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 Abstract - In this paper, we present a new scheduling
algorithms that generates area-efficient register transfer level
datapaths with multiport memories. The proposed scheduling
algorithm assigns an operation to a specific control step such
that maximal sharing of functional units can be achieved with
minimal number of memory ports, while satisfying given
constraints. We propose a measure of multiport memory cost,
MAV (Multiple Access Variable) which is defined as a variable
accessed at several control steps , and overall memory cost is
reduced by equally distributing the MAVs throughout all the
control steps. When compared with previous approaches for
several benchmarks available from the literature, the proposed
algorithm generates the datapaths with less memory modules
and interconnection structures by reflecting the memory cost in
the scheduling process.

hence require less chip area, as compared to random logic.
Furthermore, the generated design can be tested easily due to the
reduced number of hardware modules. The availability of high-
density and high-speed multiport memories motivates the use of
multiport memories in datapath synthesis.
    Most of the previous approaches allocate variables either to
isolated registers or to register files [2-5]. However, they do not
fully utilize the advantages of multiport memories for variable
mapping. A handful of systems reported the use of multiport
memories for datapath designs. Balakrishnan et al.[6] have
reported a technique to minimize the number of memory modules.
Grouping a maximal number of  registers into a cluster, their
algorithm assigns a cluster of registers to a multiport memory at a
time. The left-over registers are either allocated to isolated
registers or grouped into multiport memories by repeatedly
applying the same procedure. The algorithm often leads to non-
optimal register allocations in the number of memory modules and
interconnection cost. Wilson et. al.[7] presented a heuristic
algorithm in which registers are allocated to available multiport
memories one-by-one. Due to the local nature of greedy search, the
algorithm does not guarantee an optimal solution in  the number of
memory modules and the number of registers in each memory
module. Ahmad et al.[8] formulated the 0-1 integer linear
programming (ILP) to generate the minimum number of multiport
memory modules, and tried to reduce the number of registers in
each memory module. However, by not considering the connections
between multiport memory modules and FUs, the algorithm incurs
larger inter-connection cost in the final implementation of
datapaths. Kim et al.[9]  also used the 0-1 ILP to group variables
into multiport memory modules, but they did not try to minimize
the number of registers in each memory module.

�. INTRODUCTION

    Due to the advance of VLSI circuit fabrication and design
techniques, it has been become feasible to realize a large-scale
system in a single chip. For the productivity enhancement of design
engineers, researchers in the CAD community have been
attempting to automate design process at higher levels of
abstraction. In the past few years, synthesis from behavioral
descriptions has become an active field of research[1]. A high-level
synthesizer generates RTL (Register Transfer Level) datapaths
according to the behavioral specifications described in a hardware
description language. High-level synthesis consists of two major
tasks: scheduling and allocation. Scheduling determines the
number of control steps (clock cycles) needed to execute input
behavior and the operations performed in each control step.
Allocation consists of three subtasks: functional unit allocation,
register allocation, and interconnection binding. Each operation is
assigned to a FU in functional unit allocation process, and variables
are bound to registers or register files during register allocation,
and connection structures are constructed between FUs and
registers in interconnection binding process.

    In this paper, we propose new scheduling algorithm that utilizes
multiport memories in RT-level datapath synthesis. Most of the
systems utilizing multiport memories described above generate
datapaths by taking a scheduled code sequence as input. In these
systems, multiport memories are not fully utilized because the cost
of memory modules is considered only in allocation process. The
number of memory modules is related to the number of variables
simultaneously accessed at a control step. More efficient utilization
of multiport memories can be achieved by considering the cost of
memory modules in scheduling process under time and/or resource
constraints. The time-constrained scheduling tries to minimize the
costs of FUs and memory modules, while satisfying the given time

    In designing complicated VLSI chips, registers are usually
grouped into a register file for efficient implementation. Multiport
memories provide an effective way for such an implementation,
and the advantages of enhancing system performance. Designs
utilizing multiport memories are more structured and modular,



constraints. In conventional resource-constrained scheduling,
constraints are usually given by the available number of FUs. In
addition to the constraints on FUs, constraints on memory modules,
such as the maximum number of memory ports and the type of each
port, can be given as constraints in scheduling process. The
proposed resource-constrained scheduling algorithm accepts the
constraints on the numbers of FUs and memory modules.

controllers to drive the generated datapaths are synthesized by
FSM generator using state table.
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Figure 2. Target architecture of SODAS.

