
Bit-Alignment for Retargetable Code Generators *

Keen Schoofs Gert Goossens Hugo De Mant

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract

When building a bit-true retargetable compiler, every
signal type must be implemented exactly as specified, even
when the word-length of the signal does not match the
length of the available hardware. Extra operations must
be introduced in the algorithmic description in order to
ensure that the remaining bits do not in$uence the data-
bits and to assure that signal types are correctly converted
from one type to anothe~ An algorithm will be presented
which generates code to assure bit-trueness, optimised for
the available hardware.

1 Introduction
In DSP-algorithms every signal has a certain signal ~pe,

indicating the number of bits in the signal, the number
of bits behind the binary point, and the way of encoding
(signed, unsigned, two’s complement, etc ..). In most al-
gorithms, signals with a large variety of types are present.
The word length of these signals (the number of bits they
contain) can be different from the size of the functional unit
they are mapped upon. If the word length is bigger, multi-
ple precision arithmetic must be ud, if they are smaller,
it must be decided to what value the remaining bits (called
non-data bits) must be set. We have to decide how many
non-data bits we allow at the most significant bit (msb)
and least significant bit (lsb) side of the data word, and
to what values these bits can be set in order to avoid that
they corrupt the data bits during arithmetic operations (the
operations must remain bit-true). The allowed values of
these bits will depend strongly on what kind of operations
will be done with these signals. (see figure 1)

The presence of different types normally implies that
during computation, certain signals must be converted from
one type to another. This is specified by means of cast op-
erations in the algorithmic speeitication. A cast operation
may imply that certain bits must be removed from the orig-
inal signal, that extra copies of the sign-bit must be added
at the msb-side of the data word, or that extra zeroes must
be added at the lsb-side of the data word.

In this paper, we present a technique called software
alignment, which takes care of the bit-trueness of a design
and correctly implements type changes by adding opera-
tions to the design. This is needed because retargetable
code generators can not simply add dedicated hardware

*This research was sponsored by ESPRIT project 2260 “SPRITE” of
the E.U.

t p~ofe~~orat the Katbolieke Univemitelt ~Uven

D

A

TElD
D

A A
D T

B
A A
T E+ A

D
A
T D
A A/ /~T

A
Non-data bits B D+ElD

A
T
A

Figure 1: two possible alignments for the addition of two

4-bit data words on an 8-bit adder

to add and remove bits during type changes, since they
generate code for predefine processor cores. The bit-true
character is an important requirement for retargetable code
generation, because for certain applications (like filters) the
actuat type of the signals is important to obtain the desired
result. More-over programmable DSP-cores are often used
to do rapid prototyping when designing custom applica-
tion specific architectures (ASICS). In order to evaluate
what the influence of the actual hardware bit-widths in the
ASIC will be on the design, we need to have a bit-true code
generator.

In this paper we assume an architecture model in which
complex programmable data paths, consisting out of mul-
tiple functional units (FUS), are interconnected by busses.
An example with two data paths, a multiplier/accumulator
MPY/ACC) with a downshifter bank and an ALU with an
upshifter, is shown in figure 2,

1
0
v
T

:
D

Figure 2: Example architecture of a programmable proces-
sor core.

O-8 186-5785-5/94 $03.00 @ 1994 IEEE
76

The research described in this paper is part of the CHESS
retargetable code generation project.

2 Literature survey
In literature not much attention has been paid to the

subject described above. Traditional, software compilers
are only concerned with type changes between integer and
floating point, and between integers and doubles [4], and
do not really support conversions between integers with
a different number of bits. Normally the only kinds of
integers supported have a length which is a multiple of the
register size of the target processor. For retargetable DSP
code generators the importance of signal types and the
problem of bit-trueness in simulation and implementation
was recognised in [5], but no clear solution was presented.

