
Abstract

Several industrial FPGA routing architectures have been
shown to have no efficient routing algorithms (unless P=NP)
[3,4].  Here, we further investigate if the intractability of the  rout-
ing problem on a regular 2-D FPGA routing architecture can be
alleviated by adding routing switches. We show that on this rout-
ing architecture, even with a substantial increase in switching
flexibility, a polynomial time, predictable routing algorithm is
still not likely to exist, and there is no constant ratio bound of the
detailed over global routing channel densities. We also show that
a perfect routing is unachievable on this architecture even with
near complete (maximum) switching flexibility.

We also discuss a new, greedy routing architecture, that pos-
sesses predictable and other desired routing properties, yet re-
quires fewer routing resources than regular architectures. This
theoretical result may suggest an alternative approach in routing
architecture designs.

1. Introduction

Routability has become one of the major concerns in current
FPGA technology because of its dominating impact on circuit
performance and chip area. In this paper, we study routability is-
sues of a 2-dimensional (2-D) Look-up-table and SRAM technol-
ogy based Xilinx-style [1,5] FPGA architecture.

In the past, themappability of a global routing ofall nets with
arbitrary topologies to a feasible detailed routing has been used
in justifying the routability of a given architecture [3,4]. Since a
routing with just a couple of nets unrouted is as bad as any other
failed routing, such a global view reflectsthe desired 100% rout-
ing rate. This routing problem has been shown to be NP-complete
for an industrial model of this type [3]. The previous experimen-
tal [5] and probabilistic modeling [6] results show that the
routability of this routing architecture monotonically increases as
the switching resources increase. Here, we analyze the following
three routing properties of the investigated architecture with in-
creasing switching resources:
[Existence of an efficient routing algorithm]
• Polynomial Routing Decision Algorithm (PRDA): A polyno-

mial time algorithm to determine the following: Given a
global routing, is there a corresponding feasible detailed
routing?

[Existence of a routing solution (allowing exhaustive search)]
• Constant Mapping Ratio (CMR): The detailed routing chan-

nel density over the global routing channel density is always
bounded by a constant.

• Perfect Routing (PR): A detailed routing using the same
number of tracks as the global routing is always achievable.
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2. Routing Model, Terminology

The investigated architecture is depicted in Fig. 1. It is a 2-D
array of look-up-tables (L),connection (C) boxes andswitch (S)
boxes [1,3,6]. Wire segments, spanning between pairs of adjacent
switch boxes, run in both vertical and horizontal channels with
the same number of tracks W. In each channel,tracks ids are
numbered from right to left, or from top to bottom. The C boxes
contain routing switches that can be programmed to connect log-
ic pins to wire segments. The S boxes contain switches that allow
one wire segment to be connected to another.  The switching flex-
ibility, Fs, of a track surrounding an S box is defined to be the
number of outgoing tracks to which a track can connect. Here, we
assume a logic pin in any C box can connect to any wire running
through it. Theglobal channel density,Wg, is the maximum
number of nets which run in parallel in any channel as decided by
a global router. Thedetailed channel density,Wd, is the mini-
mum number of tracks needed to realize the connection topology
decided by the global router. We define theMapping Ratio (MR)
to be Wd/Wg and X(G) to be the chromatic number of a graph G.

A 2-D FPGA routing architecture ishomogeneous if
1. all L blocks and routing boxes are allocated as a symmetri-

cal 2-D array and routing boxes of the same type have the same
connection topology, and

2. the S boxes (except the boundary S boxes) are symmetric
(i.e., from one side to any other side has the same connectivity).

A routing architecture isdisjoint if, when all S box switches
are closed, then all wire segments are partitioned intoD>1 dis-
joint wire sets, calleddomains, and a given domain will cover the
same number of tracks in every C box, which is defined to be the
domain capacity,Dc, of this domain. A disjoint architecture is
even if the domain capacities of all domains are the same, other-
wise it isuneven. An architecture isregular if it is both homoge-
neous and disjoint. Without loss of generality, we can assume the
set of track ids belonging to a domain of a regular architecture is
the same in every C box.  For example, Fig. 1 shows an uneven
regular architecture with two domains. Any wire segment with
track id 1 or 2 belongs to the first domain and can connect to any
other neighboring tracks with track id 1 or 2. The second domain
has domain capacity of just 1 which is the same as the popular
XC4000 architecture [1].  In this second domain, each diagonal
intersection point represents six switches, for which an arbitrary
subset can be programmed to be closed to make a desired junc-
tion. In this paper, we do not discuss general non-disjoint type ar-
chitectures. An analysis of this type with Fs = 3 can be found in
[3].