    This paper is organized as follows: In the section to follow, the
overall picture of the proposed system and our target architecture is
presented, and the scheduling algorithm to utilize multiport
memories is described in Section 3. In Section 4, experimental
results and comparisons with other approaches are presented.
Conclusions are drawn in Section 5.

�. SYSTEM DESCRIPTION & TARGET ARCHITECTURE
      Target architecture of SODAS is similar to that in MAP system
[8], as shown in Figure 2. Supporting linear topology, the
architecture is flexible enough to be employed for general digital
systems. It consists of a set of FUs, a set of multiport memories,
and a set of interconnection units between memory modules and
FUs for data communication. Each multiport memory consists of
several ports, each of which may be read-only, write-only, or read-
write type. A bus is connected to each port. Tri-state buffers are
used to drive a specific bus, and output of a FU is connected to
specific buses through the tri-state buffer. SODAS employs two-
phase clocking schemes to drive generated datapaths. In the two-
phase clocking scheme, data is stored into a memory module at
phase-1, while data is loaded from a memory module to a FU at
phase-2.

    Figure 1 shows the overall configuration and synthesis
methodology of the proposed system, SODAS (SOgang Design
Automation System). Taking VHDL behavior descriptions as input,
C/DFG (Control/Data Flow Graph) containing data and control
informations on the input behavior is generated as an intermediate
format, and is used for both simulations of input design
descriptions and synthesis of datapaths. Design constraints with
respect to resources and/or execution delays are refined into
synthesis constraints more suitable for synthesis process, such as
number of control steps and available hardware modules. Under
those constraints, scheduling is performed with C/DFGs which are
verified through simulation.
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�. SCHEDULING REFLECTING MULTIPORT MEMORY USAGE

    Determination of a proper objective function in scheduling
determines overall performance of the synthesizer. Efficient usage
of FUs can be achieved in scheduling process by equally
distributing operations over the control steps[3]. Most of the
scheduling algorithms previously published try to minimize the
numbers of FUs and control steps. In contrast to the previous
approaches, the proposed scheduling algorithm tries to minimize
not only the number of FUs but also the number of memory ports
through which variables are accessed.
    Each operation executed at a control step is divided into three
phases: operand read, execution, and write-back phases. The
operands used in FUs are loaded from memory modules at read
phase, and the result of execution is stored at memory modules at
write phase. The number of memory ports is proportional to the
maximum number of data transfer operations (reads and writes)
executed at a control step. By considering the number of data
transfers in the scheduling process, the requirement of memory
ports can be reduced. Two different schedulings under the time
constraints of five control steps are presented in Figure 3 to show
the benefits obtained by considering data transfers in scheduling
process.

Figure 1: Overall picture of SODAS.

    The scheduling result is saved in SAIF (Scheduling/Allocation
Intermediate Format). Taking SAIF as input, allocation process
assigns variables to storage units, operations to FUs, and
connections between storage units and FUs to interconnection
structures such as muxes and buses. During synthesis process, the
component library is used to provide information on area and  delay
of each hardware module. Synthesis results are generated in forms
of structural VHDL description and state table. Structural VHDL of
the generated datapath is used for schematic display, and
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have the same probability. If the probability that the operations of a
type belong to a certain control step is 1, i.e., when all the
operations are concentrated at a certain control step, the H(op)
becomes 0.