Some related work, concerning hardware alignment, can
be found in [1]. Hardware alignment solves the same prob-
lem as software alignment but for customizable ASIC pro-
cessors instead of predefine programmable processors. In
[1] it is assumed that the interconnection network between
the data paths is not fully defined so that the compiler can
generate extra wiring to change the alignment and types of
the signats. An atgorithm is presented which minimises the
amount of extra wiring needed for this task. The resulting
architecture exactly implements the signal types as given
in the original specification.

In [3] an algorithm is presented which modijies the signal
types from the specification, without degrading the preci-
sion of the calculations, also in order to minimise the extra
wiring needed to implement the different remaining type
changes. This does not necessarily mean that the num-
ber of different types is reduced, but only that the number
of different word lengths in the different types is reduced.
The algorithm is quite useful as a preprocessing step before
solving the software alignment problem discussed in this
paper. It can not, however, take the place of this algorithm,
because it only optimises the types, and does not gener-
ate a set of operations which actually implement the type
changes.

3 Definitions
3.1 Signal type

Every signal in a DSP algorithm has a signat type which
indicates how the data bits must be interpreted. If we
assume that the signal is always in two’s complement rep-
resentation, the signal type can be denoted: < w1, fp >
where W1 is the number of data bits of the signal, and ~p
indicates the position of the binary point, counting from
the least significant data bit, as illustrated in figure 3. nb
denotes the number of bits of the wire or register carrying
the signal.

3.2 Signal alignment
The alignment of a signal is defined if we know the

number of non-data bits at the msb and lsb side of a data
word and if we know the value of these non-data bits. The
alignment-attribute of a signal therefore consists OE

● The offset:this integer indicates the number of non-
data bits either at the msb or at the lsb side of the data
word (the size of the lsb or msb extension) . If one
size is known, the other one can be derived since we
know the length of the data word and the size of the
hardware carrying the data.

MSB side

off

F

El

MSB side
——

1

MSB–extension
———

———

— — —

LSB-extension

——

LSB side LSB side

Figure 3: A signal with type <6,4> mapped on a carrier
with nb=12. To the right is a more schematic representation
in which the data bits are represented by a thick line.

The alignment side: This indicates whether the offset
is specified for the msb or lsb extension.

The msb extension: This indicates the value of the
non-data bits at the msb side of the data word.

The lsb extension: This indicates the value of the non-
data bits at the lsb side of the data word.

For both extensions, many different bit patterns are pos-
sible. In practice, only the following bit-patterns are useful:

● Zero-extension: all non-data bits are set to zero.

● One-extension: all non-data bits are set to one.

● Sign-extension: all non-data bits are set equal to the
sign bit of the data word.

For algorithmic reasons we also define the following:

●

●

Don’t care extension (x-ext): To be used when the
number of non-data bits is zero, or when the contents
of the non-data bits are irrelevant for the correct exe-
cution of the operation.

Undefined extension (u-ext): To be used if the con-
tents-of the non-data bits can not be classified in any
other category. (for example, because not every bit in
the extension is set to the same value) or can nor be
determined at compile time (because of, for instance,
carry-rippling). This does not mean that these bits are
irrelevant to the operation that uses them. This exten-
sion can be generated for instance at the msb side of
the result of an addition.

As an example, the following alignment attribute

aii = (rnsb 1 s O)

means that the signal has 1 non-data bit at the msb side of

the data word, of which the value is equal to the sign bit of
the data word, while all non-data bits at the lsb side of the
data word are set to zero.

77

3.3 Alignment propagation
Most operations do not allow every possible alignment

for their input operands. Also for every type of operation
there exists a relationship between the input and output off-
sets and between the input and output extensions. These
relationships are parmneterised expressions, which model
the freedom available in the selection of the actual align-
ment of the signals. This information is stored once and
for all in the library of the compiler, in which all supported
operations are declared. In the case of the CHESS library,
over 100 operations are supported in this way. Alignment
propagation then means determining the allowed align-
ments for every signal in the DSP-algorithm based on the
allowed alignments of the operands of the signal. More de-
tailed information about alignment propagation is modeled
can be found in [1].

