
A Specification Invariant Technique for Operation Cost Minimisation in

Flow-graphs *

Martin Janssenl Francky Catthoorl’2 Hugo De Manl’2

1IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

2Professor at the Katholieke Universiteit Leuven

Abstract

In high-level synthesis, optimizing area, time, andpower
in real-time applications are the prime objectives. In this
paper, a new model and technique are proposed, which
minimise a weighted operation costfunctionfor data-paths
at an early stage in the synthesis process. Our main tar-
get domain consists of lowly-multiplexed and hard-wired
implementations of real-time DSP applications. The be-
havioral specification of an application is translated into a
signal fiow-graph, the operation cost (arealpower) of which
is minimised using algebraic transformations. A minimal
set of elementary transformations are combined in a j7exi -
ble way into composite transformations, which are used in
an ascentlsteepest descent search algorithm. Experiments
show that this approach achieves optimal or close to opti-
mal results with very few transformations. The technique
is invariant to changes in the speci$cation, as long as these
retain the bit-true inputloutput behaviour,

1 Introduction and related work

A system designer crafting a DSP subsystem faces a
large design space at the specification level. This search
space is hierarchically structured. At the top levels, the
options are related to significant distinctions ,such as the
difference between DFT and FFT for Fourier transform, In
contrast, the lower levels in the design space typically re-
fleet input/output behaviour preserving and local structural
changes (like rewriting a b + a . c to a (b + c)), which
optimise the mapping from the specification to the final
implementation. We believe however that exploring these
lower level alternatives can be done also automatically with
a data-path cost optimisation tool that is invariant to func-
tionally equivalent structural changes in the specification.
With such an approach, a system designer can concentrate
on more important higher-level trade-offs.

Transformations are often used for optimisation pur-
poses. In parallel compilers, transformations are used to
exploit parallelism inflow-graphs [1]. In high-level synthe-
sis, transformations are mainly used to optimise through-
put [2, 3]. Recently, transformations are also used in power

*This research was sponsored by the ESPRIT2260 (%PRITE”) project

of the EC.

optimisation [4], where the steering is limited to a generic
global optimisation teehnique on a subset of the possible
transformations. Also using transformations for direct area
optimisation has not yet attracted much attention. Local
resource utilisation optimisation has been done using trans-
formations steered by stochastic techniques [51. Sometimes
area optimisation is a secondary goal in throughput optimi-
sation [5].

Beeause most transformations are well-known [6, 7],

selecting a set of transformations is relatively simple. It is
however extremely important to reduce the set to a minimal

size to limit the search space. This requires an appropri-
ate model. A transformation can be executed when all its
preeonditions are satisfied. However, doing so may enable
or disable other transformations. This dependency makes
finding an efficient and effective ordering both desirable
and very difficult in almost all cases. Therefore, most re-
search relies on manually selected orderings [7, 8]. One
way to tackle the ordering problem is by executing ran-
dom moves using simulated annealing [5]. However, a
stochastic method such as simulated annealing is based on
the assumption that many small and independent moves can
be performed very fast. But transformations are dependent,
and their applicability y always has to be checked prior to ex-
ecution. which makes them relatively slow. The ordering
problem can be tackled by formalizing the preconditions
and postconditions of a limited set of transformations [9].
From this, the enabling and disabling relationships between
transformations are derived, and represented in a graph. An
ordering is obtained from levelling the graph. Cycles in the
graph are resolved by allowing the ‘most important’ trans-
formation to come first. Unfortunately, the transformations
addressed in this approach are mainly loop transformations.

Area minimisation is a well-known goat atso in multi-

level logic optimisation [1 1], which operates at the bit-
level. We work at the word-level though, with many
(user-defined) operation types. The transformations used
here should therefore be defined in terms of (a large set
oo operation properties and not only operation types like
AND/OR/NOT. Multi-level logic optimisation could be ap-

plied to an application by expanding the word-level de-

scription application to the bit-level. But then other word-

Ievel tasks, such as sharing hardware, cannot be performed
efficiently anymore [12]. Moreover, fast system level ex-

0-8186-5785-5/94 $03.00 @ 1994 IEEE
146

ploration would be unfeasible due to the complexity (also
due to the presence of e.g. variable multiplications).