H(OP) =  -   POP(i) log(POP(i)) / log(# csteps)
i=1

#csteps
⋅∑    (2)

    The second factor of our priority function reflects the
distribution of data transfers over all control steps. The number of
data transfers at a control step determines the number of memory
ports required to access the operands. To reduce the number of
memory ports, we try to evenly distribute data transfers over all the
control steps. A variable accessed at several control steps, called as
multiple access variable (MAV), is treated with special care. For
example, variable a is accessed at cstep1, cstep2, cstep3, and
cstep4 in Figure 3 (a), and is accessed at cstep1 and cstep4 in
Figure 3 (b). It means that less ports are required for Figure 3 (b).
The situation of Figure 3 (a) can be improved utilizing MAVs. If
operation requiring an MAV is not on critical path, memory port
requirement can be reduced by equally distributing MAVs over all
the control steps. We define VarSet(opn) as the set of variables
accessed by an operation opn. For example, VarSet(*1) in Figure 3
is {a, b, t1}. The probability for a variable v to be accessed at
control step i, Prob(v, i), is obtained by multiplying the fractions of
time frame intervals for the operations which access variable v, as
shown in equation (3). The probability for variables of being
simultaneously accessed at control step i, PV(i), is given by
equation (4), where V is the set of MAVs. A measure of equi-
distribution for these variables is defined by an entropy function
and given by equation (5). Lager value of H(V) indicates that
MAVs are more equally distributed throughout the control steps.

Figure 3. Two different schedules obtained by

(a) not considering data transfers   (b) considering data transfers.

   Optimal solution requires one multiplier and one ALU, as shown
in both schedules. However, Figure 3 (b) shows less number of
data transfer operations than that of Figure 3 (a). For the schedule
in Figure 3 (a), the maximum number of operand reads is
determined to be four, due to the variables accessed at cstep 1 (a,
b, d, and e). In contrast to Figure 3 (a), maximum number of reads
for the schedule in Figure 3 (b) is three: at cstep1 (due to a, b, and
d), cstep2 (due to c, d, and e), and cstep5 (due to b, t4, and t6).
Number of writes is two for both schedules. Assuming that
available memory modules have one read-only port and two
read/write ports and that the two-phase clocking scheme is
employed, two memory modules are required for the schedule in
Figure 3 (a). In Figure 3 (b), one memory module is sufficient for
data operations by assigning +1 and +3 operations to cstep1 and
cstep 4, respectively. In the proposed scheduling algorithm, efforts
are made to reduce the number of concurrent data transfers as well
as the number of FUs.

A. Priority Function

Prob ( ,  i)  =  
1

bopn( ) -  eopn( )  +  1
 

for all opn s .t. 
VarSet(opn)

v
v v

v∈

∏      (3)
        The time frame interval for each operation in C/DFG can be
obtained by the ASAP and ALAP schedules. Let bopn and eopn be
the ASAP and ALAP schedules for an operation opn, respectively.
The priority function of the proposed scheduling consists of two
major factors. The first factor is defined as the measure of equi-
distribution of operations to control steps, and can be calculated by
the time frame intervals for the operations in C/DFG. The
probability for the operations of type 'OP' of belonging to control
step i, POP(i), is the normalized form of the distribution graph[4]
and is given by equation (1), where NOP is the number of
operations of type 'OP' and Prob(opn,i) is the probability of an
operation opn scheduled at control step i.

        where bopn(v) and eopn(v) are ASAP and ALAP schedules of

                      operation opn which uses an MAV v as operand.

