
Power Analysis of Embedded Software:

A First Step towards Software Power Minimization

Vivek Tiwari Sharad Malik Andrew Wolfe

Dept. of Electrical Engineering
Princeton University, Princeton, NJ 08544

Abstract

Embedded computer systems are characterized by the

presence of a dedicated processor and the software that

runs on it. Power constraints are increasingly becoming

the critical component of the design speci�cation of these

systems. At present, however, power analysis tools can

only be applied at the lower levels of the design { the cir-

cuit or gate level. It is either impractical or impossible

to use the lower level tools to estimate the power cost of

the software component of the system. This paper de-

scribes the �rst systematic attempt to model this power

cost. A power analysis technique is developed that has

been applied to two commercial microprocessors { In-

tel 486DX2 and Fujitsu SPARClite 934. This technique

can be employed to evaluate the power cost of embedded

software and also be used to search the design space in

software power optimization.

1 Introduction

Embedded computer systems are characterized by the
presence of a dedicated processor which executes appli-
cation speci�c software. Recent years have seen a large
growth of such systems. This growth is driven by several
factors. The �rst is an increase in the number of applica-
tions as illustrated by the numerous examples of \smart
electronics" around us. The second factor leading to
their growth is the increasing migration from applica-
tion speci�c logic to application speci�c code running
on existing processors. The migration to software pro-
grammable solutions can often provide the competitive
edge in terms of lower manufacturing costs and shorter
time to market. Thus, we are seeing a movement from
the logic gate being the basic unit of computation on
silicon, to an instruction running on an embedded pro-
cessor.
A large number of embedded computing applications

are power critical, i.e., power constraints form an im-
portant part of the design speci�cation. While there
has been a signi�cant research e�ort in power estima-
tion and low power design, there is very little available
in the form of design tools to help embedded system

designers evaluate their designs in terms of the power
metric. At present, power measurement tools are avail-
able for only the lower levels of the design - at the cir-
cuit level and the gate level. At the least these are very
slow and impractical to use to evaluate the power con-
sumption of software, and often cannot even be applied
due to lack of availability of circuit and gate level in-
formation of the embedded processors. The embedded
processors currently used in designs take two possible
shapes. The �rst is \o� the shelf" microprocessors or
digital signal processors (DSPs). The second is in the
form of cores embedded in larger integrated circuits.
In the �rst case, the processor information available to
the designer is whatever is made available through data
books. In the second case the designer has logic/timing
simulation models to help verify the designs. In neither
case is there lower level information available for power
analysis.
This paper describes a power analysis technique for

embedded software. The goal is to develop and val-
idate an instruction level power model for embedded
software. Such a model can then be provided by the
processor vendors for both o� the shelf processors as
well as embedded cores. This can then be used to eval-
uate embedded software, much as a gate level power
model has been used to evaluate logic designs. This is
useful in its own right to verify that a design meets its
speci�ed power constraints. In addition, it can also be
used to search the design space in software power opti-
mization. The technique has so far been applied to two
commercial microprocessors { the Intel 486DX2 and the
Fujitsu SPARClite 934. This paper uses the former as a
basis for illustrating the technique. The application of
this technique for the latter is described in a separate
reference [4].

2 Experimental Method

While it is recognized that the power consumption of
a processor varies from program to program, there is a
complete lack of models and tools to analyze this vari-
ation. Traditional attempts to model the power con-
sumption in the CPU rely on detailed physical layout

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0384 $3.50

of the processor and sophisticated power analysis tools
that use the information provided by the layout.
In the case of embedded system design, detailed lay-

out information of the CPU is often not available. Even
if it is available, these techniques are expensive and dif-
�cult to apply. This is also the reason why the poten-
tial for power reduction through modi�cation of soft-
ware is so far unknown and unexploited. The thrust
of our work is to overcome these de�ciencies by devel-
oping a power estimation methodology based on actual
laboratory measurements. Given a measurement setup
to measure the current being drawn by the microproces-
sor, the only other information required can be obtained
from the widely available manuals and handbooks spe-
ci�c to that microprocessor.
The main idea is to formulate an instruction level

power model for the microprocessor. Given this model
and an assembly/machine level program, the power con-
sumption in the program can be e�ciently estimated.
The speci�cs of the measurement methodology are de-
scribed next.