3.3.1 Offset propagation

The relation between input and output offsets can be ex-
pressed in mathematical equations. In all practical exam-
ples these equations are linear. Each operation contributes
a number of equations equal to or less than the number of
inputs of the operation, of the form:

#outputs #inputs

x
UiX~ +

x
iZjXj = CSt

i=l j=l

with ai and a integer and in most practical cases equal to
one or zero. C!st is also atways integer.

3.3.2 Extension propagation

When we want to express the relation between the input and
output extensions for a certain operation, we can not use
a mathematical formulation of the same simplicity as for
offsets. Instead we use lookup tables. For each operation
possible on each functional unit, we require 2 tables per
output (one for the msb and one for the lsb side). In each
table the value of the output extension is given for each
allowed combination of input extension values. As an
exanmle the Isb extension table for the the addition (table
1) is ~iven.

EPORT B

1 1
s s
x x f

s

s
--
.-
--

i

x

x

Table 1: lsb extension table for the addition

The alignment tables of several operations happening
one after the other cam be combined into larger alignment
tables as is explained in [1].

3.4 Alignment conflicts
We have an alignment conjlict if the alignment of one op-

eration is unacceptable as input for the next operation. The
software alignment algorithm will try to find alignments
for each operation which minimise the number of align-
ment conflicts. However, sometimes alignment conflicts
can not be avoided. In the rest of the paper techniques are
presented to solve alignment conflicts. For example, ex-
tra operations can be inserted in the DSP-algotithm, called
software alignment operations, which can resolve the align-
ment conflicts.

3.5 Software alignment operations
Some FUS can execute operations, which can mdlfy

the alignment of a signal without affecting the values of
its data bits. For instance, a shift operation can be used
to change the offset, while logical-OR and -AND opera-
tions can change the extensions. In a library these sofhvare
alignment operations for the most common functional units
(a superset of the hardware available for the particular pro-
cessor we are generating code for) are stored.

Our library currently supports the following software
alignment operation~

out = in + zero; out = in — zero;

out = in + in; out = in A one;

out = in V zero; out = in 63 zero;

Out = in << n : Ci~; Out = in >> n : Ci~;

out = in . 2m;

where A, V, Q << n : Ci. and >> n: ci. represent logi-
cal AND, OR, EXOR, and up- and downshift respectively.
zero and one are constants with data bits equal to O and 1
respectively, and with extensions that can be chosen such
to set the desired extensions of the result. n is the shift
value, which can be chosen to set the result’s offse~ ci~ is
the value of the bits shifted in. It can be chosen to set the
result’s extension.

On certain functional units (like an adder-subtracter)
a number of different software alignment operations are
possible. We can indicate this by combining the extension
tables, of the possible software alignment operations into a
multiple output table. This is an alignment table with for
each combination of input values at most n output-values,
each corresponding to a different mode of the functional
unit. When the most interesting output extension is finally
decided upon, the functional unit is set in the corresponding
mode. In the rest of the paper we will ignore this option,
in order to reduce the complexity of the examples, without
any loss of generality.

4 Software alignment algorithm
Software alignment has to assure the bit-true charac-

ter of a design. It does this by determining the correct
alignment for every signal in the DSP-algorithm, by means
of alignment propagation. The propagation minimises the
number of alignment conflicts, but in most practical cases,
still some conflicts will remain. Remaining conflicts can be
solved in two ways by the software alignment algorithm. It
can try solve them by replacing existing pass operations by
software alignment operations (@ware alignment without
introduction of extra cycles). If this is not sufficient it can

78

introduce extra operations (software alignment with intr-
oduction of extra cycles). Finally software alignment must
also implement type changes, where a signal type changes
from one type to another.

These three aspects of software alignment will be ex-
plained separately, and will be illustrated by means of a
small example, mapped upon the architecture presented in
figure 2.

