
 Abstract

The reuse of well-tested and optimized design objects is
an important aspect for decreasing design times, increas-
ing design quality, and improving the predictability of
designs. Reuse spans from the selecting cells from a
library up to adapting already designed objects.

In this paper, we present a new model for reusing
design objects in CAD frameworks. Based on experiences
in other disciplines, mainly in software engineering and
case-based reasoning, we developed a feature-based
model to describe design objects and their similarities.
Our model considers generic modules as well as multi-
functional units. We discuss the relationships of the model
to the design process and to the configuration hierarchy of
complex design objects. We examined our model with the
prototype systemRODEO.

1. Introduction

The complexity of VLSI designs increases rapidly.
Contrarily, the design times must be reduced to resist the
growing pressure of competition. To solve this problem,
new design management concepts are necessary which
reduce superfluous design activities and concentrate the
designer’s work on the essential and ambitious problems.

An examination of large design databases shows that
many functions are realized more than once. In addition,
cells are laid out in many alternatives. Therefore, a chance
to reduce the design time is reusing already existing
results. We can do this reuse by instantiating design
objects which exactly match a given requirement specifi-
cation or by adapting similar objects. In this paper, we
present a feature-based reuse model which expresses the
suitability of reusing design objects for the actual design.

The Reuse Problem
Reuse of design information is one of the best opportu-

nities to increase the productivity. Reuse decreases the
design time and increases the product quality by using
well tested design objects [8]. In ECAD systems, reuse

spans from selecting cells from a library [6] up to adapting
already designed objects to a given requirement specifica-
tion.

Generally, we discern three modes of reuse:
- Reuse by Instantiation

The main idea is to reuse often used components, e.g.
registers, instead of redesigning them from scratch.
Here, candidates for the reuse are frequently used
components or components which implement stan-
dards, e.g. the IEEE floating-point standard [8].

- Reuse by Parameterization (Generation)
A parameterized object (e.g. like a net in [3]) is
instantiated with fixed values. For example, instead
of designing a new 32-bit multiplier an existing n-bit
multiplier can be instantiated with a width of 32 bit.
A parameterized object builds an equivalence class
over a set of concrete objects. At least before generat-
ing the final layout, a generator or a compiler must
flatten the parameterized objects. Examples of possi-
ble parameter classes are the bit-width, the arity, the
function, and the microprogram memory.

- Reuse by Adaptation
Already designed objects are adapted to a given
requirement specification. For example, it is much
more easier to write a VHDL program of a 32-bit
adder by adapting the code of a 16-bit adder instead
of designing the adder from scratch. The correctness
of such designs is not kept automatically and the
result of the adaptation process must be validated.

In the first and second case, we search for objects
which match the given requirement specification exactly.
In the third case, we search for objects which are suitable
for an adaptation process that means they are onlysimilar
to the given specification. The degree of similarity of a
requirement specification and a given object should corre-
spond to the costs of the complete adaptation process.

Reuse in other Disciplines
Of course, reusing components is not specific to

ECAD. The problem of reuse is also well known in soft-

Reuse of Design Objects in CAD Frameworks

Joachim Altmeyer Stefan Ohnsorge Bernd Schürmann

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission. 1994 ACM 0-89791-690-5/94/0011/0754 $3.50

ware engineering and in artificial intelligence by the term
case-based reasoning. In software engineering, a survey of
interesting works can be found in [4]. In [2], a framework
for a “software life-cycle technology that allowscompre-
hensive reuse of all kinds of software-related experience”
is introduced.

Case-based reasoning deals with the reuse of available
solutions [10]. The basic process of case-based reasoning
is presented in [5]. First, all existing cases are indexed in a
case memory so that they can suitably be retrieved (index-
ing). A search algorithm finds the adequate reuse candi-
dates. The most appropriate candidate or candidates are
selected and adapted to the new situation. After evaluating
the result, the case memory is extended with the new
cases. The used similarity measures for the retrieval pro-
cess [12] base on theTversky contrast model [17].

Tversky defines for two objects x, y:
A = The set of features belonging to x
B = The set of features belonging to y
A similarity scale S of x and y is defined as

with θ, α, andβ are positive real numbers. This model
expresses the similarity of two objects as a function of
their common and their different features (see figure 1).

