, the distribution of n's terminal is one of the follow-
ings: (1;3), (2;2), (3;1), where p (q) of the notation (p; q)
represents the number of terminals on the left (right) side.
Their objective function is expected number of

crossings. Let us explain the concept using Fig.3 which
illustrates a terminal distribution of a 10-terminal net.
Since there are 3 terminals on the left side, the right side
is divided into 3+1=4 regions (each region is called bin).
Each of 10-3=7 terminals on the right side belongs to one
of bins. The number of crossings is de�ned as the num-
ber of inter-side connections. For example, the terminal
distribution of Fig.3 has four crossings2.
They have calculated all possible patterns of terminal

distributions and probability of each pattern to derive the
following formula 3 for computing the expected number
of crossings, Xexp(p; q), in the case of (p; q)(p�q) distri-
bution (see [5] as to detailed derivation process):

Xexp(p;q) =
Xo + XePp+1

b=1
(p+1)!

b! (p+1�b)!
�

(q�1)!
(b�1)! (q�b)!

(6)

2It is assumed that if a right cell c is in a bin #i, there are
crossings between c and the left cells nipping the bin #i.

3Eqns.(15) and (16) in [5]

left side right side

bin #4

bin #3

bin #2

bin #1

#terminals = p #terminals = q

Fig. 3. Expected number of crossings

Xo =

2p�1X
c = 1

c 2 odd numbers

2c �
(q � 1)!
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c
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c! (q � 1 � b c

2
c)!
�

(p� 1)!

b
c
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c! (p� 1� b c
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c)!

(7)

Xe =

2pX
c = 2

c 2 even numbers

c (p + q � c) �
(q� 1)!

c
2
! (q � c

2
)!
�

(p� 1)!

( c
2
� 1)! (p � c

2
)!

(8)

Eqn.(6) was derived on the assumption that the number
of bins is much larger than p. They re�ned Eqn.(6) in the
case that the assumption is not valid (see Eqns.(18) and
(19) in [5]). Using Xexp(p; q), Sechen-Chen's gain GSC(c)
of a cell c is expressed as follows:

GSC(c) =
X

n2N(c)

W(n) � f~Xexp(T(n; s(c));T(n; s(c)))

� ~Xexp(T(n; s(c))� 1;T(n; s(c)) + 1)g (9)

where

~Xexp(p; q) =

(
0 if p � 0 or q � 0
Xexp(p; q) if p � q and p > 0
Xexp(q; p) otherwise

(10)

Although GSC(c) is a real number, applying an appro-
priate scaling permits the FM-framework to be available.
Ref.[5] concluded that de�ning the gain by the summation
GFM(?) + GSC(?) brought a good result. The computa-
tional complexity of FM-algorithm with GSC(?) is not
changed if we calculate GSC(?) and store the values to a
gain table in advance.

III. Dynamic Look-ahead Weighting

This section presents newly developed techniques. We
begin with our strategy and net modeling, and then pro-
pose the techniques to obtain a robust improvement and
promising results.

A. Strategy and Clique Model

The original KL-algorithm [2] was developed for an or-
dinary graph, that is, the degree of each net is assumed to
be exactly two. On this assumption, each multi-terminal
net must be converted into the set of 2-terminal nets by
some pre-processing. To avoid the conversion, Schweikert



and Kernighan [9] suggested a hypergraph representation
as a proper modeling of circuit, which was one of the basis
of FM-algorithm. Since then, the representation has been
the main current in the �eld of min-cut algorithm.
However, at the same time, it has been pointed out that

the iterative improvement strategies such as pairwise-
interchanging of KL-algorithm and single-cell-move of
FM-algorithm do not bring a good result for a sparse
graph. VLSI circuit is usually very sparse. The edge con-
traction technique [6] aims at the augmentation of cell-
degree j N(?) j. Although hypergraph represents a given
circuit accurately, the cell-degree jN(?) j decreases to cre-
ate a pitfall for iterative improvement as a result. Our ob-
servation is that 2-terminal net modeling is not accurate,
however, it can give a global orientation. Consequently,
we apply two-phase optimization, which is outlined as fol-
lows:

Phase.1 (global optimization)

Transform each multi-terminal net of a given circuit
into the set of weighted 2-terminal nets, and then
minimize cut value of the converted circuit.

Phase.2 (local optimization)

Using the resultant bipartitioning of Phase.1 as ini-
tial solution, minimize cut value on the proper circuit
by conventional FM-algorithm.