2.1 Power and Energy

The average power consumed by a microprocessor while
running a certain program is given by: P = I � VCC ,
where P is the average power, I is the average current
and VCC is the supply voltage. Since power is the rate
at which energy is consumed, the energy consumed by
a program is given by: E = P � T where T is the
execution time of the program. This in turn is given
by: T = N � � where N is the number of clock cycles
taken by the program and � is the clock period.
In common usage, the terms power consumption and

energy consumption are often interchanged. However
it is important to distinguish between the two when
we talk of either of these in the context of programs
running on mobile applications. Mobile systems run
on the limited energy available in a battery. Therefore
the energy consumed by the system or by the software
running on it, determines the length of the battery life.
Energy consumption is thus the focus of attention. We
will attempt to maintain a distinction between the two
in the rest of the paper. However, in certain cases the
term power may be used to refer to energy, in adherence
to common usage.

2.2 Current Measurement

For this study, the processor used was a 40MHz Intel
486DX2-S Series CPU. The CPU was part of a mo-
bile personal computer evaluation board with 4MB of
DRAM memory. The reason for the choice of this pro-
cessor was that its board setup allowed the measurement
of the CPU and DRAM subsystem current in isolation
from the rest of the system.We would like to emphasize

that while the numbers we report here are speci�c to this

processor and board, the methodology used by us in de-

veloping the model is widely applicable. The current was
measured through a standard o� the shelf, dual-slope
integrating digital ammeter.

If a program completes execution in a short time, a
current reading cannot be obtained visually. To over-
come this, the programs being considered were put in
in�nite loops and current readings were taken. The cur-
rent consumption in the CPU will vary in time depend-
ing on what instructions are being executed. But since
the chosen ammeter averages current over a window of
time (100ms), if the execution time of the program is
much less than the width of this window, a stable read-
ing will be obtained.

The main limitation of this approach is that it will
not work for programs with larger execution times since
the ammeter may not show a stable reading. However,
in this study, the main use of this approach was in deter-
mining the current drawn while a particular instruction
(instruction sequence) was being executed. A program
written with several instances of the targeted instruc-
tion (instruction sequence) executing in a loop, has a
periodic current waveform which yields a steady read-
ing on the ammeter. This inexpensive approach works
very well for this. However the main concepts described
in this paper are independent of the actual method used
to measure average current. If sophisticated data acqui-
sition based measurement instruments are available, the
measurement method can be based on them.
For our setup, VCC was 3:3V and � was 25ns, corre-

sponding to the 40MHz internal frequency of the CPU.
Given these constants, energy is proportional to the av-
erage current and number of cycles. Unless otherwise
stated, the numbers reported in this paper correspond
to average current in mA.

3 Instruction Level Modeling

A modern microprocessor like the 486DX2 is an ex-
tremely complex system consisting of several interacting
functional blocks. However, this internal complexity is
hidden behind a simple interface { its instruction set.
Thus to model the energy consumption of this complex
system, it seemed intuitive to consider individual in-
structions. Each instruction involves speci�c processing
across various units of the CPU. This can result in cir-
cuit activity that is characteristic of each instruction
and can vary with instructions.

This intuition was the starting point for the em-
pirical study that led to the development of the �nal
instruction-level energy model. Under this model each
instruction in the instruction set is assigned a �xed en-
ergy cost called the base energy cost. The variation in
base costs of a given instruction due to di�erent operand

INSTRUCTION
 FETCH

 REGISTER
WRITE−BACK

EXECUTIONDECODE−2DECODE−1

STAGE # 1 2 3 4 5

Figure 1: Internal Pipelining in the 486DX2

and address values is then quanti�ed. The base energy
cost of a program is based on the sum of the base energy
costs of each executed instruction. However, during the
execution of a program, certain inter-instruction e�ects
occur whose energy contribution is not accounted for if
only base costs are considered. The �rst type of inter-
instruction e�ect is the e�ect of circuit state. The sec-
ond type is related to resource constraints that can lead
to stalls and cache misses. The energy cost of these ef-
fects is also modeled and used to obtain the total energy
cost of a program.
The instruction-level energy model described here is

based on actual measurements and evolved as a result of
extensive experimentation. It is comprehensive and pro-
vides all the information needed to evaluate programs
in terms of their energy costs. The various components
of this model are described in the subsections below.