    PV i  =  Prob(v,  i )
v  

( )
∈
∑

V
                                                   (4)

H(V)  =  -   PV (i) log(PV (i)) / log(#csteps)
i=1

#csteps
⋅∑       (5)

    Figure 4 presents the initial scheduling state for the C/DFG in
Figure 3, and the time frame intervals for operations are shown in
Figure 4 (a). The MAV set is determined to be {a, b, d} from the
C/DFG. Lifetime for an MAV is determined as the union of the
time frame intervals of operations which use the MAV as operands,
as shown in Figure 4 (b). Lifetime for MAV "a" is obtained by the
time frame intervals of operations *1, *4, +1 and +3 which use the
MAV as operand. Figure 4 (c) shows the probabilities for
operations and MAVs in each control step. From Figure 4 (c), the
measures of equi-distribution for operations and for MAVs are
calculated by substituting the probabilities into equation (2) and
(5), respectively. For example, the entropy value for MAVs is
determined by (0.13*log0.13 + 0.19*log0.19 + 0.19*log0.19 +

POP(i) =  Prob(opn, i) /  NOPopn OP∈
∑            (1)

where Prob(opn, i)  =  
 1 / (eopn  bopn + 1),  if eopn i bopn
 0,  otherwise

− ≤ ≤R
S
T

    For the maximal utilization of hardware resources, a measure of
equi-distribution for each type of operations is defined by an
entropy function[10] and given by equation (2). The value of H(OP)
lies between 0 and 1. H(OP) becomes 1, when all the control steps



0.3*log0.3 + 0.19*log0.19)/log5 = 0.914. Similarly, H(+) becomes
0.914 and H(*) is 0.977. It can be observed that multiplication
operations are distributed more evenly than those of addition
operations.

indicated in bold line. As described earlier, Sb+1 and Se+1 are
obtained by changing the time frame interval [1, 4] into [2, 4] and
[1, 4] into [1, 3], respectively. The time frame interval of +3 is also
changed because +3 is successor of +1, as shown in Figure 5 (a).

(a)

cstep 1

cstep 2

cstep 3

cstep 4

cstep 5

*1 *2

*3

*4 *5

+1 +2

+3

+4

(b)

*1

*4

+1

+3

*1

*5

*2

+1 +2

a b d

1

0.75

0.5

0.25

0
1 2 3 4 5

cstep

1

0.75

0.5

0.25

0
1 2 3 4 5

cstep

1

0.75

0.5

0.25

0
1 2 3 4 5

cstep

(c)

P (cstep)+
P (cstep)
*

0.16
0.31

0.09
0.22

0.13
0.2

0.35
0.25

0.150.05 0.13 0.19

0.3

0.19 0.19

+4

H(+) = 0.977H(*) = 0.914
VP (cstep)

H(V) = 0.914

Figure 4. Initial scheduling state for the C/DFG in Figure 3
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(c) Probabilities for operations and MAVs in each control step.

  Through the scheduling process, the time frame interval for each
operation is calculated and maintained as a scheduling state. We
define the objective function for a scheduling state S as the
weighted sum of the entropy functions for operations and variables,
as shown in (6).

        Probabilities for operations and MAVs at a control step of the
neighbor states can be obtained by equations (1) and (4), as
indicated in Figure 6. Entropy values for all operation types and
MAVs are also presented in the figure. Comparing the entropy
values of the neighbor states with those of the initial state of Figure
4 (c), probabilities for addition operation and MAVs become more
balanced, which means that the numbers of adders and memory
ports can be reduced in the neighbor states. The objective function
for each neighbor state is calculated by equation (6) using the
entropy values of operations and MAVs, and state transition is
made to the neighbor state with larger priority function. The
entropy values for multiplications in the neighbor states are the
same as those of initial state, because the time frame intervals of
multiplication operations have not been changed. However, the
entropy values for addition operation and MAVs are increased by
state transition to Se+1, resulting in less number of adders and/or
memory ports. Therefore, Se+1 in Figure 5 (b) is selected as next
state.

