
Folding A Stack Of Equal Width Components
�

Venkat Thanvantri Sartaj Sahni

Department of CIS Department of CIS

University of Florida University of Florida

Gainesville, FL-32611 Gainesville, FL-32611

Abstract

We consider two versions of the problem of folding
a stack of equal width components. In both versions,
when a stack is folded, a routing penalty is incurred at
the fold. In one version, the height of the folded layout
is given and we are to minimize width. In the other,
the width of the folded layout is given and its height is
to be minimized.

1 Introduction
Component stack folding, in the context of bit

sliced architectures, was introduced by Larmore,
Gajski, and Wu [6]. In this paper, they used this
model to compile layout for cmos technology. Further
applications of the model were considered by Wu and
Gajski [11]. In the model of [6] and [11] the component
stack can be folded at only one point. In addition, it
is possible to reorder the components on the stack. A
related, yet di�erent, folding model was considered by
Paik and Sahni [7]. In this, no limit is placed on the
number of points at which the stack may be folded.
Also, component reordering is forbidden. They point
out that this model may also be used in the appli-
cation cited by [6] and [11]. Furthermore, it accu-
rately models the placement step of the standard cell
and sea-of-gates layout algorithms of Shragowitz et al.
[8, 9].

Formally, a component stack is comprised of
variable height and variable width components
C1; C2; : : : ; Cn stacked one on top of the other. C1
is at the top of the stack and Cn at the bottom. If
the component stack is folded at Ci we obtain two ad-
jacent stacks C1; C2; : : : ; Ci and Cn; Cn�1; : : : ; Ci+1.
The folding also inverts the left to right orientation of
the components Cn; : : : ; Ci+1. Notice that folding re-
sults in a snake-like rearrangement. Each fold
ips
the left-to-right orientation of a component. Pairs
of folded stacks may have nested components, com-
ponents in odd stacks are left aligned; and compo-
nents in even stacks are right aligned. The area of the
folded stack is the area of the smallest rectangle that
bounds the layout. To determine this, depending on
the model, we may need to add additional space at
the stack ends to allow for routing between compo-
nents Ci and Ci+1 where Ci is a folding point. If so,

�This research was supported in part by the National Science

Foundation under the grant MIP 91-03379

p

p

p

p

p

p

p

p

p

p

p

p

S1 S2

hj�1

rj rj

(a)

S1 S2

hj�1

hj

rj+1

hj+1

rj+1

(b)

Figure 1: Case when hj + rj+1 � rj

let ri � 0, 2 � i � n, denote the height of the routing
space needed if the stack is folded at Ci�1.

In this paper we consider two of the problems con-
sidered in [7]:

(1) Equal-width, height-constrained with routing area
at stack ends.

(2) Equal-width, width-constrained with routing area
at stack ends.

Our algorithms employ two techniques. The �rst
is normalization in which an input instance is trans-
formed into an equivalent normalized instance that is
relatively easy to solve. The second technique is pa-
rameterized searching.

2 Normalization
Let hi be the height of the componentCi; 1 � i � n.

Let ri be the routing height needed between Ci�1 and
Ci if the component stack is folded at Ci�1; 2 � i � n;
and let r1 = rn+1 = 0. The de�ned component stack
is normalized i� the conditions C1 and C2 given below
are satis�ed for every i, 1 � i � n.

C1 : hi + ri+1 > ri

C2 : hi + ri > ri+1

An unnormalized instance I may be transformed

into a normalized instance Î with the property that
from a minimum height or minimumwidth folding of
Î, one can easily construct a similar folding for I. To

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0432 $3.50

Procedure Normalize(C,n)
f Normalize the component stack C[1] : : :C[n]g

i := 1;next := 2;
while next � n+ 1 do
case

: C[i]:h+C[next]:r � C[i]:r :
fCombine with C[i� 1]g
C[i� 1]:h := C[i� 1]:h+ C[i]:h;
C[i� 1]:l := C[i]:l;
i := i � 1;

: C[i]:h+C[i]:r � C[next]:r :
fCombine with C[next]g
C[i]:h := C[i]:h+ C[next]:h;
C[i]:l := C[next]:l;
next := next+ 1;