If, for example, θ = 1 andα = β = 0, we only look for
common features. On the other hand, ifα = β = 1 andθ = 0,
we only take the different features into account.

Reuse in ECAD
The process of reuse in an CAD systems is determined

by both the complexity of the design objects and the com-
plexity of the design processes. [9] describes useful rela-
tions between design objects. Obviously, if we permit the
reuse of all objects stored in the design database (and we
avoid redundancy), the relations between the design data
then become complex.

An important difference between ECAD and many tra-
ditional CAD systems is the subdivision of a design pro-
cess into several abstraction levels (domains). A VLSI
design process may begin with an abstract description (in
form of an HDL-program), continues with a netlist repre-
sentation, and ends with the final layout of a cell.

To date, the support of reuse in existing ECAD systems
is only rudimentary. In [6], a cell selection method is pre-
sented where for each cell the relevant data are normalized
and ranked before a search algorithm is used. In [8], the
problem of reuse is motivated and a classification of reuse

S (x, y) =θ ⋅ f (A ∩ B) - α ⋅ f (A - B) - β ⋅ f (B - A)

Figure 1: Venn Diagram to Illustrate Tversky’s Contrast
Model

(A - B)

(B - A)

(A ∩ B)

strategies is given. Although there are first publications,
much more work has to be done before “comprehensive
reuse” is supported by ECAD frameworks.

Structure of this Paper
The rest of this paper is organized as follows: In section

2, our reuse model is presented. Section 3 shows a proto-
type implementation of a reuse tool. An examination of
the reuse potential and first experimental results are shown
in section 4. At the end, section 5 summarizes the pre-
sented reuse method. This leads to a survey of interesting
future works.

2. The Reuse Model

In this section, we characterize design objects and a
common design model. After defining specifications, we
focus on the similarity between these specifications and
existing design objects. We also describe the design space,
the design process, and the configuration hierarchy of
complex objects.

Design Objects
In contrast to most publications (especially [9]), we call

every object resulting from a design step adesign object
(DO) because from the viewpoint of the reuse process we
need not differ between alternatives or versions. Each
design object is characterized by severalproperties or fea-
tures which are defined as follows:

Definition: Feature (Property)
Let DO be a design object. A feature (prop-
erty) p is a predicate with

p (DO) = true.

We define aset of features (set of properties)
P of DO as

Note that the features do not depend on the representa-
tion of the design object (e.g. VHDL program or EDIF
netlist). Every feature is an instance of afeature class. For
example, the feature ‘Aspect Ratio is 1.5’ is an instance of
the feature classAspect Ratio. Of course, more than one
instance of a feature class can be assigned to a design
object (e.g. {‘Function is Adder’, ‘ Function is Multiplier’} are
features of an ALU with ‘Function is Adder’ and ‘Function is
Multiplier’ are instances of the feature classFunction).

Features can be classified intosimple or complex fea-
tures. A feature is regarded as an attribute/value combina-
tion. Simple features have atomic values (e.g.‘Size is 0,04
mm2‘) whereas complex features represent aggregates
(e.g. in form of a truth table). Simple features arenominal,
ordinal, or cardinal. For example, a feature classTechnol-
ogy contains nominal,Design State ordinal, andSize cardi-
nal features.

P = {p | p (DO) = true}.

A feature is calledgeneric if it summarizes other fea-
tures of the same feature class (e.g. ‘Arity is Even’). There-
fore, a generic feature defines a subset of the
corresponding feature class. In our case, the feature ‘Arity
is Even’ corresponds to the set {‘Arity is 2’, ‘Arity is 4’, ‘Arity is
6’, ...}.

Specifications
Similar to design objects, requirement specifications

are also characterized by a set of features. The input of a
design process is asystem specification. The features of
this specification span different domains in the design
space. For examples, in the specification {‘Function is Multi-
plier’, ‘ Width is 16-Bit’, ‘ Technology is CMOS’, ‘ Size ≤ 0,15
mm2’, ‘ Aspect Ratio is 1’} the function belongs to the
domain behavior whereas the aspect ratio belongs to the
domain layout. Therefore, only some of these features
make the input specification of the first design step, e.g.
writing a VHDL description for the 16-bit multiplier.
Together with other features of the system specification,
this description is the specification of the next design step.
We call these specifications for single design stepstool
specifications. The system specification is a tool specifica-
tion at the meta level.