The goal in this paper is weighted operation cost minimi-
sation for data-paths in lowly-multiplexed and hard-wired
implementations of real-time DSP applications. Doing this
at an early stage in the design process will have the largest
impact. The problem is formulated as the minimisation of
a weighted sum of all operation costs in a signaJ flow-graph
(SFG) by means of algebraic transformations. The trans-
formation ordering problem is tackled as follows in a new
approach. In a first step. called normalisation, the initial
SFG is transformed into an SFG of maximum cost using an
ascent algorithm. This is based on a, for our target class,
novel model which exhibits the important property that the
maximum cost SFG is the same (invariant) for all SFG’S
with the same input/output behaviour. In a second step,
called optimisation, the maximum cost SFG is transformed
into a SFG of minimum cost using a steepest descent al-
gorithm. This approach can only work with transforma-
tions which are powerful enough to ‘lookahead’ over small
bumps in the down-hill path, i.e. which are able to execute
other (zero- or negative-gain) transformations such that the
transformation itself becomes valid and yields a positive
gain. The limited lookahead transformations are a subset
of the elementary transformations. Their preconditions are
weaker. Instead of demanding that all preconditions are sat-
isfied, an analysis is made to see if unsatisfied preconditions
can be ‘repaired’ by first executing other transformations.
If not, the transformation cannot be executed. If all unsat-
isfied preconditions can be repaired, the transformation can
be executed after the other transformations have been ex-
ecuted. Limited lookahead transformations are composed
out of other transformations, therefore they will also be
referred to as composite transformations. They enable the
use of a greedy search strategy with very few moves.

Before explaining our approach in detail in section 4,
first the class of signal flow-graphs used in this approach
are introduced in section 2, followed by a discussion on the
set of currently supported transformations in section 3.

2 Target signal flow-graphs

2.1 Definitions

In our context, a signal flow-graph G is a tuple (V, E)

where V is the set of nodes and E is the set of signals. A
signal e c E is a directed hyper edge which has exactly one
source node and zero or more sink nodes. Signals carry a
data value from the source node to all the sink nodes. There
are four node types: constant, input, operation, and output.

An operation c!@: S x S -+ S is called a binary operation
on domain S. More generally, for any positive integer n,
an operation @ : S“ --+ S, is called an n-sty operation on
S. An operation @ : S x T + S with (x, y) ++ x for atl
(z, y) c S x T, is called a projection from S x T onto S.

For two binary operations @ : S x S and 6? : S x Son
domain S, @is left-distributive over@ iff x @ (Y@ Z) =

(z@ y)@ (z@ z) for all z, y, z c ~ right-distributive over

@iff (y@.z)@ x=(y@r)@(z@z) forallz, y,ze S.
If@ is both left- and right-distributive over !3, then @ is
said to be distributive over 6.

For an SFG with n primary inputs in domain S and
m primary outputs in domain S, the bit-true input/output
behaviour is a function j : S“ -+ Sm. Transformations on
an SFG are inputloutput behaviour preserving, if they do
not change f.

2.2 Operations

Initially, an SFG can contain the following arithmetic
operations: addition, negation, subtraction, constant and
variable multiplication, upshift, downshift, and constant
exponentiation. In addition, the delay operation is sup-
ported. However, cycles are not allowed in an SFG. TWi-
cally, the above operations have one or two operands, but
this is not a restriction. To reduce the number and complex-
ity of the algebraic transformations, the above operations
are modelled using only three basic operations: addition

(+), multiplication (x), and delay (A). The delay opera-
tion is not only used to refer to a previous value of a signal
in time (known as sample delay or algorithmic delay), but
also to the value of a signal in a previous iteration of a loop
which is not the time loop.

Addition and multiplication are n-ary operations (n ~
2). Delay is a projection from S x IN to S. Addition and
multiplication are both commutative and associative, delay
is neither commutative nor associative. Multiplication is
distributive over addition, and delay is right distributive
over multiplication and addition.

In the initial SFG, operations which are not basic will
be substituted by a combination of basic operations. An
example is the substitution of a – b by a + (b x (– l)).
Substitution is an input/output behaviour preserving trans-
formation. In addition, substitution is cost preserving, e.g.
in the example the cost of the addition and multiplication
is equal to the cost of the subtraction. (See section 2.4.)

2.3 Signal types and type propagation

In signal processing applications, invariant word-
lengths are frequently used, e.g. the word-length of the

output signal of an addition or multiplication is equal to the
word-length of the input signal(s). This may cause over-
flow. Applying algebraic transformations to signal flow-
graphs with potential overflow means that preserving the
input/output behaviour of the signal flow-graph cannot be
guaranteed, and simulation is needed to check if the result
is still acceptable.