:else: C[i+ 1] := C[next];
i := i + 1;next := next + 1;

end;
n := i� 1;

end; fNormalizeg

Figure 2: Normalizing a stack

obtain Î , we identify the least value of i at which either
C1 or C2 is violated. Let this value of i be j. By choice
of j, either

hj + rj+1 � rj, or
hj + rj � rj+1:

We note that it is not possible for both of these
inequalities to hold simultaneously. Suppose that
hj + rj+1 � rj . Now j > 1 as h1 + r2 > 0 while
r1 = 0. Also, hj + rj > rj+1. Consider any fold-
ing of I in which Cj�1 is a fold point (Figure 1(a)).
Let the height of the stack S1 be h(S1) and that of
S2; h(S2). Consider the folding obtained from Fig-
ure 1(a) by moving Cj from S2 to S1. Let the height
of the stacks now be h0(S1) and h0(S2). We see that
h0(S1) = h(S1) � rj + hj + rj+1 � h(S1) and
h0(S2) = h(S2) � rj � hj + rj+1 < h(S2).

So, the height and width of the folding of Fig-
ure 1(b) is no more than that of Figure 1(a). Hence,
the instance I0 obtained from I by replacing the
component pair ((hj�1; rj�1); (hj; rj)) by the single
component (hj�1 + hj ; rj�1) has the same minimum
width/height folding as does I. From a minimum
width/height folding for I0 one can obtain one for I
by replacing the component (hj�1 + hj; rj�1) by the
two components of I it is composed of.

If hj+rj � rj+1, then hj+rj+1 > rj and j < n (as
rn+1 = 0 and hn+rn > 0). This time, I0 is obtained by
replacing the component pair ((hj; rj); (hj+1; rj+1))
by the single component (hj + hj+1; rj).

The component pair replacement scheme just de-
scribed may be repeated as often as needed to obtain

a normalized instance Î. Note that the scheme termi-
nates as each replacement reduces the number of com-
ponents by one and every one instance component is
normalized.

The preceding discussion leads to the normalization
procedure Normalize of Figure 2. C[i]:h; C[i]:r;C[i]:f;
and C[i]:l, respectively, give the height, routing height
needed if the stack is folded at C[i� 1], index of �rst
input component represented by C[i], and index of the
last input component represented by C[i]. At input,
we have: C[i]:h = hi, C[i]:r = ri, C[i]:f = C[i]:l = i,
1 � i � n, and C[n+ 1]:r = 0. Note that, by de�ni-
tion, C[1]:r = r1 = 0. On output, component C[i] is
the result of combining together the input components
f; f+1; : : : ; l. The heights and the r values are appro-
priately set. The correctness of procedure Normalize
is established in Theorem 1. Its complexity is O(n) as
each iteration of the while loop takes constant time;
the �rst two case clauses can be entered atmost a total
of n� 1 times as on each entry the number of compo-
nents is reduced by 1. The else clause can be entered
atmost n�1 times as on each entry next increases by 1
and this variable is never decreased in the procedure.

Theorem 1 : Procedure Normalize produces an
equivalent normalized component stack.

Proof : Refer to [10]. 2
Theorem 2 establishes an important property of a

normalized stack. This property enables one to ob-
tain e�cient algorithms for the two folding problems
considered in this paper.

Theorem 2 : Let (hi; ri), 1 � i � n de�ne a nor-
malized component stack. Assume that r0 = rn+1 = 0.
The following are true:

P1 : rk +
Pl

j=k hj + rl+1 < rk�1+
Pl

j=k�1 hj + rl+1;

1 < k � l � n

P2 : rk +
Pl

j=k hj + rl+1 < rk +
Pl+1

j=k hj + rl+2;

1 � k � l < n

Proof : Direct consequence of C2 and C1, respec-
tively. 2

Intuitively, Theorem 2 states that the height needed
by a contiguous segment of components from a nor-
malized stack increases when the segment is expanded
by adding components at either end.

3 Equal-Width Height-Constrained
The height of the layout is limited to h and we

are to fold the component stack so as to minimize
its width. This can be accomplished in linear time
by �rst normalizing the stack and then using a greedy
strategy to fold only when the next component cannot
be accomodated in the current stack segment without
exceeding the height bound h. The algorithm is given
in Figure 3.