We use a simple clique model at Phase.1, or complete
graph model, to represent each net. For t-terminal net,

the weight ratio 2
t is attached to each edge (pair of ter-

minals) of the corresponding clique. For example, a 4-
terminal net n is converted into the six 2-terminal nets
each of which has weight W(n) � 24 .

Let us consider the terminal distribution of t-terminal
net n. On the assumption that the net n is cut, there
are (t � 1) types of distribution: (1;t-1), (2;t-2), � � �, (t-
1;1). It is clear that i'th-type of distribution \(i;t � i)"
includes i � (t� i) cut edges on clique model. The function
F(i) = i � (t � i) is symmetric upper-convex and has the

maximum at i = t
2
. Since F(i) indicates the cut value of

n on the clique model, we can use F(i) to calculate a gain
G(c) of cell c:

G(c) =
X

n2N(c)

W(n) � X(c; n) (11)

where X(c; n) is the gain per unit net weight with respect
to net n, and it is expressed as follows using T(n) which
denotes the number of terminals of n:

X(c;n) =
2

T(n)
fF(T(n; s(c))) � F(T(n; s(c)) � 1)g (12)

=
2

T(n)
fT(n; s(c))� T(n; s(c)) + 1g (13)

Surprisingly, the gain G(c) has well-coincidence with the
gain GSC(c) (#bins = 1). The fact is proven by Table I
which shows the gains for some terminal distributions of
a net with unit weight (for the cases #bins = 100 and 50,
we calculate the re�ned GSC(?) which is de�ned by Eqns.
(18) and (19) in [5]).

Therefore, it can be said that our weighted clique mod-
eling has at least same potential with Sechen-Chen's mod-
eling. As a matter of course, if we only evaluate the gain
G(?), then the clique-conversion of given hypergraph is
not needed (it is su�cient to replace the values in a gain
table with G(?)). The next section describes the true
worth of using the clique modeling.

TABLE I
Comparison of G(c) and GSC(c) with respect to a net with

unit weight (#f = T(n; s(c)), #t = T(n; s(c)))

GSC(c) for speci�ed #bins
T(n) #f : #t G(c) 1 100 50

2 1 : 1 1.00000 1.00000 1.00000 1.00000
3 1 : 2 1.33333 1.33333 1.33333 1.33333
4 1 : 3 1.50000 1.50000 1.50000 1.50000
4 2 : 2 0.50000 0.34615 0.33600 0.32604
5 1 : 4 1.60000 1.60000 1.60000 1.60000
5 2 : 3 0.80000 0.80000 0.78218 0.76471
6 1 : 5 1.66667 1.66667 1.66667 1.66667
6 2 : 4 1.00000 1.00000 0.97888 0.95817
6 3 : 3 0.33333 0.28415 0.27267 0.26164
7 1 : 6 1.71429 1.71429 1.71429 1.71429
7 2 : 5 1.14286 1.14286 1.11928 1.09617
7 3 : 4 0.57143 0.57143 0.55001 0.52951
8 1 : 7 1.75000 1.75000 1.75000 1.75000
8 2 : 6 1.25000 1.25000 1.22454 1.19958
8 3 : 5 0.75000 0.75000 0.72277 0.69673
8 4 : 4 0.25000 0.23577 0.22284 0.21061
9 1 : 8 1.77778 1.77778 1.77778 1.77778
9 2 : 7 1.33333 1.33333 1.30638 1.27996
9 3 : 6 0.88889 0.88889 0.85685 0.82624
9 4 : 5 0.44444 0.44444 0.42185 0.40063

B. Look-ahead Weighting

In the �eld of VLSI placement, analytical approaches
have been investigated recently [10] [11] [12]. The
approaches decide the placement of cells by solving
quadratic programming problems. The circuit partition-
ing method using such an analytical placement program
has been also proposed [7].
Let (Xi;Yi) and Cij (= Cji � 0) be the coordinate of

cell i and the connection strength between cells i and j,
respectively. Then, we can write the basic quadratic pro-
gramming problem as follow (note that the coordinates
(Xk;Yk)'s are �xed for some cells such as I/O bu�ers):

minimize F =
1

2

X
i; j (i6=j)

Cij f(Xi � Xj)
2 + (Yi � Yj)

2
g (14)

There hold the following equations with respect to the
solution (X?

i
;Y?

i
) of the problem:

X?

i
=

P
j (6=i) Cij X

?

jP
j (6=i)

Cij
and Y?

i
=

P
j (6=i) Cij Y

?

jP
j (6=i)

Cij
(15)

The pair of equations (15) means that the coordinate of
a cell coincides with the gravity center of the coordinates
of related cells.
Since the problem above is independent as to the two

axes, we mention only X-axis in the following.
Let us consider the relation between connection

strength C?? and the existence of Xi. In other words, if the



cell i is deleted with the connections to i, how we change
the values of Cjk (j; k6=i) to keep the solution unchanged?