4.1 Software alignment without the introduction

of extra cycles

If we want to implement the algorithm z = (a* b) + c
on the hardware presented in figure 2, we can first execute
tmp == a * bon the multiplier and store tmp in regc. Next,
we can compute z = tmp + c. In order for a signat to get
to its destination, it must travel through a number of FUs
which are in pass mode. If we explicitly write the pass
modes (this is done already by the instruction selection
tool of the retargetable code generator [6]) the algorithm
becomes :

,z. ((a* b)@@+cQ (1)

pass pass pass

If we now replace the pass modes by software alignment
operations, we can at the same time implement alignment
changes required to solve possible alignment conflicts and
transport the signal from one operation to the next.

z=(axb+zero>>n:cin +c*2m (2)
~~

align align

This equation must now be solved in the offset and exten-
sions of the different signals and constants. If it can not be
solved, extra variables can be introduced, by adding extra
software alignment operations, which causes an overhead
of extra cycles to be executed by the DSP-atgorithm. This
can happen when the data path does not have any FUs
in pass-mode, or if these FUs in paw-modes are unusable
to solve the alignment conflict. How often this happens,
depends upon the hardware the DSP-algorithm is mapped
upon.

4.2 Software alignment with the introduction of
extra cycles

If even with the techniques described in the previous
section some alignment conflicts remain, extra operations
must be added in between to convert the alignment to some-
thing that is acceptable. If the conflict occurs between two
operations that execute on different data paths, the signal
is simply rerouted through a number of other data paths,
during which the alignment of the signat is modified. To
determine an efficient solution, the compiler has to look up
the possible software alignment operations on these addi-
tional data paths. For each possible path between an data
path input and output, these operations are represented in a
separate term, called data path term (DP term). DP terms
are generated by the compiler in a preprocessing step. For
example, for the MPY-ACC data path in figure 2, a possible
DP term would be

out = (in * (2n) + zero) >> 7n : c

to indicate that an incoming signal can be multiplied with
a power of 2 (which modifies the offset), then added with
zero and then downshifted over m positions, with the shift-
in bits set to c. The contents of these DP terms can be
pruned to take into account encoding restrictions imposed
by the processor’s controller, if two different functional
units can not be in a certain mode at the same time.

From the list of terms, a term is chosen which can trans-
form the conflicting alignment into an acceptable form. If
no such term exists a concatenation of these terms must be
used, indicating that the signal must pass through several
data paths in order to get the correct alignment. If it can
be proven that no combination of DP terms will yield a
valid solution, we have an error condition. This is the case
when the addition of any DP term to all chains of DP terms
already computed, does not yield anew term which makes
new combinations of input and output alignments possible.

If the conflict does not happen at data path borders, the
conflicting signal must first be exported out of the data
path (using pass-modes, which can be replaced by software
alignment operations). Then the terms described above
must be used, and finally the signal must be imported again
to the position where the original conflict occurred, again
using pass-modes which can be replaced by software align-
ment operations.

Assume, in the example of equation 1 that a conflict oc-
curs after the multiplication “a* b“, and that the conflict can
be solved with the upshift software alignment operation:

out = in << n : c~n

We use the following DP term on the ALU-Shifter data
path:

out = (in + zero) << n : c~n

We would then get the following equation:

z = ((((a* b) + zero)> n, : f+

export and align

+zero) << ns : c~n3
\ d

align via DP term

*2m1 + zero) >> nz : Cj~2 + C * 2m2.
\ /

import and align

The more software alignment operations we add, the more
degrees of freedom we have to set our extensions and offset
correctly. If more than one solution is possible, clearly the
solution which requires the least numkr of extra cycles
must be chosen.
4.3 Cast operations implemented with software

alignment
Figure4 shows the cast of a signal of type <4,3> with

alignment =(msb 4 x x) to a type <5,2> with alignment
=(msb101)

We can split up each cast operation in a number of
elementary transformations using the following procedure
(see figure 4):

● Step A First we identify which of the bits in the orig-
inal type will still be present in the final type.