3.1 Base Energy Cost

The base cost for an instruction is determined by con-
structing a loop with several instances of the same in-
struction. The average current being drawn is then mea-
sured. This current multiplied by the number of cycles
taken by each instance of the instruction is proportional
to the total energy as described in Section 2.
While this method seems intuitive if the CPU is exe-

cuting only one instruction at a given time, most mod-
ern CPUs, including the 486DX2 are processing more
than one instruction at a given time due to pipelining.
However, the following discussion shows that the con-
cept of a base energy cost per instruction and its deriva-
tion remains unchanged.
The 486DX2 CPU has a �ve-stage pipeline as shown

in Figure 1 [1]. Let EjIk be the average energy con-
sumed by pipeline stage j, when instruction Ik executes
in that stage. Pipeline stages are separated from each
other by latches. Thus, if we ignore the e�ect of cir-
cuit state and resource constraints for now, the energy
consumption of di�erent stages is independent of each
other. Let us assume that in a given cycle, instruction I1
is being processed by stage 1, I2 by stage 2, and so on.
The total energy consumed by the CPU in that cycle
would be: Ecycle = E1I1 +E2I2 +E3I3 +E4I4 +E5I5 .
On the other hand, the total energy consumed by a
given instruction I1, as it moves through the various
stages is: Eins =

P
j EjI1 . This quantity actually

1All instructions are executed in "Real Mode". All registers
contain 0, except in entry 11, where CL contains 1. Entry 15 is a
"taken" jump while entry 16 is "fall through". Entries 5, 6 and 9

show normalized costs [6].

Number Instruction Base Cost Cycles

(mA)

1 NOP 275.7 1

2 MOV DX,BX 302.4 1

3 MOV DX,[BX] 428.3 1

4 MOV DX,[BX][DI] 409.0 2

5 MOV [BX],DX 521.7 1

6 MOV [BX][DI],DX 451.7 2

7 ADD DX,BX 313.6 1

8 ADD DX,[BX] 400.1 2

9 ADD [BX],DX 415.7 3

10 SAL BX,1 300.8 3

11 SAL BX,CL 306.5 3

12 LEA DX,[BX] 364.4 1

13 LEA DX,[BX][DI] 345.2 2

14 JMP label 373.0 3

15 JZ label 375.7 3

16 JZ label 355.9 1

17 CMP BX,DX 298.2 1

18 CMP [BX],DX 388.0 2

Table 1: Subset of the Base Cost Table for the 486DX22

refers to the base cost in the sense described above.
Our method of forming a loop of instances of instruc-
tion I1, results in Ecycle = Eins, since in that case,
I1 = I2 = I3 = I4 = I5. The average current
in this case is

P
j EjI1=(VCC � �), which is the same as

the ammeter reading obtained.

Some instructions take multiple cycles in a given
pipeline stage. All stages are then stalled. The rea-
soning applied above, however remains unchanged. The
base energy cost of the instruction is just the observed
average current value multiplied by the number of cy-
cles taken by the instruction in that stage. For instance,
consider a loop of instruction I1, where I1 takes m cycles
in the 4th stage. Therefore, E4I1 is spread over m cy-
cles. For sake of brevity assume that each stalled stage
consumes zero energy. Then the current value observed
on the ammeter will be

P
j EjI1=(VCC � � �m). This

quantity multiplied by m yields
P

j EjI1=(VCC��), the
base energy cost of the instruction. m represents the
\number of cycles" parameter speci�ed in instruction
timing tables in microprocessor manuals.

Table 1 is a sample table of CPU base costs for some
486DX2 instructions. The numbers in Column 3 are the
base cost inmA per clock cycle. The overall base energy
cost of an instruction is the product of the numbers in
Columns 3 and 4 and the constants VCC and � .