{ Solving the equation below symbolically answers the
question (~C?? represents the new values of C??):X
j (6=i)

Cij (X
?

j
� X?

i
)2 =

1

2

X
j; k (6= j)
j; k 6= i

(~Cjk � Cjk) (X
?

j
� X?

k
)2 (16)

The answer is:

~Cjk (j; k 6= i) = Cjk +
Cij CikP
m (6=i) Cim

(17)

Proof
Substituting X?

i
in LHS of (16) using (15) produces

1

(
P

m (6=i) Cim)2

X
j (6=i)

Cij (X
?

j

X
k (6=i)

Cik �
X
k (6=i)

Cik X
?

k
)2 (18)

For any a(6= i) and b(6= i; 6= a), the coe�cients of X?
a
2 and

X?
a X

?

b
of (18) are

Cia

P
m (6=i;a) CimP
m (6=i) Cim

and �
2 Cia CibP
m (6=i) Cim

(19)

respectively. Also, the coe�cients of X?
a
2 and X?

a X?

b
in

RHS of (16) areX
m (6=i;a)

(~Cam � Cam) and � 2 (~Cab � Cab) (20)

respectively. Hence, Eqn.(17) holds by the equality of the
latters of (19) and (20). On the other hand, substituting
~Cam of the former of (20) using (17) producesX

m (6=i;a)

(~Cam � Cam) =
X

m (6=i;a)

Cia CimP
n (6=i) Cin

(21)

=
Cia

P
m (6=i;a) CimP
n (6=i) Cin

(22)

and the RHS coincides with the former of (19). 2

Eqn.(17) implies that the e�ect of a cell A to a cell B can
be estimated even if the cell A is not adjacent to the cell B,
i.e., CAB=0. Fig.4 illustrates the observation. In the �g-
ure, the cell i is a�ected directly from j (1st-order cell) and
is also a�ected indirectly from k and k0 (2nd-order cells)
via j. We can estimate such indirect e�ects using (17)
by assuming that the 1st-order cell j is deleted. Needless
to say, actual deletion is not needed: Eqn.(17) indicates
the graph con�guration after deletion. It can be said that
Eqn.(17) implies one of degree augmentation techniques4

and another kind of high-order gain. Krishnamurthy's
high-order gain of Section IIC reduces the randomness of
cell selection by vectorization, however, the ordering vec-
tors brings another problem: Lexicographical ordering is
not always the best as he pointed by himself (see [4]).
Fig.5 gives the procedure to calculate the gain based on

Eqn.(17) for a cell c. Note that the location of 1st-order
cell (p in Fig.5) does not participate in the calculation of
the gain. We discuss the treatment of their locations in
the next section.

4Note that Eqn.(17) is equivalent to star-delta transformation of
resistive network theory.
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Fig. 4. Illustration of look-ahead Weighting

L01: GL(c) 0;
L02: for each adjacent cell p of c f

L03: S 
P

q Cpq;

/* S is sum of connection weights related with p */
L04: for each adjacent cell q(6= c) of p f
L05: if the current side of q di�ers from that of c
L06: GL(c) GL(c) + Ccp Cpq = S;
L07: else
L08: GL(c) GL(c) � Ccp Cpq = S;
L09: g

L10: g

Fig. 5. Gain calculation based on look-ahead weighting

C. Dynamic Weighting for Locked Cells

As explained at Section IIB, FM-algorithm locks the
cell which is moved once (locked cells never moves during
the current pass). Let us pay attention to Fig.4 again. If
the weight produced by the path i� j�k0 is large, the cell
i will move to the right side. As a result, the cell j su�ers
strong force via the cells i and k0, and will go along with
the cell i if j is not locked. This \chain-reaction" is the
aim of look-ahead weighting.
However, if the cell j is locked, the observation above is

turned to the other way. Since the path i� j� k0 is cut at
j, the cell i should su�ers no force from the cell k0. On the
contrary, i should be a�ected by j directly. Fig.6 illustrates
the concept. The weighting based on the concept heavily
depends on a move-and-lock strategy. Hence, we say it
\dynamic". On the other hand, look-ahead weighting is
\static" since it depends on a constant topology.
The static gain calculation of Fig.5 can be easily mod-

i�ed into the dynamic version, which is shown in Fig.7.