From the correctness of procedure Normalize, it fol-
lows that a minimumwidth folding of the normalized
instance is also a minimumwidth folding of the initial
instance. So, we need only to show that the for loop
generates a minimumwidth folding of the normalized
instance generated by the procedure Normalize. This
follows from properties P1 and P2 (Theorem 2) of a
normalized instance. Since a segment size cannot de-
crease by adding more components at either end, the

Procedure MinimizeWidth(C; n; h; width)
f Obtain a minimum width folding whose height is
atmost hg

Normalize(C; n);
used := h;width := 1;
for i := 1 to n do

case

: used� C[i]:r+ C[i]:h+ C[i+ 1]:r � h :
f assign C[i] to current segment g
used := used �C[i]:r+C[i]:h+C[i+ 1]:r;

: C[i]:r+ C[i]:h+ C[i+ 1]:r > h :
finfeasible instance g
output error message; terminate;

:else:fstart next segment, fold at C[i� 1] g
width := width+ 1;
used := C[i]:r+C[i]:h+C[i+ 1]:r

end;
end; fMinimizeWidthg

Figure 3: Procedure to obtain a minimumwidth fold-
ing

n [7] Figure 3
16 0.11 0.05
64 1.80 0.14
256 24.85 0.52

Times are in milliseconds

Table 1: Comparison of equal-width height-
constrained algorithms

infeasibility test is correct. Also, there can be no ad-
vantage to postponing the layout of a component to
the next segment if it �ts in the current one.

Note that while we are able to solve the equal-width
height-constrained problem in linear time using a com-
bination of normalizing and the greedy method, the
algorithm of [7] uses dynamic programming on the un-
normalized instance and takes O(n2) time. In Table 1,
we give the observed run times of the two algorithms.
These were obtained by running C programs on a SUN
4 workstation. As is evident, our algorithm is consid-
erably superior to that of [7] even on small instances.

4 Equal-Width Width-Constrained
To use parametric search [1, 2, 3, 4] to determine

the minimum height folding when the layout width is
constrained to be � w, we must do the following:

(1) Identify a set of candidate values for the mini-
mum height folding. This set must be provided
implicitly as a sorted matrix with the property
that each matrix entry can be computed in con-
stant time.

(2) Provide a way to determine if a candidate height
h is feasible, i.e., can the component stack be
folded into a rectangle of height h and width w ?

In this section, for (1), we shall provide an n � n
sorted matrix M (n is the number of components in
the stack) of candidate values. For the feasibility test
of (2), we can use procedure MinimizeWidth of Fig-
ure 3 by setting h equal to the candidate height value
being tested and then determining if width � w fol-
lowing execution of the procedure. Since the com-
ponent stack needs to be normalized only once and
sinceMinimizeWidth will be invoked several times, the
call to Normalize should be removed from the proce-
dure MinimizeWidth and normalization done before
the �rst invocation of this procedure. Also, the re-
maining code may be modi�ed to terminate as soon
as w folds are made.

To determine the candidate matrix M, we observe
that the height of any layout is given by

ri +

jX
q=i

hq + rj+1

for some i; j; 1 � i � j � n. This formula just gives us
the height of the segment that contains components
Ci through Cj. De�ne Q to be the n� n matrix with
the elements

Qij =

�
ri +
Pj

q=i hq + rj+1; 1 � i � j � n

0; i > j

Then for every value of w, Q contains a value that is
the height of a minimum height folding of the compo-
nent stack such that the folding has width � w. From
Theorem 2, it follows that

Qij � Qi;j+1; 1 � i � n; 1 � j < n

Qij � Qi+1;j; 1 � i < n; 1 � j � n

Let Mij = Qn�i+1;j; 1 � i � j � n. So, M is a
sorted matrix that contains all candidate values. The
minimumMij for which a width w folding is possible
is the minimum height width-w folding. We now need
to show how the elements of M may be computed
e�ciently given the index pair (i; j). Let

Hi =

iX
j=1

hj ; 1 � i � n

and let H0 = 0. We see that

Qij =

�
ri +Hj �Hi�1 + rj+1; i � j

0; i > j

and so,

Mij =

�
rn�i+1 +Hj �Hn�i + rj+1; i+ j � n+ 1

0; i+ j < n + 1

So, if we precompute the Hi's each Mij can be de-
termined in constant time. The precomputation of the
Hi's takes O(n) time. Now, we can use the O(n logn)

n [7] O(n logn) O(n log logn) O(n log� n) O(n)
16 4.9 1.47 2.28 1.49 1.52
64 314.7 8.84 15.75 27.14 26.71
256 23255 45.96 76.55 169.58 169.42
4096 - 1041.90 2148.60 2597.75 2760.25

Times are in milliseconds

Table 2: Run times of equal-width width-constrained algorithms

parametric search algorithm of [4] to solve the equal-
width width-constrained problem in O(n logn) time.