OF(S) =  H(OP) WOPfor all OP type
 +  H(V) Wp⋅∑ ⋅      (6)

  The weight WOP for operation type 'OP' is defined to be the cost
of the corresponding module in system library, and the weight Wp
is defined as the cost of memory ports. The maximal sharing of a
functional unit and efficient utilization of multiport memories can
be achieved by maximizing the objective function.
    As scheduling progresses, the time frame interval for each
operation is getting tighter. A pair of neighbor states, Sb and Se,
for a scheduling state S are defined as the scheduling states
obtained by reducing the time frame interval of an operation opn
from [bopn, eopn] to [bopn+1, eopn] and [bopn, eopn-1],
respectively. The gain for the transition to a neighbor state is
proportional to the derivative of the objective function. The priority
function of our scheduling process is the linear approximation of
the derivative of the objective function in the time frame interval
and is given by equation (7).
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PF(opn)  =  
|  OF(Sbopn)  -  OF(Seopn) |

eopn  bopn−
              (7)

    In Figure 4 (a), the time frame interval of operation +1 is found
to be [1, 4]. Two neighbor states for +1, Sb+1 and Se+1, are
obtained by changing time frame intervals of +1, as shown in
Figure 5 (a) and (b), respectively. The lifetime for MAVs in each
state is also presented, and change of the time frame interval is



B. Scheduling under Time Constraints Resource_Constrained_Scheduling ()
begin

    Figure 7 describes the overall time-constrained scheduling
algorithm. The algorithm is of iterative/constructive nature in that
it constructs a schedule incrementally. Time constraints can be
specified in the number of control steps by the user. The scheduling
algorithm generates a schedule that uses minimal number of FUs
and memory ports, while meeting the given time constraints. From
the initial state in which the time frame intervals are set by the
ASAP and ALAP schedules, a neighbor state with the highest
priority function is selected.

   for each operation opn do
   begin
       Set bopn to the result of ASAP(opn);
       Set eopn to the result of ALAP(opn);
   end;
   Mr = maximum allowed number of read operations for a  cstep;
   Mw = maximum allowed number of write operations for a  cstep;
   cstep = 1;
   while (constraints are met in all control steps) do
      begin

Time_Constrained_Scheduling ()           Construct the ready list RL(cstep);
begin           NOP = number of 'OP' type operations in RL(cstep);
  Find the initial scheduling state using ASAP and ALAP;           Nr = number of reads in RL(cstep);
  while there remain unscheduled nodes do           Nw = number of writes in RL(cstep);
   begin           while ( NOP>MOP or Nr>Mr or Nw>Mw ) do
     for each unscheduled operation opn do            begin
       begin               if (all operations in ready list are in the critical path) then
          Calculate objective function for OF(Sbopn), OF(Seopn);  for (each operation in ready list) do eopn = eopn + 1;
          Calculate priority function PF(opn);               Calculate PF of Seopn for all operations in ready list;
       end;               Take Se with highest priority as the next scheduling state;
       Make transition to the neighbor state with the highest PF(opn);            end;
    end;            cstep = cstep + 1;
end;       end;

Figure 7. Time-constrained scheduling algorithm. end;
Figure 8. Resource-constrained scheduling algorithm.

C. Scheduling under Resource Constraints     Figure 9 (a) shows an initial scheduling state and the ASAP
schedule for the C/DFG in Figure 3, and the time frame interval of
each operation is shown in Figure 9 (b). Now, consider the case
where FU constraints of two multipliers and one adder are given,
and memory port constraints of four reads and three writes are
derived from the design constraints specified by users. The ready
list for cstep 1 is constructed by the ASAP schedule. The
operations scheduled at cstep 1 is set to {*1, *2, +1, +2}. * 1 and
*2 can be scheduled to cstep1 because two multipliers are
available. However, both +1 and +2 cannot be scheduled to control
step1 due to the resource constraints. To satisfy the resource
constraints, one of two addition operations must be deferred to a
later control step. Priority function in equation (7) is used to
determine the operation to be deferred. Figure 10 shows the
neighbor states of +1 and +2 and probability at each control step.