79

MS B

I

x
x
x
x

d

a

d

d

A Ii!kl
x— s
Xcs
x s

d d

x
c

x

/

D E!
sEO

d 1
E

x 1

LSB

Figure 4: A cast-operation, split up in a number of ele-
mentary transformation, Steps B, C and E are to be imple-
mented with software alignment. Shown here is the cast of
a<4,3>Ml=(msb 4xx)toa <5,2 >ali=(msbl Ol)
on a 8 bit architecture. “d” indicates a databit.

●

●

●

●

Step B: These bits are then shifted to the position in
which they must appear in the final result.

Step C: Then the sign-extension at the msb side and
zero-extension at the lsb-side are generated, if neces-
sary.

Step D: The bits needed in the signal of the new type
are now ready. We still have to identify which bits are
now present in the new type.

Step E: Finally the correct alignment extensions are
generated if needed

Steps A and D do not require any special operations, they
are just internal bookkeeping. Step B is an offset change,
and steps C and E are equivalent to the set(ing of alignment
extensions. Steps B, C, and E can be implemented using
the software alignment techniques presented in section 4.2.

4.4
●

●

●

●

●

Outline of the software alignment procedure
Based on information about the available processor
hardware, an exhaustive list of all possible DP terms
is compiled,

Where possible, the pass operations in a design are
replaced by software alignment operations.

Alignment attributes are checked throughout the de-
sign for conflicts. After this step the alignment of
every signal in the design is known. The method for
doing this is identical to the alignment propagation
technique presented in [1].

All remaining alignment conflicts are solved using the
techniques described in section 4.2.

The cast operations are imdemented using the tech-
niques des&ibed in section-4.3.

During the latter two steps, a combination of software align-
ment operations has to be found which allow us to go from
one predefine alignment to another. This is done with
a branch and bound method. For each alignment conflict
which requires the introduction of extra cycles and for the
steps B, C and E of each cast operation, a tree is built start-
ing from the consumption alignment (ali-cons) and build-
ing towards the production alignment (d-prod). At each

level of the tree all available DP terms are applied to the
alignments resulting from the previous level of the tree.
Branches which do not contain any new combinations of
offset and extension are pruned. The tree has a finite depth
because there are only a limited number of combinations of
extensions and offsets. Indeed, the number of extensions
is limited, and the offset is an integer number which has as
an upper bound the size of the hardware. If finally none
of the branches of the tree match the initial alignment, we
have an alignment conflict which can not be solved on the
available hardware.

It is not required to calculate the entire tree. The tree
is built level by level. As soon as one of the branches of
the tree at a certain level contains the initial-alignment, no
further levels need to be computed. This is because the cost
function which is used to evaluate the quality of different
solutions is simply the number of cycles they need when
implemented in the DSP-algorithm. This number of cycles
corresponds to the depth of the tree at which the solution
was found. If more than one branch contains the targeted
initiakdignment, that branch is selected which contains
the operations that generates the least number of resource
conflicts during scheduling. All this is illustrated in figure
5.

ali
{ali2. .ali7)

con (ali-prod)

Sa3 (alill)

{)

(ali4, {ali12}
.%3

ali7)
Sa3 {ali13. .ali16)

Figure 5: A software alignment tree from ali-cons to ali-
prod, for the case where three software alignment opera-
tion Sal, Saz and Saq are available. A cross indicates
a dead-end branch, a circle indicates we have reached the
destination alignment.

5 Experiments

In this section a small experiment is presented to show
how a software alignment tree is generated. From the
cast example in section 4.3 we will generate the operations
necessary for step C. We assume only the following DP
terms are availabkx

out = in + zero

out = in >> 1 : sign-bit

out = in<<l:O

and each DP term can be used after itself and after each
other DP term. We also do not concern ourselves with
importing and exporting the signal to and from data paths.
We start with a signal with alignment ali=(msb 3 x u), and
we want to generate a signal with ali=(msb 3 s u).