A Common Design Model
Figure 2 shows the history of a design process of a

module documented in the product model. The design
began with an abstract description (e.g. in form of a high
level hardware description language) represented by DO1
and ended with the final layout DO5. The module will
generally be designed at different abstraction levels which
we call domains (similar to the representations in Gajski’s
Y-Chart [7]; the geometric representation is divided into
floorplan and layout). Based on specifications, the first
design steps could be a behavioral design and a netlist
generation. Later on, we perform area estimation and
floorplanning, and, finally, the construction of the layout.
All realizations (design data) of a module are part of a

DO1 DO2

DO6

DO4 DO5

DO3

domain
behavior

domain
structure

domain
floorplan

domain
layout

more abstract less abstract / more precise

refinement design step

Figure 2: Example of a Design

refinement tree. This tree is similar to the version tree of
Katz [9]. Branches representdesign alternatives and the
tree levels represent differentrefinement levels.

If a system specification Sj is characterized by a set of
features Pj, a design is successful if a designed object DOi
with features Pi fulfills the specification Sj, i.e. Pj ⊆ Pi. A
refinement design step(synthesis step) is characterized by
a function ϕ with and

 (see also [1] and [15]). (Pi1 ∩ Pj)
and (Pi2 ∩ Pj) are the sets of features of the system speci-
fication Sj which are fulfilled by the design object DOi1
and DOi2, respectively. Of course, during a design there
are other design steps, too, e.g. the correction of errors,
but these are no synthesis steps.

We also say that two arbitrary design objects DOi1 and
DOi2 arealternatives with respect to a design object DOj
(or a specification Sj) if Pj ⊆ Pi1 and Pj ⊆ Pi2. In figure 2,
we see that DO3 can be regarded as part of a specification
for DO4 and DO6, and, therefore, DO4 and DO6 are alter-
natives with respect to DO3.

Reuse of Specifications
Before starting a design, it is useful to ask: ”Has some-

one tried a design with the same requirement specification
before?”. An answer to the question may help the designer
to reuse experiences of other designers with the same
specification. Most designs cannot fulfill their requirement
specification in its entirety. So, the answer gives some
information about the reasons why the previous design
failed or it provides the “best possible” design for the
given requirement specification. Specifications of ongoing
designs may inform designers about the progress of simi-
lar works. This represents a simple but effective instru-
ment to support reuse in a concurrent engineering
environment and to avoid unnecessary parallel work.
Therefore, we store all specifications together with the
resulting design objects and the experiences of the design-
ers in the database. (An adequate data model for this pur-
pose can be found in [14]). There is no difference between
design objects and specifications for the retrieval process
because of the same representation by a set of features.

Similarities of Design Objects
Before we define the similarity of design objects and

specifications, we define the similarity of two features of a
feature class C by a function

simC: C × C → [0, 1]
which roughly expresses the expense of converting the

first feature to the second feature. For example, simC (pi,
pj) = 1 corresponds to equivalent features. The linguistics
calls these synonyms. simC (pi, pj) = 0 means that the fea-
tures are totally different. Note that this function is asym-
metric because it could be easier to transform a feature pi
into a feature pj than vice versa. For example, it is easier to

ϕ (DOi1) = DOi2
(Pi1 ∩ Pj) ⊆ (Pi2 ∩ Pj)

enlarge a cell by adding empty area than to shrink the cell.
A problem is the mapping fromqualitative, i.e. nomi-

nal and ordinal features toquantitative, i.e. cardinal fea-
tures. For nominal features, the function simC may yield 1
for synonyms and 0 otherwise. For ordinal features, the
mapping may be given explicitly, e.g. in form of a matrix
(with the value 1 on its diagonal) which represents a
directed graph. For instance, for the qualitative feature
classFunction we roughly express that ‘Function is Subtrac-
tor’ is more similar to ‘Function is Adder’ than to ‘Function is
Multiplier’. For quantitative feature classes the return values
of the function simC must be normalized to the range
[0, 1].

