
Generic Fuzzy Logic CAD Development Tool

Eric Q. Kang Eugene Shragowitz

Dept. of Computer Sciences Dept. of Computer Sciences
University of Minnesota University of Minnesota
Minneapolis, MN 55455 Minneapolis, MN 55455

Tel: 612-623-4269 Tel: 612-625-3368
Fax: 612-831-0887 Fax: 612-625-0572

e-mail: qkang@cs.umn.edu shragowi@cs.umn.edu

Abstract| This paper describes a generic fuzzy

logic CAD development tool and reports on applica-

tion of it to some important CAD problems. This

menu-based tool allows to introduce linguistic vari-

ables in a textual and graphic form by clicking a menu.

It permits users to de�ne membership functions in

an analytical, table or graphical forms. It connects

linguistic variables by fuzzy logic operators to create

fuzzy logic and generates their graphical representa-

tions. 1

I. Introduction

Fuzzy logic, �rst applied to control problems, is now
used in many new domains. One of the new areas of
application of fuzzy logic is CAD for electronic systems.
Several applications of fuzzy logic in CAD were recently
reported [8], [4]. In the process of development of CAD
applications, we observed that creation of fuzzy logic
decision-making structures can be greatly improved and
accelerated by a specialized tool that allows easy manip-
ulation of major blocks involved in construction of fuzzy
logic decision-makers. Requirements for such tool are very
straightforward:

1. Easy de�nition of fuzzy logic linguistic variables.

2. Simple graphical and analytical de�nitions of mem-
bership functions.

3. Simple ways to de�ne fuzzy logic operations and set
up fuzzy logic rules.

4. Easy-to-support hierarchical structures of decision-
makers.

5. Veri�cation of consistency.

6. Easy to port or incorporate the designed graphical
decision-makers to host programs.

1This work is supported in part by the National Science Foun-

dation under Grant MIP-9123945.

Guided by these goals, we developed a generic fuzzy logic
development tool that enables users to develop decision-
making mechanism for their applications and then incor-
porate it into any CAD tool under development. It can
be stressed that applications of fuzzy logic decision-maker
are not limited to speci�cally designed fuzzy logic appli-
cations. Fuzzy logic decision-makers can be included into
existing tools to improve their
exibility in selecting and
balancing of di�erent goals, which receive numerical val-
ues from traditional algorithms. Moreover, in our own
applications, fuzzy logic is mostly used to make decisions
over numerical data.

II. Fuzzy rules and operations

A. Fuzzy logic operations

All logic operations in classical logic can be extended
to fuzzy logic. But there are various ways of doing that.
In this paper, fuzzy logic operations and, or and not will
be de�ned as follows.

µA

0

0.2

0.4

0.6

0.8

1.0

universe of discourse X
0

0.2

0.4

0.6

0.8

1.0

universe of discourse X

µB

BAµ

µB

µA

0

0.2

0.4

0.6

0.8

1.0
µA

µB

Fuzzy set A Fuzzy set B

Fuzzy set A B (A and B)

0

0.2

0.4

0.6

0.8

1.0

universe of discourse X

µA

universe of discourse X

Fuzzy set A B (A or B)

B

Fig. 1. Fuzzy sets and fuzzy logic operations

If A and B are two fuzzy sets, then A and B (also de-
noted as AB) is a fuzzy set with a membership function
produced by the function min of membership functions

of A and B, i.e., �AB(x) = min(�A(x); �B(x)). Sim-
ilarly, A or B (also denoted as A [B) is de�ned as
a fuzzy set with a membership function realized by the
function max of membership functions of A and B, i.e.,
�A[B(x) = max(�A(x); �B (x)). (see Figure 1). Negation
not is extended directly, i.e., the membership function
� A for not(A) is given as � A = 1� �A.
By using linguistic values, linguistic variables and fuzzy
logic operations, fuzzy logic rules can be constructed in a
way similar to reasoning used by human beings. For ex-
ample, if one wants to place cells by utilizing connectivity
information and timing information, one can have a rule
like \if a cell � has critical timing and strong connectiv-

ity to the partial placement, then it is a good candidate

to be placed at a current position". Here, strong connec-

tivity and critical timing are linguistic values of linguis-
tic variables connectivity and timing, respectively. Good

candidate is a linguistic value of the linguistic variable
candidate. Strong connectivity, critical timing and good

candidate are implemented as fuzzy sets, some speci�c
examples of applications of these linguistic values can be
found later in this paper. The word \and" in this rule
is the fuzzy logic operation implemented according to the
above de�nition.