80

MSB:S

LSB, U out. in<<l
MSB : s

MSB : S of f:5

LSB:U out. in. <1
Off : ERROR MSB:X

of f:4

out.ln<<l

MSB-ext:s

LSB–ext: u

‘ffse’”

MSB : s

LSB : U

0ff:2
Out=ln>>l

Of f:l mt=in>>l Off , ERROR
LSB:U

Of f:o

Figure 6: Example of a software alignment tree needed to go from ali-in =(msb 3 x u) to ali-out=(msb 3 s u), if only
an addition, shift-up and shift-down are available. The dotted line indicates the best solution. The solution consists of 3
upshifts followed by 3 downshifts.

We build our tree starting from the consumption align-
ment and we work backwards toward the production align-
ment. The resulting tree is shown in figure 6. Since the
tree is built from consumption to production, the alignment
consumed by a DP term is written on the right side of the
branch and the alignment produced at the left side. This
way for a downshift operation (which increments the off-
set), the lowest offset is located at the right side of the
branch.

Note that in the tree we assume that every branch, and
therefore every DP term has only one output extension.
In reality most DP terms will have more than one possi-
ble resulting alignment. This however does not affect the
number of branches in the tree. At each level in the tree we
have 3 branches corresponding to each of the possible DP
terms. At the tirst level we see that the resulting alignment
in one branch is the same as the alignment at the begin-
ning of the branch. This branch can be pruned, because
any solution found in this branch will be more costly than
the final solution, because it contains a useless first step.
Each new level m the tree represents a new DP term in
the equation, and therefore also an extra cycle needed in
the DSP-algorithm to execute the alignment change. The
production alignment is reached when the tree is 6 levels
deep. At this point we had to examine 24 branches. Note
that we can stop when the first solution is found. Any other
solution would be more costly to implement, because it
would be found at deeper levels in the tree and thus would
require more cycles to execute in the DSP-algorithm.

By following the path in the tree from production align-
ment to consumption alignment (i.e from right to left), we
can see that in order to implement the alignment change we
need 3 upshifts followed by 3 downshifts, in that order. In
the tree we can also find the intermediate alignments of the
signal during the transformation. The operations can now
be added to the DSP-algorithm.

6 Conclusions
The problem of bit-alignment is important in retar-

getable code generation for DSP, since DSP algorithms
contain signals of many different types. The problem has
been largely ignored in literature up till now. The purpose
of the software alignment algorithm is to find a bit-true
mapping of the design while minimizing the required num-
ber of extra operations. The algorithm is heuristic in nature.
Future work will include the combination of the software
alignment algorithm with the type-optimisation technique
presented in [3].

References
[1]

[2]

[3]

[4]

[5]

[6]

K. Schoofs, G, Goossens, H. De Man, “Bit-Alignment
in Hardware Allocation for Multiplexed DSP Archi-
tectures”, Proc EDAC 1993, p 289-293.

D. Lanneer, et al, “Architectural Synthesis for
Medium and High Throughput Signal Processing with
the new CATHEDRAL Environment”, published in
“High-Level VLSI Synthesis”, edited by R.Camposano
and W.Wolf, Kluwer, 1991.

K. Schoofs, G. Goossens, H. De Man, “Signal Type
Optimisation in the design of time-multiplexed DSP-
architectures.”, Proc. EDAC1994.

A. V. Aho, R. Sethi, J. D. Unman, “Compilers, Tech-
niques and Tools”, Addison-Wesley Publishing Com-
pany, p344-247, 359-364.

D, Genin, J. De Moortel, D. Desmet, E. Van de Velde,
“System Design, Optimization and Intelligent Code
Generation for Standard Digital Signal Processors.”,
Proc. ISCAS 1989, p 565-569.

J. Van Praet, G. Goossens, D. Lanneer, H. De Man,
“Instruction Set Definition and Instruction Selection
for ASIPs”, Proc of High Level Synthesis Workshop,
Ontario. 1994.

81

	Main Page
	ISSS94
	Front Matter
	Table of Contents
	Author Index