Now, we define asimilarity functionSIM for design
objects (and specifications) as

Γ is the set of all feature classes which have instances
in Pi. Each rC is a positive real number. It represents arel-
evance factor (weight factor) which expresses the impor-
tance of the corresponding feature class for the
comparison. The sum of all weight factors has to be less or
equal than 1. In our implementation (section 3), we use
default weight factors based on our current experiences. If
a feature class of an instance in Pj has no corresponding
instance in Pi, this feature class is not taken into account.
We discuss the reason for this below.

The Goal
The goal is to find a design object DOj (or several

design objects) with SIM (Si, DOj) is maximal for a given
requirement specification Si. If Pi contains a feature which
has no corresponding feature (i.e. a feature of the same
feature class) at the design object, the feature is undefined.
In this case, we assume that the function SIMC returns 1/2.
However, if the design object has a feature which has no
counterpart at the specification this feature is not used, i.e.
the corresponding feature class is not inΓ.

The reason for this is that we do not want to find similar
objects in the sense of Tversky’s contrast model (see sec-
tion 1). Our goal is to find design objects whichfit the cur-
rent specification. Therefore, the set (B - A), i.e. the set of
features of the design object which has no corresponding
feature at the specification, will not be considered because
they do not influence the fitness. On the other hand, the set
(A - B) is considered with the value 1/2 for SIMC (Si,
DOj).

Multi-Functional Modules
If a feature class C is represented by only one instance

in Pi and Pj, respectively, the function SIMC is equivalent
to the function simC. If there is more than one instance, as
it is possible for the feature classFunction (see above), we

SIM DOi DOj,() rC SIMC DOi DOj,()⋅
C Γ∈
∑= .

define the similarity between two sets of features of the
same feature class as:

with Ci = {p | p∈ Pi ∧ p ∈ C}and Cj = {p | p∈ Pj ∧ p∈ C}.

Example: DOi has two features of the feature classFunc-
tion: ‘Function is Adder’ and ‘Function is Multi-
plier’. If another object DOj has the feature
‘Function is Adder’ and simFunction (‘Function is
Multiplier’, ‘ Function is Adder’) is 0 then

. On the other
hand, if DOi has the feature ‘Function is Adder’
and DOj has the features ‘Function is Adder’
and ‘Function is Multiplier’ then

.

Generic Features
We define a generic feature g as a feature that summa-

rize other features. It defines a subset G in the feature class
C. If Pi and Pj contain generic features gi and gj, and Gi
and Gj are the sets of features represented by gi and gj,
respectively, we use the formula above with

 instead of Ci

and

 instead of Cj,

respectively. In short, a generic feature g is replaced by
the features of the corresponding subset G. If the cardinal-
ity of one of the sets Gi and Gj is infinite, the implementa-
tion has to guarantee that the calculation terminates. This
can always be ensured for practical applications. We take
the same formula if only one of the feature sets Pi and Pj
contains a generic property. Then, one of the subsets Gi
and Gj contains only one element. For example, if DOi has
the feature ‘Arity is 4’ and DOj the generic feature ‘Arity is
Even’ then SIMARITY (DOi, DOj) = 1.

Rules
One problem of the formulas above is the fact that each

feature is regarded separately. Dependences between fea-
tures in the form of ”An n-bit adder can easily be con-
structed of an n/2-bit adder” cannot be expressed. Here,
the transformation of the feature of the classWidth from
‘Width is N-Bit’ to ‘Width is N/2-Bit’ depends on the feature
‘Function is Adder’. The example “An multiplier can be
constructed of an adder and a register“ shows that the fea-
ture ‘Function is Multiplier’ can be realized by two other fea-
tures: ‘Function is Adder’ and ‘Function is Register’. To
handle these cases, we propose two kinds of rules:

SIMC DOi DOj,()

max simC pi pj,()
pj Cj∈
∪()

pi Ci∈
∑

Ci
=

SIMFunction (DOi, DOj) = 1/2

SIMFunction (DOi, DOj) = 1

Ci
′

Ci gi{ }−() Gi∪=

Cj
′

Cj gj{ }−() Gj∪=

- rules which influence the relevance factors (factor
rules) and

- rules which induce other search processes (substitu-
tion rules).