3. Routing Decision Problem on the 2-D Reg-
ular Routing Architecture

The Routing Decision Problem (RDP) for an even regular ar-
chitecture with Dc = 1, which is similar to the popular XC4000
architecture, has been shown to be NP-complete [2]. Here we in-
vestigate if the intractability of this routing problem can be alle-
viated by purely adding switching resources. By multiplying the
Fs value of each track surrounding every S box, the architecture
remains even regular with a multiplied Dc value.

[ RDP of 2-D even regular routing architecture ]

Given: A global routing of a circuit on a 2-D even regular
routing architecture with  channel capacity W, domain capacity
Dc, and D = W/Dc domains.

Question: Does there exist a valid W track (D domain) de-
tailed routing for the given global routing?  I.e., is the global rout-
ing W track routable (D domain routable)?

 In [2, 3], the graph coloring problem was reduced to the
Dc=1 RDP by considering each node in the graph as a net. If there
is an edge between two nodes, then the two corresponding nets
run through the same C box. Then the X(G) of the graph will be
the number of tracks (capacity one domains) needed for the de-
tailed routing. Thus the RDP was shown to be NP-complete for
W ³ 3.  In the case of W = 2 and Dc = 1, this RDP can be solved
by a polynomial 2-coloring graph algorithm. (Certainly, an even
regular structure with just 2 tracks is not realistic.) To see the
complexity of a routing architecture with domain capacity greater
than one, we first examine an example of a regular architecture
with domain capacity two.

In Fig. 2, a global routing of 6 nets is given.  Can the global
routing be mapped to a detailed routing on a chip with two do-
mains each of capacity 2?  Note that all wires in a net must belong
to the same domain because only routing tracks within the same
domain have switches to connect to each other.  Fig. 2a depicts a
situation where nets a1 and a2 are assigned into the same domain,
say D1; and nets b1 and b2 are assigned to the other, D2. Then
nets a1 and a2 have to stay in D1, and because the domain capac-
ity is just 2, nets c1 and c2 must be assigned to the domain D2.
This leads c1 and c2 to conflict with b1 and b2 in the lower right
C box. On the other hand, the domain assignment shown in Fig.
2b is a feasible solution (a1 and a2 are in two different domains).

Lemma 1. Problem [ RDP of 2-D Even Regular Routing Ar-
chitecture ] is NP-complete for any fixed S box topology with  Dc
= 2, and D = 3.

Proof:
This problem is certainly in NP.
We now reduce the 3-colorable graph problem to our prob-

lem.  We say two nets have a routingtrack constraint if their glo-
bal routes run through a same C box, and have adomain
constraint if they must be assigned into two different domains.
Be aware that a routing track constraint does not necessarily im-
ply a domain constraint when  Dc>1.

Let G(V,E) be any arbitrary graph. We will construct a 2-pin
net routing instance whose domain constraints are given by the
edges of G. Thus G(V,E) is 3-colorable iff the constructed  FPGA



routing instance is 3-domain routable.
Let the edges in G be numbered from 1 to |E|. Associated with

each edge ei, say (a,b) here, there is a partial global routing in 7
(D*Dc+1 in general) diagonally placed C boxes with 4 nets {a1,
a2, b1, b2} ({a 1,..,aDc, b1,..,bDc} in general) and 17 enforcer nets
((Dc*D-1)D+(D-2)Dc in general) {xi1, xi2, yi1, ..., yi5, y'i1, ...,
y'i5, andy''i1, ..., y''i5}.

The 7 C boxes (for edge ei = (a,b)) arranged in a diagonal
fashion will contain net segments as following:

(xi1, xi2, a1, a2, b1, b2),.............(1)
(xi1, yi1, yi2, yi3, yi4, yi5).............(2)
(xi2, yi1, yi2, yi3, yi4, yi5),.............(3)
(a1, y'i1, y'i2, y'i3, y'i4, y'i5).............(4)
(a2, y'i1, y'i2, y'i3, y'i4, y'i5),.............(5)
(b1, y''i1, y''i2, y''i3, y''i4, y''i5).............(6)
(b2, y''i1, y''i2, y''i3, y''i4, y''i5).............(7)

By allocating the C boxes diagonally, we can build a partial
global route, starting from the leftmost (highest) C box, that con-
nects all segments belonging to the same net by using a vertical
route starting at the adjacent lower right C box then to the nearest
lower C box containing the same net (as shown in Fig. 3). To
complete the global routing, the appropriate nets from the partial
global routings must be connected. For example, if there is an
edge (a,b) and an edge (a,c) then the net segments a1 and a2 from
both partial global routings need to be connected.  This process is
done for all nets. This global route can be built without adding
new track constraints, since any additional track constraint creat-
ed by this is a proper subset of track constraints created by one of
the original C boxes.