        List scheduling is one of the most popular scheduling methods
under resource constraints[1]. The constraints are usually given in
terms of the number of FUs. SODAS employs a variation of the list
scheduling algorithm for the synthesis of datapaths with both FU
and memory port constraints. The goal of resource-constrained
scheduling is that each operation is assigned to a control step such
that maximal sharing of functional units can be achieved with
minimal number of memory ports, while satisfying the given
resource constraints on both memory modules and FUs. Resource
constraints consist of two factors: available numbers of FUs and
multiport memory modules. Design constraints on memory
modules, such as number of memory modules, are refined into
synthesis constraints more suitable for synthesis process. MOP is
defined as available number of 'OP' type operations, and Mr and
Mw as the synthesis constraints in the number of reads and writes
which can be concurrently executed in a control step, respectively.
Overall resource-constrained scheduling algorithm is described in
Figure 8.
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Figure 9. Initial scheduling state

        In the proposed resource-constrained scheduling algorithm,
operations which can be assigned to a control step cs are inserted
into ready list denoted by RL(cs). NOP represents the number of
'OP' type operations in the ready list, and the total numbers of reads
and writes in the ready list is defined as Nr and Nw, respectively.
During scheduling process, execution of the operation with the
highest value of priority function is deferred to next control step
when the given synthesis constraints are not met. (a) ASAP scheduling, (b) time frame intervals.
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Figure 10. Neighbor states Se for +1 and +2 in Figure 9.

assignment of variables to memory ports. For the assignment of
variables to multiport memories, we employ a graph-theoretic
approach using the weighted bipartite matching algorithm. Each of
the variables accessed in control step cs is assigned to a specific
memory port. A weighted bipartite graph, G(cs), is constructed for
each control step cs, where variables accessed in the control step
form a partition and the memory ports form the other partition. The
edge weights are calculated to obtain the minimal cost assignment
for the bipartite graph G(cs). They are determined by the internal
and the external costs. Internal cost represents the numbers of
registers and memory ports in each memory module, while the
external cost reflects the number of multiplexers (and/or
multiplexer inputs) in front of input ports of a functional unit and
the number of tri-state buffers (TSB) required at the output port.
After the edge weights in the bipartite graph G(cs) have been
determined, each of the variables accessed in the control step cs is
assigned to a specific memory port by using the bipartite matching
algorithm. We denote NV and N

P
 as number of variables in cs and

number of memory ports, respectively. Let xij  be 0-1 integer
variable, where i = 1,...,N

V
 and j = 1,...,N

P
. Variable xij  is 1 when

variable vi is assigned to port pj, and is 0 otherwise. Then, the
variable-to-memory port assignment problem is transformed into a
complete bipartite matching problem as shown in equation (8),
where wij  represents the edge weight between vi and pj.

                    Minimize  w xij ij
i, j

⋅∑                                  (8)
(a) neighbor state Se+1, (b) neighbor state Se+2, (c) PV for (a), (d) PV for (b).

 subject to xij
i
∑ = 1 for i = 1, ... , Nv        Figure 10 (a) and (b) show the neighbor states Se+1 and

Se+2, respectively. The entropy values of operations are same for
both states. However, the probabilities for MAVs are changed from
the initial state, as shown in Figure 11 (c) and (d). The entropy
value for the MAVs in Se+1 is found to be 0.985, which is greater
than 0.946 of Se+2. Se+1 is chosen as next state. The distribution
of MAVs is more balanced in the state.

                xij
j

∑ = 1 for j = 1, ... , Np

    In the formulation, constraints represent the requirements that
there must be only one matching for variable vi and port pj. As a
final step, each of the variables accessed  in cs is assigned to a
specific memory port. Multiport memory modules are constructed
using the results of variable-to-port assignment. A variable must be
assigned to only one memory module not to maintain multiple
copies. By clustering the ports through which a variable is accessed
into a memory module, memory modules are determined.