B. Fuzzy logic rules

Linguistic variables and fuzzy logic operations can be
used to construct fuzzy logic rules. In the following, two
examples of fuzzy logic rules and their numerical evalua-
tions are given.

Rule 1:

If a net's driver is a strong driver, then it can drive
a large load.

Here driver and load are two linguistic variables. The
possible linguistic values for a variable driver can be weak
driver, driver with driving capability of about 1.5ns/pF,
strong driver etc., and the possible linguistic values for
load can be small load, average load, large load.
The if part ofRule 1 is called a predicate, while the then
part is called an action. In this application, the action
part is simply implemented as an identi�cation function
unless it is explicitly speci�ed. Therefore the result of
evaluation of the predicate part is identi�ed as a degree
of membership for the linguistic value used in the action
part.
Let �strong driver(�) be the membership function for lin-
guistic value strong driver (Figure 2). Suppose the driving
capability of a driver is 1:4ns/pF, and let L be the load
this driver can drive according to Rule 1. Since no fuzzy
logic operation is involved in the predicate part of Rule

1, the degree of membership of the driver of being a mem-
ber of fuzzy set strong driver is identi�ed as the degree of
membership of L in the fuzzy set large load. Thus

�large load(L) = �strong driver(1:4) = 0:75;

µstrong driver

0.2

0.4

0.6

0.8

1.0

0.8 1.4 2.0
0

strong driver

driving capability (ns/pF)

0.2

0.4

0.6

0.8

1.0

0

large load

µlarge load

 0.3 0.5 0.7 0.8 1.0
amount of load driven (pF)

Fig. 2. Evaluation of Rule 1

and so L = 0:78.
Connectives such as and and or can be used in approxi-
mate reasonings to join two or more linguistic values.

III. Generic hierarchical fuzzy logic

structures for decision-making

In this section, generic hierarchical fuzzy logic struc-
tures for decision-making are described. To take the ad-
vantage of Object-Oriented Programming (OOP) tech-
nology, the basic block is designed to be a basic OOP
class, which can be extended to form more speci�c blocks
(classes) with special properties. These blocks can be

link point to parent block

link point to children block

w : relative weight w.r. to peer blocks

linguistic variable, and its membership function

f = (x)µ or µ
0

1

X

Fig. 3. Basic block of fuzzy logic decision-making structure

instantiated easily to form a hierarchical fuzzy logic
decision-making structure. Figure 3 shows the graphical
representation of the internal elements of a basic block.
As one can see, a basic block is basically a linguistic vari-
able, which represents either an objective or a criterion.
The membership function for a linguistic variable can be
given either by an analytical formula or in a table form
which is then interpolated into a piecewise linear function.
Users can customize the linguistic variable and its mem-
bership function for each basic block. If the link point to
a parent for a basic block is not used, then the block is
at the highest level, similarly if the link point to children
is not used, then this block is at the lowest level of the
hierarchy. Otherwise, both link points will be used.
Figure 4 illustrates a hierarchical fuzzy logic decision-
maker generated from several basic blocks. For sim-

plicity, the internal structures of these basic blocks are
not shown. In the following graphical representations of
decision-makers, each block represents a linguistic value
and is implemented as an OOP object. Depending on the

xlinguistic value

block 1 (parent of blocks 2, 3)

linguistic value z

block 3 (child of block 1)

linguistic value

linguistic value

block 5 (child of block 4)

block 4 (parent of block 5)

u

v

linguistic value

block 2 (child of block 1)

y

Fig. 4. Examples of hierarchical fuzzy logic decision-making

structures

context, a linguistic value can be either an objective or
a criterion used to de�ne an objective. For example, a
linguistic value x can be the objective good placement, a
linguistic value y can be the criterion strong connectivity