A rule consists of a left hand side (LHS) and a right
hand side (RHS). The LHS contains a condition while the
RHS represents an action which will be evaluated if the
LHS condition is true. In the case of a factor rule, a rule is
represented as

P → C1 : r1, C2 : r2, ..., C3 : rn

with P is the condition in form of a feature set and rk,
1≤k≤n, are the relevance factors which influence the fea-
ture classes Ck. If, at the start of a search, the condition is
true, i.e. a specification has all features of P, the relevance
factors are set to the relevance factors of the RHS. For
example, we know that a multiplexer can easily be built
by smaller multiplexers. We therefore decrease the rele-
vance factors of the feature classesArity and Width if we
retrieve a design object with the feature ‘Function is Multi-
plexer’.

Substitution rules are represented as follows:

P → P1 && P2 && ... && Pn.

The rule is also activated if the features Pi of the current
specification Si cover the feature set P. Then, additional
search processes are started beside the current search pro-
cess which must all be successful. The feature sets of the
new specifications Sk are built by substituting the features
P by the features Pk, i.e. , 1≤ k ≤ n.
Now, we concurrently search with the old specification Si
and the new specifications Sk. (The sign ’&&’ symbolizes
the parallelism.) The retrieval is successful if either the old
search process terminates successfully or all processes
caused by the RHS yield a result. Later, we give an appli-
cation example of such a substitution rule.

Dimensions of the Design Space
The design space spans three dimensions. Firstly,

design objects may be aggregates which are built of other
design objects as submodules (configuration hierarchy).
For example, an 8×4 multiplexer may consist of two 4×4
multiplexers and one2×4 multiplexer (see figure 3.a).
Both, the 4×4 multiplexers and the 2×4 multiplexer are
primitives in the sense that they are no aggregates of other
design objects but they are complex objects in the sense
that they contain netlist or layout descriptions.

Secondly, the design objects may be part of a refine-
ment tree (see figure 2) which represents the evolution of
the design synthesis process (design hierarchy).

Thirdly, different objects may be similar in the sense
that they possess common or similar features. We call this
dimensionfeature network, because it characterizes the

Sk = (Si - P)∪ Pk

similarities of design objects with regard to their features
(see figure 3.b). Of course, these dimensions are not inde-
pendent. For instance, objects with a common predecessor
in the refinement tree have common features (see above)
and so they are connected in the feature network by these
common features. In this paper, we focus on the feature
network. Our data model of the design hierarchy and the
configuration hierarchy is described in [16].

Considering the Design Hierarchy
Let us return to the example of figure 2. Regarding the

design process, we make two observations:
- The abstraction of the design decreases during the

design process, i.e. the design becomes more and
more precise. The degree of abstraction expressed by
the refinement level can be regarded as a rough mea-
sure for the design progress.

- The expense of changing early decisions increases
with each design step. For example, it is less complex
to change an n-bit adder to an m-bit adder in the

Figure 3: Design Space of a Multiplexer

a) configuration hierarchy

b) feature network

4×4 multiplexer 2×4 multiplexer

8×4 multiplexer

sim Arity

feature
instance
design object

‘Arity
is 2’

‘Arity
is 4’

‘Arity
is 8’

2×4 mul-
tiplexer

4×4 mul-
tiplexer

8×4 mul-
tiplexer

sim Arity

‘Function is
Multiplexer’

‘Width is
4-Bit’

sim Arity

domain behavior and to compute the layout of the m-
bit adder than to change the adder in the domain lay-
out (figure 4).

Due to the latter observation, we define the similarity
function ‘sim’ of the ordinal feature classRefinement Level
as follows:
Assume a refinement tree with levels 0 (root) to n (leafs).
The feature pk represents the refinement level k. The simi-
larity function simRefinementLevel (or short: simr) must meet
three conditions:

(1) simr(pi,pk) < simr(pi,pj), 0 ≤ i ≤ j < k ≤ n
(2) simr(pk,pi) < simr(pk,pj), 0 ≤ i ≤ j < k ≤ n
(3) simr(pj,pk) < simr(pj,pi), 0 ≤ i ≤ j < k ≤ n.