Care should be taken in designing the experiments
used to determine the base costs. The size of the loop
has to be large enough to minimize the e�ects of the
branch statement at the bottom of the loop and small
enough not to cause any cache misses. Only the tar-
get instructions should execute on the CPU during the
experiment and thus system e�ects like multiple time-
sharing applications and frequent interrupts cannot be
allowed.

data 0 0F 0FF 0FFF 0FFFF

No. of 1's 0 4 8 12 16

Base Cost 309.5 305.2 300.1 294.2 288.5

Table 2: Base Costs of MOV BX, data

3.1.1 Variations in Base Cost

As Table 1 shows, instructions with di�ering function-
ality and di�erent addressing modes can have very dif-
ferent energy costs. This is to be expected since dif-
ferent functional blocks are being a�ected in di�erent
ways by these instructions. Within the same family of
instructions, there is variability in base costs depend-
ing on the value of operands used. For example, con-
sider the MOV register,immediate family. Use of di�erent
registers results in insigni�cant variation since the reg-
ister �le is probably a symmetric structure. Variation
in the immediate value, however, leads to measurable
variation. As an example, Table 2 shows the variation
for MOV BX,immediate. The costs seem to be almost a
linear function of the number of 1's in the binary rep-
resentation of the immediate data { the more the 1's,
the lesser the cost. Similarly, for the ADD instruction,
the base costs are a function of the two numbers being
added. The range of variation in all cases, however, is
small. It is observed to be about 14, which corresponds
to less than a 5% variation.
For instructions involving memory operands, there is

a variation in the base cost depending upon the address
of the operand. The variation is of two kinds. The �rst
is due to operands that are mis-aligned [1]. Mis-aligned
accesses lead to cycle penalties and thus energy penal-
ties that are added to the base cost. Within aligned
accesses there is variation in the base cost depending
upon the value of the address. For example, for MOV

DX,[BX], the base cost can be greater than the cost
shown in Table 1 by about 3:5%. This variation is a
function of the number of, and position of, 1's in the
binary representation of the address.
Given the operand value and address, exact base costs

can be obtained through direct measurements. How-
ever, these exact values will be of little use since typi-
cally a data or address value can be known only at run-
time. Thus, from the point of view of program energy
cost estimation, the only alternative is to use average
base cost values. This is reasonable given that the vari-
ation in base costs is small and thus the discrepancy
between the average and actual vlaues will be limited.

3.2 Inter-instruction E�ects

When sequences of instructions are considered certain
inter-instruction e�ects come into play, which are not
re
ected in the cost computed solely from base costs.
These e�ects are discussed below.

3.2.1 E�ect of Circuit State

The switching activity in a circuit is a function of the
present inputs and the previous state of the circuit.
Thus, it can be expected that the actual energy cost
of executing an instruction in a program may be dif-
ferent from the instruction's base cost. This is because
the previous instruction in the given program and in
the program used for base cost determination may be
di�erent. For example, consider a loop of the following
pair of instructions:

XOR BX,1

ADD AX,DX

The base costs of the XOR and ADD instructions are
319:2 and 313:6. The expected base cost of the pair,
using the individual base costs would be their average,
i.e. 316:4 while the actual current is 323:2. It is greater
by 6:8. The reason is that the base costs are determined
while executing the same instruction again and again.
Thus each instruction executes in what we expect is
a context of least change. At least, that is what the
observations consistently seem to indicate. When a pair
of two di�erent instructions is considered, the context is
one of greater change. The cost of a pair of instructions
is always greater than the base cost of the pair and the
di�erence is termed as the circuit state overhead.
As another example, consider the following sequence

of instructions. The base cost and the number of cycles
of each instruction is listed alongside:

Number Instruction Base Cost Cycles

1 MOV CX,1 309.6 1

2 ADD AX,BX 313.6 1

3 ADD DX,8[BX] 400.2 2

4 SAL AX,1 308.3 3

5 SAL BX,CL 306.5 3

The measured cost was 332:8 (avg. current over 10
cycles). Using base costs we get

(309:6+313:6+400:2�2+308:3�3+306:5�3)=10 = 326:8
(1)

The circuit state overhead is thus 6:0.
It is possible to get a closer estimate if we consider

the circuit state overhead between each pair of consec-
utive instructions. This is done as follows. Consider
a loop of the targeted pair, e.g., instructions 2 and 3.
The estimated cost for the pair is (2 � 400:2 + 313:6�
1)=3 = 371:3 , while the measured cost is 374:8. Thus,
the circuit state overhead is 3:5. Now the overhead oc-
curs twice in every 3 cycles, once between instructions
2&3, and once between 3&2. Since these two di�erent
cases cannot be resolved, let us assume that they are
the same. Thus, the overhead each time it occurs would
be 3:5 � 3