to partial placement and a linguistic value z can be the cri-
terion almost within a feasible interval. Fuzzy logic rules
are used to de�ne relations between a linguistic value of
outcome and linguistic values of conditions, or in other
words, between a linguistic value at a parent block and
linguistic values at children blocks. In the future, we will
use a term \rule" instead of \fuzzy logic rule". For exam-
ple, \if A has a linguistic value y and B has a linguistic

value z, then C has a linguistic value x" is a rule that re-
lates the linguistic value x to the linguistic values y and z.
In this case, the membership function fx for the linguistic
value x is given by:

fx = and(fy; fz)

where fy; fz are membership functions for the linguistic
values y; z, respectively.
Fuzzy logic rules that de�ne relations among peer linguis-
tic values (linguistic values at the same level) are called
preference rules. For example, \if A has a linguistic value
w, then y has a strong preference over z" is a preference
rule that gives higher weight to the linguistic value y than
to the linguistic value z. If h is the membership function
for strong preference, then it is assumed that the linguis-
tic value y has a weight h, and the linguistic value z has
a weight 1 � h. In this work, preference is viewed as a
linguistic variable, the membership functions for various
linguistic values of preference are implicitly derived from
the membership functions of fuzzy predicates in the pref-
erence rules. For example, if fw is the membership func-

tion of a fuzzy predicate (for example, linguistic value w in
the above preference rule), then the membership function
for strong preference can be given as 1

2
fw + 0:5, and the

membership function for mild preference can be de�ned
as 1

4
fw + 0:5. If no predicates are used, then linguistic

values of preference have crisp values, e.g., strong pref-

erence may have a value 0:85, and mild preference may
have a value 0:65. If no preference rules are given among
peer criteria (objectives), then they are treated as having
equal preference.

Rules and preference rules can be combined in the same
structure. If in the example above, both the preference
rule and the rule are applied, then the membership func-
tion fx for the linguistic value x will be given as follows:

fx = and(hfy; (1� h)fz)

The hierarchical structure allows membership functions of
linguistic values at a higher level to be de�ned by member-
ship functions of linguistic values on a lower level. The
membership functions of linguistic values at the lowest
level have to be given explicitly either by analytical for-
mula, or in table forms. If a membership function is given
in a table form, then linear interpolation can be used to
generate a continuous piecewise linear function. The pa-
rameters on which these lowest-level linguistic values de-
pend are always explicitly speci�ed. Some examples will
be given in the following sections.

IV. The fuzzy logic development tool (FZDT)

The basic theory given in the previous section, is ap-
plied to build a Fuzzy Logic Development Tool (FZDT)
for CAD designs. A graphical user interface for the FZDT
is developed by utilizing the Tcl/Tk tool [7] and the C lan-
guage in the X11 window environment. The FZDT allows
users to graphically design and verify various fuzzy logic
decision-making systems, and export the decision-maker
in either a C code or in a binary code.

The top level interface is shown in Figure 5. Clicking

Fig. 5. Top level menu of FZDT

either \NewProject" or \OpenProject" will generate a
"Fuzzy Logic Project Development Environment". The
only di�erence between these two buttons is that the �rst
button will generate an entirely new environment, and the
second button will request from users an existing project

path name and then will bring up the project for mod-
i�cation. Both choices generate the same working envi-
ronment and menus. Figure 6 presents a development
environment with a partially developed project. Multi-
ple clicks on these buttons will generate multiple working
environments.