To be able to guarantee input/output behaviour preser-
vation under algebraic transformations, full precision arith-
metic is needed. Full precision arithmetic requires a
type propagation mechanism which propagates signal types
(word-lengths) from input(s) to output(s) of a signal flow-
graph. A ‘classic’ way of type propagation is the logarith-
mic method, in which the word-lengths of the input signals

147

of an operation are used to compute the word-length of the
output signal. For example, an addition with two 8 bits
wide input signals will have a 9 bits wide output signal.
The logarithmic method is a conservative method which
prevents overilow everywhere. However, it is too conser-
vative in that it overestimates the word-lengths of signals.
In fig. l(a), this is illustrated with an adder tree which is
transformed into an adder chain using associativity. Whh
the logarithmic method the output word-length of the chain
is 11 bits, while the output word-length of the tree is 10
bits.

8

v

8 + 8 + 8 “’’e’’’”

‘+
9 1.258254[

8’wf&8 /.:\ -25;:%

+8

11-$- 1-512,5081 10 T

(a) 0)

Figure 1. Type propagation with (a) the logarithmic
method, and (b) the linear method.

To solve this problem, a more accurate type propagation
method is used, referred to as the linear method. In this
method, signat types are extended with a range. A signal
range is specified by an upper- and lower-bound vatue for
that signat. The ranges of the input signals of an operation
are used to compute the range of the output signal, based
on the behaviour of the operation. The word-length of a
signal can be derived from its range. This is illustrated in
fig. l(b). With the linem method the output word-length
of the chain is equal to the output word-length of the tree.
Moreover, it is minimal when overflow is to be excluded.

2.4 Cost function

The cost of an SFG is an estimate of the area of the
cheapest hard-wired implementation in hardware, and is
defined as the sum of the cost of each node in the SFG. The
cost of a node is the cost of its cheapest implementation
in hardware, and depends on its surroundings. For exam-
ple, the cost of a constant multiplication is the cost of the
add/sub/shift network which can perform this multiplica-
tion, whereas the cost of a variable multiplication is the cost
of a multiplier. The cost of a 2-input multiplication with
both inputs constant is zero. With this cost function there
is no need to perform operation expansion or redundancy
removal prior to cost calculation.

Besides area, also power can be expressed in the cost
function in much the same way as area is expressed. The
proposed minimisation technique will remain the same.

3 Transformations

3.1 Elementary transformations

A minimal set of elementmy transformations is defined
for the area minimisation problem. An important aspect
of this set is that most transformations have a reverse. An
example is comn subexpression replication, which is the
reverse of common subexpression elimination [5]. The set
of transformations considered in our prototype implemen-
tation is listed below.

eliminate and replicate. Eliminate is common subexpres-
sion elimination. Anexampleisc = a+b, d =
a+b~ c= a+ b,d= c. Replicate is there-
verse of eliminate.

collectR and distribute. CollectR is a transformation
based on right distributivity. An example is (a x c) +
(b x c) =+- (a+ b) x c . Distribute is the reverse of
collectR.

commute. Commute is a transformation based on commu-
tativity. An example is a + b e b + a . Commute is
its own reverse.

mergeC and splitC. MergeC is a transformation that
merges operations of the same type which are commu-
tative and associative. An example is (a + b) + c =+
a + b + c . This transformation removes any ordering
of operations of the same type. SplitC is the reverse of
mergeC. This transformation imposes a (partial) order-
ing on operations of the same type.

mergeNC and splitNC. A4ergeIVC is a transformation that
merges a chain of operations of the same type, which are
neither commutative nor associative, into one operation.
Anexampleis (aLl 1) A.2 =+- a~ (1 +2) . SplitNC
is the reverse of mergeNC.

compute and computeReverse. Compute is a transforma-
tion which performs constant computation (also known
as constant folding). An example is 1 + 2 =+ 3. Com-
puteReverse is the reverse of compute. This transforma-
tion is useful for performing additive or multiplicative
decompositions on constants.

pass and ~assReverse. Pass is a transformation based on
the neutral element of an operation. An example is
a x 1 ==+ a . PassReverse is the reverse of pass.

block. Block is a transformation based on the zero element
of an operation. An example is a x O =+ O.

eliminateDeadCode. This transformation removes any
node whose signat is not used somewhere else in the
SFG.

The last two transformations are only intended for redun-
dancy cleanup and do not have a reverse.