2
= 5:25. Similarly, the overhead between

the pairs 1&2, 3&4, 4&5 and 5&1 is found to be 17:9,
12:25, 3:3 and 17:2 respectively. When these overheads
are added to the numerator in Equation 1, we get an

estimated cost of 332:38, which is within 0:12% of the
measured value.
This example illustrates that by determining costs of

pairs of instructions, it is possible to improve upon the
results of the estimation obtained with base costs alone.
However, extensive experiments with pairs of instruc-
tions revealed that the circuit state overhead has a lim-
ited range - between 5:0 and 30:0 and most frequently
occurred in the vicinity of 15:0. This motivates an e�-
cient yet fairly accurate way to account for the circuit
state overhead. Calculate the average current for the
program using the base costs. Then, add 15:0 to it, to
account for circuit state overhead.
A speci�c manifestation of the e�ect of circuit state

is the e�ect of switching that occurs on address and
data lines. Our experiments revealed that the overall
impact of this e�ect was small. For data reads from the
cache, greater switching of the address values led to at
most a 2% increase in the the energy cost while for data
writes (which go to the cache and the memory bus), the
overhead due to greater switching was less than 4%.
The limited variation in the circuit state overhead is

contrary to popular belief. In fact, a recent work [3],
talks about scheduling instructions to reduce this over-
head. But as our experiments reveal, the methods de-
scribed in this work will not have much impact for the
486DX2. The probable explanation for the limited vari-
ation in circuit state overhead is that a major part of the
circuit activity in a complex processor like the 486DX2,
is common to all instructions, eg. instruction pre-fetch,
pipeline control, clocks etc. While the circuit state may
cause signi�cant variation within certain modules, its
impact on the overall energy cost is swamped by the
much greater common cost. However, we would not like
to rule out the impact of circuit state overhead for all
processors. It may well be that it is a signi�cant part
of the energy consumption in DSPs and processors with
complex power management features. An investigation
of this issue is the subject of our future study.

3.2.2 E�ect of Resource Constraints

Resource constraints in the CPU can lead to stalls e.g.
pipeline stalls and write bu�er stalls [1, 2]. These can
be considered as another kind of inter-instruction e�ect.
They cause an increase in the number of cycles needed
to execute a sequence of instructions. For example, a se-
quence of 120 MOV DX,[BX] instructions takes about 164
cycles to execute, instead of 120 due to pre-fetch bu�er
stalls. While determining the base cost of instructions,
it is important to avoid stalls, since they represent a con-
dition that ought not to be re
ected in the base cost.
Thus, for MOV DX,[BX] a sequence consisting of 3 MOV

instructions followed by a NOP is used since there are no
stalls during its execution [2]. Knowing the cost of the
NOP and the measured value for the sequence, the base

cost of the MOV is determined.
The energy cost of each kind of stall is experimen-

tally determined through experiments that isolate the
particular kind of stall. For example, an average cost
of 250 per stall cycle was determined for the prefetch
bu�er stall.
To account for the energy cost of the above stalls dur-

ing program cost estimation, the number of stall cycles
has to be multiplied by the experimentally determined
stall energy cost. This product is then added to the
base cost of the program. The number of stall cycles is
estimated through a traversal of the program code.

3.2.3 E�ect of Cache Misses

Another inter-instruction e�ect is the e�ect of cache
misses. The instruction timings listed in manuals give
the cycle count assuming a cache hit. For a cache miss, a
certain cycle penalty has to be added to the instruction
execution time. Along the same lines, the base costs
for instructions with memory operands are determined
in the context of cache hits. A cache miss will lead to
extra cycles being consumed, which leads to an energy
penalty. For experimentation purposes, a cache miss
scenario is created by accessing memory addresses in an
appropriate order. An average energy penalty of 216 per
miss cycle has been experimentally obtained. This has
to be multiplied by the average number of miss penalty
cycles to get the average energy penalty for one miss.
The average penalty multiplied by the cache miss rate
is added to the base cost estimate to account for the
cache misses during execution of a program.