Fig. 6. Environment with a partially developed decision-maker

A. Customization of membership functions

The membership function for each basic block (a lin-
guistic variable) can be customized or modi�ed. Clicking

Fig. 7. Window requesting for name of membership function

the button \Setup membership fn" under the menu
\Tools" will pop up a window that asks users to enter
the corresponding block name (Figure 7). Suppose \early
placement stage" is typed in, then <Return> or clicking

Fig. 8. Window for selecting way to customize membership

function

the button \OK" will bring up another window, that will
ask users to select a way for setting up membership func-
tion (Figure 8). If either the button \AnalyticFormula" or

Fig. 9. Window for entering membership function by analytical

formula

the button \TableForm" is clicked, then a window shown
in Figure 9 or Figure 10 will be provided for a user to
enter an analytical formula in C language, or to enter the
data in table form. A user can also de�ne a membership
function by drawing a graph. If users have clicked the

Fig. 10. Window for entering membership function in table form

button \Graph" in the window shown in Figure 8, then
the window shown in Figure 11 is generated. Each cir-
cle in the graph represents a point on the curve and it is
movable. More circles can be generated by clicking but-
ton \more circles" in this window. Such features allow
users to construct a graph of almost any shape. Circles
positioned above y = 1 or below y = 0 will be internally
adjusted to have y coordinates 1 or 0.

B. Veri�cations and export

Hierarchical fuzzy logic decision-makers designed by the
FZDT tool provide veri�cations for possible errors and
can convert decision-makers designed into either a C code
or a binary codes.

Fig. 11. Setting up membership function by constructing the

graph

design name # of cells # of nets # of IOs
Fract 125 163 24
Struct 1888 1920 64
Biomed 6417 7052 97

TABLE I

Characteristics of benchmark test cases

design name Fract Struct Biomed
OASIS TW6.1 OASIS TW6.1 OASIS TW6.1

propagation delay(ns) 0.98 1.12 6.47 6.15 14.3 13.32
chip area(mm2) .53 .53 7.05 6.89 52.01 51.34

TABLE II

Layout results by OASIS and TW6.1 after detailed routing

A. Timing emphasized B. Area emphasized C. Balanced solution
Fract Struct Biomed Fract Struct Biomed Fract Struct Biomed

propagation delay(ns) 0.41 4.84 9.84 0.81 6.33 12.6 0.65 5.32 10.9
chip area(mm2) .56 6.9 55.3 .51 6.7 49.7 .53 6.8 51.4
number of rows 6 17 37 6 17 37 6 17 37
total wire length(�) 51767 610257 6897561 49010 562213 6351751 49235 583011 6550218
total # of tracks 61 221 1024 57 198 921 58 211 958
the longest row(�) 766 2922 6585 721 3012 6392 743 2954 6423

TABLE III

Layout results by GOPHER

V. Applications of FZDT

A. Application to standard cell placement tool develop-

ment

The FZDT has been successfully applied to develop a
standard cell placement tool GOPHER. The GOPHER
uses a hierarchical placement strategy and it extensively
uses various fuzzy logic decision-makers generated by
FZDT at all levels. E�ectiveness of GOPHER has been
tested on 3 MCNC standard cell benchmark test cases
(The only MCNC benchmarks with timing information).
The basic characteristics of these benchmarks are given
in the Table I. Testing the performance of a placer is
di�cult, because �nal layout depends also on quality of
global and channel routers used by the layout system.
After Physical Design Workshops [5], it became a stan-
dard procedure to provide the same combination of global
and channel routers for competing placement algorithms.
Such strategy allows to eliminate di�erences in quality of
routing from consideration when placers are compared.
We compared our placer with two well-known and avail-
able placers: OASIS (VPNR) and TimberWolf6.1. As
for some previously conducted contests, global and chan-
nel routing for all placers is performed by OASIS global
and channel routers. Table II presents best area results
achieved by OASIS and TW6.1 placers in conjunction
with OASIS or TW6.1 global routers, and OASIS channel
router [1], [3], [5], [6]. Timing delay in this table comes
from our own experiments with OASIS and TW6.1 pack-
ages. Table 3 lists results for the GOPHER placer with
three di�erent combinations of goals. When the set of

rules emphasizing timing was selected, propagation delay
(Table IIIA) with respect to OASIS and TW6.1 was re-
duced 36% in average, with accompanying area increasing
by 4.5 %.

When the set of rules emphasizing area was invoked, area
produced was 3% smaller (Table IIIB) for all benchmarks
compared to the best area achieved by OASIS and TW6.1,
while timing delay was also reduced by 8% in average.