Conditions (1) and (2) state that the similarity of two
design objects becomes smaller with increasing distance
in the refinement tree. For instance, the layout DO5 in fig-
ure 2 is more similar to the floorplan DO4 than to the
netlist DO2. We need two conditions to describe this
aspect because the similarity function of a feature class is
not symmetrical. Condition (3) reflects the second obser-
vation described above. For a given design object at the
refinement level j, all objects at a smaller level i are more
similar than the objects at a larger refinement level k.

The typical shape of the similarity function
simRefinementLevel is shown in figure 5. For the example of
figure 2, the order of similarity to a specification
S = {‘Domain is Structure’} would be DO2, DO1, DO3,
(DO4,DO6), and DO5.

Considering the Configuration Hierarchy
For the reuse process, three aspects of the configuration

hierarchy can be exploited. Firstly, to determine the
(re)use frequency of a module we can examine how often
it is instantiated. Secondly, we can use features of the sub-
modules to determine the function of the aggregate.
Thirdly, we can examine which features of the feature
classFunction the submodules of the design objects have.
This information can be used to share functions of the sub-
modules to reduce the chip size or to search for fitting sub-
modules when the search for a design object fails.

n-Bit Adder

domain
behavior

domain
layout

m-Bit Adder

ϕl

ϕ2

ψl ψ2

Figure 4: Example of a Change of an n-Bit Adder to an m-
Bit Adder (Step ψl followed by the refinement step
ϕ2 is easier to perform than the step ψ2)

Example: Assume we have a specification Si = {‘ Width is
16-Bit’, ‘ Function is Multiplier’} and we know
that a multiplier is composed of a register and
an adder. The function ‘Function is Multiplier’
can be realized by the function ‘Function is
Adder’ and the unit ‘Function is Register’. So,
we generate an additional substitution rule:
{‘ Function is Multiplier’} → {‘Function is Adder’}
&& {‘Function is Register’}.
If we search for a multiplier we also search for
an adder and a register. If we find both sub-
cells, adder and register, an explanation com-
ponent advises the designer to build the
multiplier with these modules.

3. The Prototype SystemRODEO

The model described above is the basis of our prototype
implementationRODEO (RODEO is an acronym forreuse
of designobjects). It is part of our VLSI CAD system
PLAYOUT [18]. RODEO is implemented in C++. It works
on an abstracted view of our design database. The data of
this view are stored in main memory. In the implementa-
tion, the different feature classes are implemented in a
C++ class hierarchy (see figure 6). Classes in the left sub-
tree (qualitative features) have special methods which per-
form the casting of the qualitative feature instances to
quantitative instances. So, the implementation is a mirror
image of the feature classes described in section 2.

Retrieval Strategy
First, the user defines a requirement specification in

form of mandatory and desirable features. He has the pos-
sibility to set relevance factors or to reduce the search
space by defining threshold values for the similarity func-
tion SIM and the similarity functions SIMC. Predefined
threshold values and relevance factors have been deter-

sim r(pi,pj)

j - i

1

Figure 5: Similarity function sim RefinementLevel
The feature p j is more similar to p i in the case that
the refinement level j is smaller than i than for the
case that j is larger than i. The similarity decreases
with increasing distance of the refinement levels.
The shape of the two partial functions may be any
strongly monotone curves.

mined on the basis of our experiences. Before starting the
retrieval, RODEO also examines which rules can be
applied.

The retrieval returns a set of reuse candidates based on
the mandatory features. It works similar to the general
retrieval strategy of case-based reasoning [5]. To compute
the search space, the features of each feature class are
ordered with respect to their similarities to the features of
the specification defined by SIMC. Then, new specifica-
tions are composed step by step in decreasing order of the
result of the similarity function SIM (e.g. see figure 7).