D. Computational Complexity

Under the FM-framework, the following procedures are
dominant as to time complexity: (1) calculating initial
gain, (2) selecting the best cell and (3) updating gain
after the move of a cell. In addition, we should consider
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Fig. 6. Illustration of dynamic Weighting

DL01: GDL(c) 0;
DL02: for each adjacent cell p of c f
DL03: if p is locked f
DL04: if the current side of p di�ers from that of c
DL05: GDL(c) GDL(c) + Ccp;
DL06: else
DL07: GDL(c) GDL(c) � Ccp;
DL08: g else f

DL09: S 
P

q Cpq;

/* S is sum of connection weights related with p */
DL10: for each adjacent cell q(6= c) of p f
DL11: if the current side of q di�ers from that of c
DL12: GDL(c) GDL(c) + Ccp Cpq = S;
DL13: else
DL14: GDL(c) GDL(c)� Ccp Cpq = S;
DL15: g

DL16: g

DL17: g

Fig. 7. Gain calculation based on dynamic look-ahead weighting

(4) constructing graph from input speci�cation, since we
use clique modeling of a circuit.

The procedure (4) is theoretically dominant since on a
clique modeling of hypergraph G = (C;N) the number of

edges is O(j C j2). However, the sparsity of VLSI circuit
reduces the complexity close to O(jC j) in practice.

The same observation can be applied to the procedures
(1) and (3) (the gain based on the proposed weighting
can be updated by incremental manner, which is similar
to that of the original FM-algorithm). For the procedure
(2), bucket structure is available as well as FM-algorithm
by applying an appropriate scaling to convert real-valued
gain into integer. Therefore the time complexity of the
procedure (2) is the same with that of FM-algorithm.

As a result, time complexity of single pass execution of
our algorithm is theoretically of quadratic order, however,
close to linear in practice. It is the same with respect to
space complexity.

IV. Experimental Results

We have implemented and tested the proposed al-
gorithm, original FM-algorithm and the enhanced FM-
algorithm by Sechen-Chen (SC-algorithm) on an NEC
EWS4800/360AD (149MIPS). Table II summarizes the
characteristics of practical circuits used for the tests. The
data \D12" contains 144K-cells, which may be the largest
circuit reported in published papers. Each test was per-
formed in multi-pass style (we repeated passes on each
phase until no improvement was attained). The margin
of size balance constraint, � de�ned in Section IIA, was
set by the maximum cell size in each circuit.
We performed two types of tests. The one is to im-

prove the bipartitioning obtained by the min-cut algo-
rithm of [13]. The algorithm uses hierarchical cluster-
ing and pairwise interchanging. Therefore, the result-
ing bipartitioning may be good. This type of test indi-
cates the e�ectiveness of each algorithm. Table III shows
the results. The character \H" (\V") which follows a
data name means that the bipartitioning is done using a
horizontal (vertical) cut-line (only the �xed-locations of
I/O bu�ers depend on cut-line direction). The columns
named \improve" and \CPU" are the improvement ra-

tio
cut value obtained by [13] - result

cut value obtained by [13]
and the total CPU-

time required to update gains and bucket structures, re-
spectively. The star mark in each row represents which
algorithm yields the best solution.
The other is to improve the random bipartitioning. We

thoroughly shu�ed the result of [13] for each circuit keep-
ing the total cell size of each side. This type of test in-
dicates the robustness of each algorithm. Table IV shows
the results. The items of each column and marks are the
same with Table III.
Both tables prove the advantage of the proposed algo-

rithm. Most of the star marks are in the columns for our
algorithm. Especially, it can be said that our algorithm is
highly robust. Notwithstanding a at partitioning, some
of the results of our algorithm have much lower cut value
than the hierarchical approach. Also, computational time
is not so longer than other algorithms.
On these tests, our two-phase optimization strategy

showed interesting phenomenon: Although the cut value
on hypergraph model after Phase.1 was slightly larger
than that obtained by FM-algorithm 5, FM-algorithm of
Phase.2 could improve the intermediate result to obtain
the �nal result. The reason is not made clear yet, however,
we think that our clique modeling give a good orientation
to global optimum.
We have also implemented Krishnamurthy's algorithm

and tested using the circuits of Table II. For each test,
we observed that (1) resultant cut value is between the
ones obtained by FM-algorithm and SC-algorithm (closer
to the result of FM-algorithm rather than SC-algorithm)
and (2) CPU-time is almost same as FM-algorithm within
the range of 5%.