When the set of rules emphasizing both area and timing
was selected (Balanced solution), no increase in area with
respect to the best OASIS or TW6.1 solutions was accom-
panied by propagation time reduction by 28% in average
(Table IIIC)

Excellent results on area reported in [1] for GOR-
DIAN/DOMINO placers were not included in compar-
ison, because they were obtained with di�erent set of
routers than those used in our experiments [3]. No timing
information for solutions corresponding to minimal area
had been published for these solutions, and authors did
not have an opportunity to generate this information.

Experiments with OASIS and the GOPHER placer
were conducted on the HP400t machines running DO-
MAIN OS. Comparison of execution time for OASIS and
the GOPHER placers is given in Table IV.

design name OASIS Fuzzy Logic
Fract 6(sec) 2(sec)
Struct 7(min) 15(min)
Biomed 3.2(hr) 2.2(hr)

TABLE IV

CPU run time for placers

Comparison of running time with TW6.1 is not provided,
because IRIS R4000 Indigo was used to run Timber-
Wolf6.1.

B. Application to circuit partitioning problem

The FZDT tool has also been applied to generate a
fuzzy logic decision-maker for a circuit partitioning al-
gorithm. This partitioning algorithm was tested on two

Random Graph SA MSH LD FL
Avg. initial cut-size 2530 2530 2530 2530
Avg. �nal cut-size 1410 1415 1368 1356
Avg. run time(s) 229 174 251 90

Geometric Graph

Avg. initial cut-size 2380 2380 2380 2380
Avg. �nal cut-size 176 131 137 113
Avg. run time(s) 172 183 191 43

TABLE V

Circuit partitioning results

SA - Simulated Annealing, MSH - Modified Sequence

Huristics, LD - Linear Difference, FL - Fuzzy Logic

types of graphs. These graphs were generated accord-
ing to the standard procedures reported in [2]. The �rst
type of graphs was called Random Graphs, and the sec-
ond type Geometric Graphs. 10 test cases of each type
of graphs have been generated. As a result, 20 test cases
were used in the experiments. The last column of Table

V shows results of application of fuzzy logic circuit par-
titioning algorithm to these test cases. Results for three
other partitioning algorithms [9] to the same test cases are
also included for comparison. The results of comparison
are favorable for fuzzy logic algorithm.

VI. Conclusion

This work demonstrated that fuzzy logic can be success-
fully applied to decision-making in CAD tools. E�orts on
development of fuzzy logic decision-making structure can
be substantially eased by application of the tool described
in this paper.

References

[1] K. Doll, F. M. Johannes, G. Sigl, Accurate Net

Models for Placement Improvement by Network

Flow Methods, Proc. of IEEE ICCAD'92, pp.594-
597

[2] D. Johnson, C. Aragon, L. McGeoch, C. Schevon,
Optimization by Simulated Annealing: An Exper-

imental Evaluation; Part I, Graph Partitioning

Operation Research, Vol.37, No.6, 1989, pp.865-
892

[3] Frank M. Johannnes, Private Communications.

[4] Rung-Bin Lin, Eugene Shragowitz, Fuzzy Logic

Approach to Placement Problem, Proc. of 29th
DAC, 1992, pp.153-158

[5] K. Kozminski, Benchmarks for Layout Synthesis -

Evolution and Current Status, Proc. of 28th DAC
1991, pp.265-270

[6] Krzysztof Kozminski, Private Communications.

[7] J. K. Ousterhout, Tcl and the Tk Toolkit

Addison-Wesley Publishing, ISBN 0-201-63337-
X.

[8] M. Razaz and J. Gan, Fuzzy Set Based Initial

Placement for IC Layout, Proc. of the European
DAC 1990, pp. 655-659

[9] E. Shragowitz, R. B. Lin, Combinational Opti-

mization by Stochastic Automata Annals of Op-
eration Research 22(1990), pp.293-324

[10] L. A. Zadeh, The Concept of a Linguistic Variable
and its Application to Approximate Reasoning-I,

Information Science 8, pp. 199-249, 1975.

[11] H. J. Zimmermann, Fuzzy Sets , Decision Mak-

ing, and Expert Systems, Kluwer Academic Pub-
lishers, Boston, 1987.

	ASP-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