The search strategy ofRODEO bases on an A*-algorithms
[13]. From the features of the generated specification we
can directly access the design objects. Since design
objects, specifications, and substitution rules have the
same representation, there is no difference from the view-
point of the search process. They are therefore treated in
the same manner. Several heuristics improve the run time
behavior of the search algorithm. Currently, the relevance
factors and substitution rules are defined manually. It is

features

qualitative quantitative

nominal ordinal cardinal

linear graphdirected
graph

quantification

Figure 6: Section of the RODEO C++ Class Hierarchy

feature class

C1
C2
C3

ordered features
(a, b, c, ...)
(A, B, C, ...)
(α, β, γ, ...)

(a, A, α)

search space

SIM ((a, A, α), (a, A, β))

Figure 7: Search Space of a Specification

start specification

(a, A, α)

(a, B, α)(b, A, α) (a, A, β)

(a, A, γ)(a, B, β)(a, C, α)(b, A, β)(b, B, α)(c, A, α)

our future goal to determine these values and rules auto-
matically. Because of the changing similarities by differ-
ent relevance factors, we cannot manage the similarities
by a grid file or something similar. After the search, an
explanation component informs about the reasons for the
differences between the original specification and the
results. For example, it reports the use of factor and substi-
tution rules.

4. Reuse Potential and Experimental Results

RODEO supports all three types of reuse mentioned in
section 1. Reuse by instantiation is supported by retrieving
objects which have all mandatory features of the specifica-
tion. For reuse by adaptation, we can perform a nearest
neighbor search or an interval search using tolerances of
features. Reuse by parameterization is supported by every
retrieval step since generic features are examined.

To assess the possible amount of reuse we must study
our design activities over a long time. A quantitative anal-
ysis of these studies is very difficult because we are look-
ing not only for objects which fit completely but also for
similar objects. Statements about reuse of similar objects
are only possible if we can compare the adaptation time
with the corresponding design time of new objects. How-
ever, in real designs, only one of these two time values is
available. We therefore examined the reuse by instantia-
tion and the retrieval times quantitatively. For the amount
of possible reuse we examined our design databases
because they contain much more analysis data than we
have with our design traces to date.

Only large databases can provide the necessary precon-
dition for finding candidates for reuse. Table 1 shows the
sizes of the PLAYOUT databases which we examined by
RODEO. All design objects were computed before we used
RODEO so that few objects are available twice.

Currently, we use 12 feature classes:Function, Technol-
ogy, Width, Arity, Area, Aspect Ratio, Refinement Level, Object-
Type, Designer, Library, Phase, andSubCells which is more
than looking for the function of a cell only. The size of the
feature classes used byRODEO are on average as follows:
Function 33, Technology 3, Width 29, Arity 13, Area 760,
Aspect Ratio 756, Refinement Level 5, ObjectType 16,
Designer 33,Library 17,Phase 4, andSubCells 103. A data-

database I II III

no. of design objects 5625 4020 4243

no. of different features 2330 2152 2642

Table 1: PLAYOUT Databases

base contains about 360 different cells but only 33 fea-
tures of the classFunction are available. For most cells we
do not know the function. One reason is a necessary repar-
titioning step that changes the circuit hierarchy of the
behavioral design to a new hierarchy that meets the
requirements of the physical design phase. Since this step
splits and combines cells, it is not always possible to
specify the functions of the new cells. However, this
shows the importance of exploiting the configuration hier-
archy during the reuse process as described in section 2.

We examined the reuse potential by analyzing different
feature classes. For instance, table 2 shows the layout
alternatives of different cells. One cell even has 25 layout
alternatives. If we further consider that the typical toler-
ance of a layout synthesis step is about 10%, the reuse
potential is very high here.

Besides the possible degree of reuse, we examined the
retrieval times of typical applications. The retrieval to one
requirement specification depends on the number of fea-
tures of the specification. Table 3 shows the average times
needed to retrieve a design object.

The table shows that the retrieval times are small com-
pared to the design times which may be minutes, hours, or
even days. The gain in time increases with the number of
the levels of the configuration hierarchy. This has two rea-
sons: a) the design becomes larger and b) the number of
iterations on higher levels is larger than on lower levels.