The elementary transformations are defined in terms of
operation properties, such as right-distributivity, and op-
erate on the basic operations. lhey are, however, not re-
stricted to these operations. Since the delay operation is
right-distributive over addition and multiplication, the col-
lectR and distribute transformations can be applied to it.

148

Forexample, (a Al)+(b Al) ==+ (a+ b)Al . Thisisin
fact a retiming transformation [10], but used in a different
context (area minimisation vs. critical path optimisation),

a bc a b

T -Y[
d d

Figure 2. The elementary collectR transformation.

Elementary transformations consist of three parts: (i)
preconditions that have to be satisfied for the transformat-
ion to be valid on a certain subgraph, (ii) a subgraph cre-
ationlsubstitution mechanism, and (iii) a cost. The cost of a
transformation is defined as the difference in cost between
its target and source subgraphs. Preconditions describe a
kind of pattern matching on a subgraph, which is very strict
for the elementary transformations. For example, signal c
in fig. 2 is not allowed to be located at the first input of
operations v or w. These strict preconditions make the el-
ementary transformations unsuitable for direct application
to an SFG. However, more powerful transformations can be
composed from the set of elementary transformations in a
very flexible way. This in contrast to having a large library
with a (virtually unlimited) variety of highly specialised
transformations.

3.2 Composite transformations

Elementary transformations perform the actual SFG
transformations. The effect of each individual transfor-
mation is known. For the minimisation problem it is also
known which transformations have to be performed. How-
ever, due to the strict preconditions of the elementary trans-
formations, their applicability is very low. Other ‘enabling’
transformations have to be executed to improve the appli-
cability, but which transformations and in what order? This
problem is solved using composite transformations which

perform a ‘limited lookahead’ to be able to execute ‘en-
abling’ transformations only when they are needed.

Composite transformations are a subset of the elemen-
tary transformations. Based on the knowledge of what the
other available transformations can do, their preconditions
have been relaxed. such that not all have to be satisfied im-
mediately. For each unsatisfied precondition that is allowed
to occur, afixed (sequence of) transformation(s) is defined.
which enables the unsatisfied precondition. The sequence
of transformations that results from several unsatisfied pre-
conditions is not fixed, i.e. it is dynamically composed
out of the individual precondition enabling transformation
sequences. This makes the composite transformations both
powerful and flexible. In addition to ‘enabling’ transfor-
mations, also ‘clean-up’ transformations are included in
the above sequences. The cost of a composite transforma-

tion is defined as the sum of the cost of each elementary
transformation in a full sequence.

(a) (b) (c) (d)

x x

(a (f) (e)

Figure 3. An execution sequence of the composite collectR
transformation.

EXAMPLE 1. Consider expression z + (–z), which is
depicted in fig. 3(a). This SFG contains a negate opera-
tion, which is substituted in fig. 3(b). When the composite
collectR transformation is evaluated for the addition in this
SFG, then a number of preconditions are satisfied, such as
a right-distributive operation (multiplication) at one of its
inputs, and the existence of a common signal a. However,
other preconditions are not satisfied: there must be a mul-
tiplication at both inputs of the adddion, and the common
signal must be located at the second input of the multi-
plications. This situation can be repaired though, by first
performing a passlteverse transformation to introduce the
second multiplication (fig. 3(c)), followed by two com-
mute transformations (fig. 3(d)). Now all preconditions are
satisfied and the elementary collectR transformation can
be executed (fig. 3(e)). Finally, a compute transforma-
tion (fig. 3(f)) and a block transformation (fig. 3(g)) are
executed to clean up the SFG. In this example, six elemen-
tary transformations are needed for one composite collectR
transformation.

4 The minimisation technique

The minimisation technique consists of four steps: (i)
substitution, (ii) normalisation, (iii) optimisation, and (iv)
back substitution. Substitution is explained in section 2.2.
Back substitution is its reverse.

4.1 Normalisation

Normalisation serves two purposes: (i) to have a spec-
ification invariant starting point for optimisation, and (ii)
to have a starting point that can lead to a good (if not the
best) solution with a limited search during optimisation.
This is achieved by normalizing to a point in the search
space which is located ‘above’ the global optimum so that
a ‘down-hill’ path can be found. To obtain these properties

149

we propose to transform the initiaJ specification to a nor-
malised SFG, for which: (i) every operation has a fanout of
one, (ii) on any path from input to output, at most 3 different
operations reside, in the order delay, multiplication, addi-
tion (multi-input operations count as one), and (iii) there
are no redundancies due to reconvergent input signals. A
normalised SFG has maximum cost and maximum paral-
lelism. It is not unique, e.g. input signal ordering is not
performed. But this does not affect optimisation results.