4 Estimation Framework

In this section we describe a framework for energy es-
timation of programs using the instruction level power
model outlined in the previous section. We start by il-
lustrating this estimation process for the program shown
in Table 3. The program has three basic blocks as shown
in the �gure.2 The average current per cycle and the
number of cycles for each instruction are given along
with each instruction. With these numbers the base
cost of the basic block B1 is 1713:4, B2 is 4709:8, and B3

is 2017:9. B1 is executed once, B2 4 times and B3 once.
The jmp main statement has been inserted to put the
program in an in�nite loop. Cost of the jl L2 state-
ment is not included in the cost of B2 since its cost is
di�erent depending on whether the jump is taken or not.
It is taken 3 times and not taken once. Multiplying each
basic block by the number of times it is executed and
adding the cost of the unconditional jump jl L2, we get
a number proportional to the total energy cost of the

2A basic block is de�ned as a contiguous section of code with

exactly one entry and exit point.

Program Base Cost(mA) Cycles

; Block B1

main:

mov bp,sp 285.0 1
sub sp,4 309.0 1

mov dx,0 309.8 1
mov word ptr -4[bp],0 404.8 2
;Block B2

L2:

mov si,word ptr -4[bp] 433.4 1
add si,si 309.0 1
add si,si 309.0 1
mov bx,dx 285.0 1
mov cx,word ptr a[si] 433.4 1

add bx,cx 309.0 1
mov si,word ptr b[si] 433.4 1
add bx,si 309.0 1
mov dx,bx 285.0 1
mov di,word ptr -4[bp] 433.4 1
inc di, 1 297.0 1
mov word ptr -4[bp],di 560.1 1

cmp di,4 313.1 1
jl L2 405.7(356.9) 3(1)
;Block B3

L1:

mov word ptr sum,dx 521.7 1

mov sp,bp 285.0 1
jmp main 403.8 3

Table 3: Illustration of the Estimation Process

program. Dividing it by the estimated number of cy-
cles (72) gives us the cost per cycle (average current) of
369:1. Adding the circuit state overhead o�set value of
15:0 we get 384:0. The actual measured average current
is 385:0. This program does not have any stalls and thus
no further additions to the estimated cost are required.
If in the real execution of this program, some cold-start
misses are expected, their energy overhead will have to
be added.
To validate the estimationmodel described in the pre-

vious section, experiments were conducted with several
programs. A close correspondence between the esti-
mated and measured cost was obtained. The estimated
cost was typically within 3% of the measured cost.

4.1 Overall Flow

The overall
ow of the estimation procedure is shown
in Figure 2. Given an assembly or machine level pro-
gram, it is �rst split up into basic blocks. The base
cost of each instance of the basic block is determined by
adding up the base costs of the instructions in the block.
These costs are provided in a base cost table. The en-
ergy overhead due to pipeline, write bu�er and other
stalls is estimated for each basic block and added to the
basic block cost. Next, the number of times each basic
block is executed has to be determined. This depends
on the path that the program follows and is dynamic,
run-time information that is obtained from a program
pro�ler. Given this information, each basic block is mul-
tiplied by the number of times it will be executed. The

Assembly/Machine
 Code

Determination of
 Basic Blocks

Basic Block Cost
 Estimation

Global Program Cost
 Estimation

Final Program Cost

Stall Analysis Base Cost Table

Execution Profiling

Cache Penaly Est.
(Cache Simulation)

Figure 2: Software Energy Consumption Estimation
Methodology

circuit-state overhead is added to the overall sum at this
stage, or alternatively, it could have been determined for
each basic block using a table of energy costs for pairs
of instructions. An estimated cache penalty is added
to get the �nal estimate. The cache penalty overhead
computation needs an estimate of the miss ratio, which
is obtained through a cache simulator.

5 Memory System Modeling

The energy consumption in the memory system is also a
function of the software being executed. The salient ob-
servations regarding the DRAM system current on our
experimental setup are brie
y described here. Details
are provided in a separate reference [6].

The DRAM system draws constant current when no
memory access is taking place. This current value
was determined to be 77:0mA or 5:3mA, depending on
whether page mode was active or not. Greater current
is drawn during a memory access. The exact value of
this current depends on the address of the present and
previous memory access. For example, for writes, the
cost of a page hit is 122:8 (for 3 cycles) and that of
a miss is 247:8 (for 6 cycles). For page hits, a smaller
variation was observed depending on the number of bits
that change from the previous address to the present.