5. Conclusions

In this paper, we gave an overview of our reuse method
and its relationships to the design process. We developed a
feature-based reuse model to find similar design objects
for a given requirement specification. The presented
model considers the special purposes of an hierarchical
and multi-domain design space which is present in most
ECAD systems. We examined our model with the proto-
type implementationRODEO.

We see four directions for future works. Firstly, it is
very important to study the reuse experiences of designers

no. of layout
alternatives

2 3 4 5 6 7 8 11 13 14 17 20 25

no. of cells 6 2 9 3 1 2 3 1 1 2 3 1 1

Table 2: Available Layout Alternatives

no. of features 1 2 3 4 5 6

first object (sec) 0.02 0.09 0.09 0.09 0.03 0.05

Table 3: Average Retrieval Times (on a HP730)

over a long time. Here, the reuse frequency of modules
must be recorded. Secondly, we will try to handle complex
features, e.g. features which describe pin assignment.
Thirdly, we want automatically determine the relevance
factors, the function simC, and the rules. To date, our rules
are user-defined. And finally, we want to reuse not only
design objects but also documentations, design experi-
ences, and whole design processes in the sense of a com-
prehensive reuse. Our current reuse results are hopeful,
but much more work has to be done before a comprehen-
sive reuse, i.e. a reuse of all design information, is possi-
ble.

6. References

[1] J. Allen, “Performance-Directed Synthesis of VLSI Sys-
tems”, Proceedings of the IEEE, February 1990

[2] V.R. Basili, D.D. Rombach, “Support for Comprehensive
Reuse”, IEEE Software Engineering Journal, Sept. 1991

[3] B. Becker, G. Hotz, R. Kolla, P. Molitor, “Hierarchical
Design Based on a Calculus of Nets”, Proc. 24th Design
Automation Conference, 1987

[4] T. J. Biggerstaff, A. J. Perlis (Ed.), “Software Reusability /
Volume I / Concepts and Models”, ACM Press Frontier
Series, 1989

[5] E. L. Rissland et. al., “Case-Based Reasoning“, Proc. Case-
Based Reasoning Workshop (DARPA), 1989

[6] S. Y. Foo, Y. Takefuji, “Database and Cell-Selection Algo-
rithms for VLSI Cell Libraries“, IEEE Computer, February
1990

[7] D. D. Gajski (Ed.), “Silicon Compilation”, Addison-Wes-
ley, 1988

[8] E. Girczyc, S. Carlson, “Increasing Design Quality and
Engineering Productivity through Design Reuse”, Proc.
30th Design Automation Conference, 1993

[9] R. H. Katz, “Towards a Unified Framework for Version
Modeling in Engineering Databases”, ACM Computing
Surveys, Vol. 22, No. 4, 1990

[10] J. L. Kolodner, “An Introduction to Case-Based Reason-
ing“, Artificial Intelligence Review, 6, 1992

[11] R. Prieto-Diaz, P. Freeman, “Classifying Software for
Reusability”, IEEE Software Magazine, January 1987

[12] M. M. Richter, “Classification and Learning of Similarity
Measures”, Studies in Classification, Data Analysis and
Knowledge Organization, Springer, 1992

[13] E. Rich, K. Knight, “Artificial Intelligence”, McGraw Hill,
1991

[14] B. Schürmann, J. Altmeyer, M. Schütze, “On Modeling
Top-Down VLSI Design”, Proc. Int. Conference of Com-
puter Aided Design, San Jose, California, 1994

[15] E. Siepmann, “Entwurfstheorie und Entwurfsdatenmodel-
lierung fuer CAD-Frameworks“, Ph.D. Dissertation, Uni-
versity of Kaiserslautern, 1991, in German

[16] E. Siepmann, G. Zimmermann, “An Object-Oriented Data-
model for the VLSI Design System PLAYOUT”, Proc.
26th Design Automation Conference, 1989

[17] A. Tversky, “Features of Similarity”, Psychological
Review 84, 1977

[18] G. Zimmermann, “PLAYOUT - A Hierarchical Design
System”, Information Processing 89, G.X. Ritter (ed.),
Elsevier Science Publishers B.V. (North Holland), IFIP,
1989

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