In pseudo code, normalisation is expressed as follows:

normaliseo {

do-cleanupo;

do. mergeo;

do {

do- distributeR();

do- replicate;

} while(‘change’);

}

In do-cleanupo, compute, pass, and block remove redun-
dancies in the SFG. In do-mergeo, operations are merged
using mergeC and mergeNC, In the main loop, the desired
ordering of operations is obtained by repeatedly executing
distribute, and the fanout of operations is reduced to one

by repeatedly executing replicate. For normalisation it suf-
fices to execute distribute and replicate in random order,
i.e. whenever they are valid, and independent of the cost.

4.2 Optimisation

Starting from a maximum cost SFG, optimisation has to
find the minimum cost SFG. In terms of composite transfor-
mations, which are able to take small ‘hills’ in the search
space, we believe that there is always a direct down-hill
path from a maximum cost SFG to the minimum cost SFG.
Intuitively, it results from the characteristic that for any
three states A, B, and C in the search space connected by a
path with down-hill moves between A and B and an up-hill
move between B and C, and C located down-hill from A,

there is also a connecting path available between A and C
with only down-hill moves. Experimental results have con-
firmed this conjecture. Therefore, we have to traverse only
the set of atl down-hill paths. Unfortunately, this search
space is still too large for larger examples, so we have in-
troduced further heuristics to reduce it to a steepest descent
algorithm.

Only two composite transformations can perform a
(large) down-hill move: elitninate and collectR. In pseudo

code, optimisation is expressed as follows:

optimiseo {

do {

do {

eset = find_ all_ eliminate_ trfso;

if(not- empty(eset) & cost(eset(1)) <0)

eliminate- tire(eset(1));

} while(‘echange’);

cset = find- all. collectR- trfso;

if(not- empty(cset) & cost(cset(1)) <0)

collectl?- fire(cset(1) }

} while(‘change’);

}

Sets eset and cset are sorted by cost, i.e. the transformation
with the highest gain (lowest cost) is the first element in
the set, If this gain is positive, the corresponding trans-
formation will be fired. The sets are obtained through an
exhaustive search for all possible eliminate and coUectR
transformations, respectively.

5 Experimental results

The minimisation technique has been applied to a wide
range of examples. In table 1, the initial area (IA), nor-
malised area (NA), final area (FA), improvement, number
of composite transformations executed during optimisa-
tion, and the CPU time, are presented for some examples.
The examples in the first part of the table demonstrate the
specification invariant property, while the examples in the
second part show the optimisation capabilities of the tech-
nique. It was implemented in C++ and was run on an HP
735 workstation. The area measures used are extracted
from the building blocks of a 1.2p module library.

IA NA FA “ # CPU

[mm’] [mmz] [mm’] ;: CTS [s]

mask 26.88 110.3 24.72 8 22 15.0

(3.02) (0.86) (72)

maskp 26.48 110.3 24.72 7 23 15.2

maskr 27.04 110.3 24.72 9 23 16.1

maskm 24.7’2 110.3 24.72 0 22 14.7

k’ 8.04 10.39 4.54 44 26 393

fird 4.89 10.39 4.54 7 26 391

dct4 10.51 10.36 4.30 59 15 24.5

dct4i 13.43 13.85 5.76 57 16 4.9

dct8 70.49 69.38 25.90 63 79 2015

dct8i 95.73 98.40 36.49 62 88 475

wdf3i 5.21 40.91 5.02 4 82 2860

Table 1. Results of minimisation on various examples.

Example mask is an image processing application based
on 2D masking. The initial SFG of mask is shown in
fig. 4, the minimised SFG is shown in fig. 5. Constant
C3 (“010.1”) in fig. 5 was generated by a multiplicative de-
composition of cl (“0.0101”) and C2(“O. 11001”). Example
maskp is the same as mask, except that some partial opti-
misations have been performed already. Example muskr
is the same as mask, but with a redundancy added at the
output (2 x out – out). Example maskm is the minimised
result of mask. Note that the largest part of the initial and
final area figures of the mask examples are accounted for
by two line-buffers (23.86 mm2). For mask, in parentheses

150

also the initial area, final area, and improvement are given
when this area is not taken into account.

t

Figure 4. Initial SFG of mask.

in

512

Figure 5. Minimised SFG of mask.