D. Multiport Memory Allocation

        Allocation process in SODAS consists of three phases: FU
allocation, multiport memory allocation, and interconnection
binding. FU allocation is performed by assigning each operation in
C/DFG to a physical FU. The overall procedure for FU allocation
consists of two phases: weighted compatibility graph construction
and application of the weight-directed clique partitioning
algorithm[2]. Edge weight in compatibility graph reflects the
number of common variables used as sources or destinations of
operator pair, thus represents the savings in area by sharing a FU
for the operator pair.

    In interconnection binding phase, interconnection costs are
reduced in number of multiplexer inputs by exchanging buses
between memory modules and FUs performing commutative
operations. The overall flow of Multiport memory allocation
algorithm and detailed descriptions for cost function can be found
in [11].

�. EXPERIMENTAL RESULTS

        The proposed algorithm has been implemented in C
programming language on SUN SPARC workstation running
UNIXTM operating system. Experiments have been performed for
three MCNC benchmark programs; differential equation solver,
sixth-order elliptic bandpass filter[5] and fifth-order elliptic wave
filter[3]. In the experiments for filter benchmark programs, all the
coefficients are assumed to be stored in a single port ROM. Results
are compared with those synthesized by existing systems.

        Multiport memory allocation process is performed in two
phases; initialization and variable-to-memory port assignment. In
the first phase, lifetime analysis for the variables in C/DFG is
performed and the number of memory ports is determined by
analyzing all the control steps in code sequences. In the second
phase, variable assignment to memory port is performed for each
control step. In each control step, multiport memories are
constructed and updated by using the results of the current



TABLE �
SCHEDULING RESULTS UNDER SEVERAL TIME CONSTRAINTS FOR THE DIFFERENTIAL EQUATION SOLVER,

WHEN THE MEMORY PORT COSTS ARE CONSIDERED DURING SCHEDULING.

#csteps 4 5 6 7 8 9 10 ≥ 11

#read ops 6 4 4 4 4 3 3 2

Scheduling with #write ops 4 3 3 2 2 2 2 1

port costs considered #RAMs 2 2 2 2 2 1 1 1

#ALUs 2 2 2 1 1 1 1 1

#Mults 2 1 1 1 1 1 1 1

#read ops 6 6 6 4 4 4 4 2

Scheduling without #write ops 4 3 3 2 2 2 2 1

port costs considered #RAMs 2 2 2 2 2 2 2 1

#ALUs 2 2 2 1 1 1 1 1

#Mults 2 1 1 1 1 1 1 1

A.  Synthesis of Differential Equation Solver     Table 2 shows the scheduling results for the differential equation
solver under various resource constraints. The goal of resource-
constrained scheduling is to minimize the number of control steps,
while satisfying the given constraints. The results show that the
schedule requiring the minimal number of control steps is achieved
under FU constraints. It can be observed that the number of data
transfers is also reduced by taking memory port costs into account
during scheduling. For the resource constraints of two multipliers
and one ALU, the number of reads is reduced by two when using
the memory modules with one read port and two read/write ports.

    Table 1 compares the scheduling results for the differential
equation solver under several time constraints, when the memory
port costs are taken into account in the scheduling phase.
Scheduling results without port costs considered are obtained by
setting Wp in equation (6) to zero. The number of FUs is same for
both cases, but more efficient schedules in terms of number of data
transfers can be obtained by taking memory port costs into account
during scheduling. Under time constraints of 5 and 6 control steps,
the number of reads is reduced by two. When time constraints are
set to 9 or 10 control steps, the number of reads is reduced by one.B.  Synthesis of 6-th Order Bandpass Filter
    From the experiments, it can be observed that the schedule
requiring less memory ports is generated by taking the memory port
costs into account. Reduction in the number of memory ports incurs
the reduction in memory module costs. When it is assumed that the
available memory modules have one read-only port and two
read/write ports, the number of memory modules is reduced by one
for both time constraints of 9 and 10 control steps, compared with
the conventional scheduling methods.