5Note that we minimize the cut value of weighted graph after
the conversion for clique-modeling in Phase.1.



TABLE II
Characteristics of circuits used for experiments

(Cm = max jC(?) j, Nm = max jN(?) j)

min : max : av.
name #cells #nets #pins S(?) Cm Nm

D1 5,024 5,417 17,311 1 : 35 : 6.79 93 14
D2 5,472 5,551 17,893 1 : 35 : 6.23 93 14
D3 5,124 9,031 29,416 1 : 38 : 6.72 42 19
D4 7,624 10,087 33,443 1 : 38 : 4.52 65 19
D5 7,484 10,436 36,344 1 : 28 : 4.99 98 11
D6 14,286 14,574 48,457 1 : 28 : 2.62 99 9
D7 18,323 24,953 86,592 1 : 19 : 4.90 66 11
D8 34,669 35,660 114,618 1 : 19 : 2.59 99 9
D9 37,809 57,691 161,171 1 : 52 : 5.57 32 25
D10 84,610 93,063 247,293 1 : 52 : 2.49 32 25
D11 82,605 126,927 361,620 1 : 90 : 5.31 58 37
D12 144,033 154,038 461,872 1 : 90 : 3.05 58 37

TABLE III
Experimental results

(improvement of given bipartitioning)

FM-algorithm SC-algorithm new algorithm
data improve CPU improve CPU improve CPU

[%] [sec] [%] [sec] [%] [sec]

D1(H) ? 4.24 0.36 2.54 0.71 3.39 4.19
D1(V) ? 13.27 0.84 10.18 0.85 11.06 2.14
D2(H) ? 4.76 0.71 3.46 0.66 ? 4.76 5.16
D2(V) 8.33 0.32 6.48 1.12 ? 9.26 3.22
D3(H) 6.09 0.74 ? 6.34 1.59 5.84 5.53
D3(V) 4.80 0.64 6.73 1.54 ? 7.69 5.57
D4(H) 1.11 0.66 2.66 0.77 ? 7.30 9.42
D4(V) 10.19 1.39 12.14 1.61 ? 15.05 12.13
D5(H) 0.80 0.65 0.80 1.46 ? 3.39 26.99
D5(V) 7.06 1.22 5.74 2.16 ? 13.69 15.46
D6(H) 14.39 3.50 23.99 4.58 ? 24.17 25.45
D6(V) 10.99 3.37 17.40 5.22 ? 31.69 23.16
D7(H) 14.23 1.86 20.41 6.55 ? 34.25 50.50
D7(V) 1.95 3.10 7.72 8.42 ? 12.96 76.58
D8(H) 16.37 4.95 ? 36.35 7.39 14.79 88.80
D8(V) 17.06 7.49 24.82 11.88 ? 31.02 76.29
D9(H) 14.50 7.01 19.59 16.38 ? 22.04 25.90
D9(V) 11.95 9.43 14.21 18.12 ? 15.71 20.78
D10(H) 19.56 20.38 21.89 43.55 ? 28.89 53.86
D10(V) 4.20 30.84 5.69 29.79 ? 7.87 44.72
D11(H) 0.00 3.44 0.00 7.28 0.00 21.01
D11(V) 0.00 2.92 0.00 5.85 0.00 30.65
D12(H) 0.00 5.56 0.00 11.91 0.00 28.64
D12(V) 7.33 12.85 7.33 26.94 ? 24.63 95.48

average 8.05 | 10.69 | ? 13.73 |

V. Conclusion

We have proposed the min-cut improvement algorithm
based on dynamic look-ahead weighting. The look-ahead
weighting was based on the concept of analytical place-
ment technique using quadratic programming, and also
included the concepts of degree augmentation and high-
order gain. The dynamic weighting took the behavior of
move-and-lock strategy into account and utilized it. The
experimental results have proven the advantage, in par-
ticular, the robustness of the proposed algorithm.
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