Let X be the sum of the energy costs of each indi-

vidual memory access. Let n and m be the number of
memory idle cycles during which the page mode is ac-
tive and inactive, respectively. The total memory sys-
tem energy cost is given by X + 77:0 � n + 5:3 � m.
As discussed above, the quantity X depends on the lo-
cation and sequence of memory accesses made by the
program. Along with n and m, this is dynamic, run-
time information, which can only be loosely estimated
by static analysis. Thus, modeling of memory system
energy consumption is di�cult if only static analysis is
used. However, as the above discussion shows, analysis
of this consumption is feasible. This is signi�cant, given
that for systems with tight energy budgets, it is impor-
tant to understand all sources of energy consumption.

6 Software Power Optimization

In recent years, there has been a spurt of research activ-
ity targeted at reducing the energy consumption in sys-
tems. This research, however, has by and large not rec-
ognized the potential energy savings achievable through
optimization of software. This was mainly due to the
lack of practical techniques for analyzing the energy con-
sumption of programs. This de�ciency has been allevi-
ated by the measurement and estimation methodology
described in the previous sections. This methodology
makes it possible to compare and evaluate programs in
terms of their energy consumption and also to study
the e�ect of compilation on the energy consumption of
programs.
Using the results of this work, several possible avenues

for energy reduction through code restructing and com-
pilation have been studied [5]. Examples with energy
reduction of up to 40% on the 486DX2 based system,
obtained by rewriting code, demonstrate the potential
of these ideas. These ideas will be pursued further as
part of the research in the area of software power opti-
mization.

7 Analysis of SPARClite 934

The previous sections describe the application of the
power analysis methodology for the 486DX2, a CISC
processor. To verify the general applicability of this
methodology, it was decided to apply the methodology
to a processor with a di�erent architectural style. The
Fujitsu SPARClite 934, a RISC processor targeted for
embedded applications was chosen for this purpose. A
power analysis of this processor has been performed us-
ing the measurement and experimentation techniques
described in the previous sections. The basic model
of a base energy cost per instruction, enhanced by the
inter-instruction e�ects remains valid for this processor,
though the actual costs di�er in value. The details of
this analysis are described in a separate reference [4].

8 Summary and Future Work

This paper presents a methodology for analyzing the
energy consumption of embedded software. It is based
on an instruction level model that quanti�es the en-
ergy cost of individual instructions and of the various
inter-instruction e�ects. The motivation for the analy-
sis methodology is three-fold. It provides insights into
the energy consumption in processors. It can be used
to help verify if an embedded design meets its energy
constraints and it can also be used to guide the design of
embedded software such that it meets these constraints.
The methodology has so far been applied to two com-

mercial processors, a CISC and a RISC. Future work
will extend this to other architecture styles, to charac-
terize and contrast their energy consumption models.
DSPs, superscalar processors and processors with inter-
nal power management will be considered.

9 Acknowledgements

We would like to thank Deo Singh, Suresh Rajgopal
and Tom Rossi of Intel Corp. for providing us with
the 486DX2 evaluation board, Mike Tien-Chien Lee,
Masahiro Fujita and Dinesh Maheshwari of Fujitsu for
helping make the SPARClite analysis possible and Dan
Markham and Pete Derosa of Princeton Univ. for as-
sistance in collecting the experimental data.

References

[1] Intel Corp. i486 Microprocessor, Hardware Refer-

ence Manual, 1990.

[2] Intel Corp. Intel486 Microprocessor Family, Pro-

grammer's Reference Manual, 1992.

[3] C. L. Su, C. Y. Tsui, and A. M. Despain. Low power
architecture design and compilation techniques for
high-performance processors. In IEEE COMPCON,
Feb. 1994.

[4] V. Tiwari, T.C. Lee, M. Fujita, and D. Maheshwari.
Power analysis of the SPARClite MB86934. Techni-
cal Report FLA-CAD-94-01, Fujitsu Labs of Amer-
ica, August 1994.

[5] V. Tiwari, S. Malik, and A. Wolfe. Compilation
techniques for low energy: An overview. In Proceed-

ings of the 1994 Symposium on Low Power Electron-

ics, October 1994.

[6] V. Tiwari, S. Malik, and A. Wolfe. Power analysis
of the Intel 486DX2. Technical Report CE-M94-5,
Princeton Univ., Dept. of Elect. Eng., June 1994.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