    Table 3 shows the synthesis results for the 6-th order elliptic
bandpass filter with the time constraints of 11 control steps. We
compare the results with those produced by the system proposed in
reference [9], MAP, and ADPS[5] systems. The number of registers
is the same for all the systems. However, SODAS generates the
datapath with fewer multiplexer inputs and tri-state buffers than
those by the other systems. Both SODAS and Ref[9] generate the
datapath requiring two memory modules. However, port costs
(number of R/W ports) of SODAS is less than those of Ref[9].TABLE �

SCHEDULING RESULTS UNDER VARIOUS FU CONSTRAINTS

FOR THE DIFFERENTIAL EQUATION SOLVER. TABLE �
(1,1) (1,2) (2,1) (2,2)  SYNTHESIS RESULTS FOR THE 6-TH ORDER BANDPASS FILTER

SODAS Ref[9] MAP ADPS#csteps 7 6 5 4
#Csteps 11 11 11 11Scheduling #read ops 3 5 4 6
#ALUs 2 2 2 2with #write ops 2 3 3 4

#Multipliers 1 1 1 1port costs #RAMs** 1 2 2 2
#Mux Inputs 9 10 12 27considered #ALU's 1 2 1 2

#TSBs 6 6 7 N/A#Mults 1 1 2 2
#Buses 5 5 5 N/A#csteps 7 6 5 4

#Registers 11 11 11 11Scheduling #read ops 4 6 6 6
#RAMs 2a 2b 2c N/Awithout #write ops 2 3 3 4
#ROMs 1 1 1 N/Aport costs #RAMs** 2 2 2 2

CPU Sec. 0.76 N/A 1.01 197*
considered #ALU's 1 2 1 2

a : a RAM with 1 R port & 1 W port, and a RAM with 1 R port & 2 R/W ports#Mults 1 1 2 2
b : a RAM with 2 R/W ports, and a RAM with 3 R/W ports           c: Unknown* FU constraints: (Mmult., MALU)      ** RAM with 1 R port and 2 R/Wports



TABLE �
SYNTHESIS RESULTS FOR THE 5-TH ORDER ELLIPTIC WAVE FILTER

SODAS Ref[9] MAP GMD STAR SPAID HAL
#Csteps 17 17 17 17 17 17 17
#Adders 2 2 2 2 2 2 2

#Multipliers 1 1 1 1 1 1 1
#MUX Inputs 8 9 10 N/A 11 17 26

#TSBs 5 5 5 N/A 12 N/A N/A
#BUSes 5 5 5 N/A 4 5 6

#Registers 11 12 14 11 13 19 12
#RAMs 2a 2b 2c 2c 5d 5e N/A
#ROMs 1 1 1 1 1 1 1

CPU Time(sec.) 0.97 N/A 1.33 N/A N/A N/A 360*

          a : a RAM with 2 R/W write ports and a RAM with 2 read ports & 1 read/write port        b : a RAM with 2 R/Wports and a RAM with 3 R/Wports
          c : Unknown        d : Register files with 1 R port & 1 W port        e : RAMs with 1 R/W port        *  Includes scheduling time

C.  Synthesis of 5-th Order Elliptical Wave Filter REFERENCES

    The synthesis results for the 5-th order elliptic wave filter with
the time constraints of 17 control steps are shown in Table 4. The
results are compared with Ref [9], GMD[12], MAP, STAR[4], and
SPAID[13]. Both SODAS and GMD generate the datapaths
requiring the least number of registers. GMD system also tries to
minimize the number of registers in a memory module when
clustering and assigning variables to memory modules. However,
the comparison with GMD in terms of interconnection costs is not
possible. GMD system does not take into account interconnection
costs. The hardware generated by SODAS requires the least
amounts of registers and multiplexer inputs comparing with those
generated by the other systems. Comparisons with STAR and
SPAID which supports memory modules with only one port, show
that the number of multiplexer inputs is significantly reduced.
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