Examplejr is a 32th order symmetrical FIR filter used
in an RGB-YUV codec. The largest gain is obtained by

converting individual buffers originating at the input signal
into a delay line. Example jird is the same as jir, except
that the individual buffers have been optimised into a delay
line already.

The specification invariant property of the minimisation
technique is demonstrated with the normal and final area
figures in the ftrst part of table 1. For all examples they
are the same. The number of composite transformations
executed may differ slightly, because of the normal form
which it not fully unique (see section 4. 1).

Examples dct8 and dct4 are discrete cosine transforms.
Example dct8i is the same as dct8, except that the constants
are inputs. The initial SFG of dct8i contains 64 multiplica-
tions and 56 additions/subtractions, and the minimised SFG
contains 22 multiplications and 28 additions/subtractions,
which is the optimum for the given bit-true behaviour (i.e.
the set of constants).

Example wd~3i is a 3“d order wave digital filter, with the
constants as inputs. It is constructed from three stages of
the well-known 5th order wave digitzd filter benchmark.

The results in the second part of table 1 show that a
significant reduction in area can be obtained with very few
composite transformations, and in reasonable CPU time.
However, due to the exhaustive nature of the search for
possible eliminate and coUectR transformations, CPU times
grow rapidly with an increase in number of inputs/outputs
and reconverging paths.

6 Conclusions

In this paper, we have introduced an automated tech-

nique which minimises the operation cost (area/power) of
arithmetic operations in SFG’S by means of algebraic trans-
formations. A minimal set of elementary transformations

are combined in a flexible way into composite transforma-
tions, which are used in an ascent/steepest descent search
algorithm. This approach achieves optimal or close to
optimal results with very few transformations. Due to nor-
malizing the SFG prior to optimisation, the technique is
invariant to functionally equivalent structural changes in
the initial specification. As a result, the system designer
can explore and accurately evaluate more versions of a par-
ticular algorithm without being bothered with the structural
implications of the more detailed (low-level) transforma-
tions. No other methods known to us can achieve this
desired property for our class of SFG’S and cost function.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

11]

12]

C. Polychronopoulos, “Compiler optimizations for enhanc-

ing paraltetism and their impact on the architecture design,”

IEEE Trans. on Computers, VO1.37, No.8, pp.991-1004,

Aug. 1988.

A. Nicolau, R. Potasman, “Incremental Tree Height Reduc-

tion For High Level Synthesis,” Proc. of the 28th DAC, pp.

770-774, 1991.

G.P. Fettweis, L. Thiele, “Algebraic Recurrence Transfor-

mations for Massive Parallelism,” Proc. of the IEEE VLSI

Signal Processing Workshop, pp. 332-341,1992.

A. Chandrakasan, M. Potkonjak, J. Rabaey, R. Brodersen,

“An Approach For Power Minimization Using Transformat-

ions,” Proc. of the IEEE VLSI Signal Processing Work-

SflOp, Pp. 41-50, 1992.

M. Potkonjak, J. Rabaey, “Maximally Fast and Arbitrar-

ily Fast Implementation of Linear Computations,” Proc. of

ICCAD, pp. 304-308, NOV. 1992.

A.V. Aho, R. Sethi, and J.D. Unman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley, 1986.

D.B. Loveman, “Program Improvement by Source-to-

Source Transformation,” Journal of the ACM, Vol. 24, No.

1, pp. 121-145, Jan. 1977.

H. Samsom, L. Claesen, H. De Man, “SynGuide: An envi-

ronment for doing interactive Correctness Preserving Trans-

formations,” Proc. of the IEEE VLSI Signal Processing

Workshop, 1993.

D. Whitfield, M.L. Soffa, “An Approach to Ordering Op-

timizing Transformations,” 2nd ACM Symp. on Principles

and Practice of Parallel Progr., pp. 137-147, Mar. 1990.

C.E. Leiserson, F.M. Rose, J.B. Saxe, “Optimizing Syn-

chronous Circuitry by Retiming,” Proc. 3rd Caltech ConL

on VLSI Design, pp. 87-116, 1983.

R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli,

A.R. Wang, “MIS: A Multiple-Level Logic Optimization

System,” IEEE Trans. on CAD, Vol. 6, No. 6, pp. 1062-

1081,1987.

W. Geurts, F. Catthoor, H. De Man, “Quadratic zero-one

Programming Based Synthesis of Application Specific Data

Paths”, Proc. of ICCAD, pp. 522–525, Nov. 1993.

151

	Main Page
	ISSS94
	Front Matter
	Table of Contents
	Author Index