[1, 2, 3, 4] present several re�nements of the basic
parametric search technique. These re�nements apply
to the equal-width width-constrained problem just as
well as to the path partitioning problem provided we
start with a normalized instance and use the candidate
matrix M de�ned above. These re�nements result in
algorithms of complexity O(n log logn), O(n log� n),
and O(n) for our component stack problem.

5 Experimental Results
The four parametric search algorithms for the

equal-width height-constrained problem were pro-
grammed in C and run on a SUN 4 workstation. For
comparison purposes, the O(n3) dynamic program-
ming algorithm of [7] was also programmed. The run
time performance of these �ve algorithms is given in
Table 2. These times represent the average time for
ten instances of each size. The algorithm of [7] takes
much more time than each of the parametric search
algorithms. However, within the class of parametric
search algorithms, the O(n logn) one is fastest in the
tested problem size range. This may be attributed to
the increased overhead associated with the remaining
algorithms. The O(n logn) algorithm is recommended
for use in practice unless the number of components
in a stack is very much larger than 4096.

6 Conclusions
We have shown that while the equal-width height-

constrained and equal-width width-constrained stack
folding problems cannot be solved by applying the
greedy method and parametric search, respectively,
these methods can be successfully applied if the input
is �rst normalized. Normalization can be done in lin-
ear time. Hence the overall complexity is determined
by that of applying the greedy method or parametric
search to the normalized data.

We have developed a linear time algorithm for the
equal-width height-constrained problem. This com-
pares very favorably (both analytically and experi-
mentally) with the O(n2) dynamic programming al-
gorithm of [7].

For the equal-width width-constrained problem
we have developed four algorithms of complexity
O(n logn), O(n log logn), O(n log� n), and O(n), re-
spectively. All compare very favorably with the O(n3)
dynamic programming algorithm of [7]. Experimental

results indicate that the O(n logn) algorithmperforms
best on practical size instances.

References
[1] G. N. Frederickson, and D. B. Johnson, \Finding

kth paths and p-centers by generating and search-
ing good data structures", Journal of Algorithms,
4:61-80, 1983.

[2] G. N. Frederickson, and D. B. Johnson, \Gen-
eralized selection and ranking: sorted matrices",
SIAM Journal on computing, 13:14-30, 1984.

[3] G. N. Frederickson, \Optimal algorithms for tree
partitioning", Proc. 2nd ACM-SIAM Symposium
on Discrete Algorithms, San Francisco, California
(Jan. 1991), pp. 168-177

[4] G. N. Frederickson, \Optimal parametric search
algorithms in trees I: tree partitioning", Purdue
University, Technical Report CSD-TR-1029, 1992.

[5] E. Horowitz, and S. Sahni, \Fundamentals of
Computer Algorithms", Computer Science Press,
Maryland, 1978.

[6] L. Larmore, D. Gajski and A. Wu, \Layout Place-
ment for Sliced Architecture", University of Cali-
fornia, Irvine, Technical Report, 1990.

[7] D. Paik, S. Sahni, \Optimal folding of bit sliced
stacks", IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, 12, 11, Nov. 1993, 1679-1685.

[8] E. Shragowitz, L. Lin, S. Sahni, \Models and al-
gorithms for structured layout", Computer Aided
Design, Butterworth & Co, 20, 5, 1988, 263-271.

[9] E. Shragowitz, J. Lee, and S. Sahni, \Placer-router
for sea-of-gates design style", in Progress in com-
puter aided VLSI design, Ed. G.Zobrist, Ablex
Publishing, Vol 2, 1990, 43-92.

[10] V. Thanvantri, and S. Sahni, \Folding a stack of
equal width components", University of Florida,
Technical Report 94-011, 1994.

[11] A. Wu, and D. Gajski, \Partitioning Al-
gorithms for Layout Synthesis from Register-
Transfer Netlists", Proc. of International Confer-
ence on Computer Aided Design, November 1990,
pp. 144-147.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