The goal of this partial global routing in these 7 C boxes is to
enforce the following domain constraints:

1. Nets xi1 and xi2 must be in the same domain. Similarly for
nets a1, a2 and nets b1, b2.

2. Nets a1 and a2 must be in a different domain from nets b1
and b2.

We claim that with the above partial global routing, these 2
domain constraints will be fulfilled.  First, from (2) and (3), nets
xi1 and xi2 must  be in the same domain.  Suppose not.  Then let
xi1 be in domain D1 and xi2 be in domain D2.  Then there must
be a yij  in D1 and a yik in D2, say yi1 in D1, yi2 in D2.  However
that leaves yi3, yi4, and yi5 to fit in only one domain (capacity
only 2), which is impossible.  Thus nets xi1 and xi2 must be in the
same domain.  A similar argument holds for (4) and (5) concern-
ing nets a1 and a2, and (6) and (7) concerning nets b1 and b2.
Therefore, domain constraint 1 is satisfied.  Finally, from (1) nets
xi1 and xi2, nets a1 and a2, and nets b1 and b2, all must be in dif-
ferent domains, thus domain constraint 2 is satisfied as well.

Every coloring constraint edge in G(V,E) will impose a sim-
ilar routing domain constraint in the FPGA routing instance,
therefore, G is 3-colorable iff the FPGA routing instance is 3-do-
main routable.

As the 3-coloring problem is NP-complete for a general
graph, the considered 3-disjoint domain routability problem is
also NP-complete. Q.E.D.

For general D domain routable problem with D ³ 3 and Dc ³ 2,
we similarly build a routing instance with Wg = D*Dc by adding
(Dc*D-1)D y-type + (D-2)Dc x-type enforcing nets, and reduce
a D-colorable graph coloring problem to this D-domain routable
problem. For each edge ei = (a,b), we build a partial global rout-
ing with the following D*Dc+1 C boxes:

(x1
i1,..,x1

iDc,...,..,xD-2
i1,...,xD-2

iDc, a1,..,aDc, b1,..,bDc),
(a1, y1

i1,......................, y1ik) where k = Wg - 1
........(aDc, y1

i1,....................., y1ik),
(b1, y2

i1,......................, y2ik)
........(bDc, y2

i1,....................., y2ik),
(x1

i1, y3
i1,...................., y3ik)

.........(x1iDc, y3
i1,.................., y3ik),

...,..,..,..,..,..,..,..,..,..,..,.,.,.,
(xD-2

i1, yD
i1,................., yDik)

.........(xD-2
iDc, yD

i1,................, yDik)

The complexity of this problem remains NP-complete.  Thus
we have the following theorem.

Theorem 1. Problem [ RDP of 2-D Even Regular Routing
Architecture ] is NP-complete for any fixed S box topology with
Dc ³ 1 and D ³ 3.

From this theorem we conclude that because the D domain
routability problem is NP-complete for any even regular architec-
ture with any large number of routing domains and capacity, it is
not likely that we can alleviate this mapping intractability by
purely adding switches. Similar to the approach shown in [7], this
result can be easily extended into multi-pin routing cases with or
without doglegs.
4. Mapping Ratio Bound and Perfect Routing
Problem

The next questions are: Does there exist a 2-D regular routing
architecture that can achieve perfect routing? And what is the
worst case mapping ratio bound of this architecture?



Lemma 2. In an even regular routing architecture, there is no
constant mapping ratio bound, if Wg > Dc. In the worst case, MR
= N/Wg, where N is the number of nets.

Proof:
If Wg = Dc, all the nets can be contained in a single domain.

Otherwise, if Dc < Wg we claim that there is no constant ratio
bound and consequently no perfect routing. We can show the ex-
istence of a worst case by building acompletely distributed glo-
bal route of N nets over Wg density. This is a net segment
distribution such that for every Wg size subset of N nets, there is
a C box containing segments of these nets. Thus there will be
C(N, Wg) connection boxes each with a different combination of
Wg nets.  Given a completely distributed global routing, any
routing domain with capacity Dc can only pack (detailed route)
Dc nets. This is because if this domain packs Dc + 1 nets then it
will have a resource conflict at those C boxes that contain these
Dc + 1 nets. Therefore, after the first domain is packed, N - Dc
nets will be left unpacked. Similarly, the next routing domain can
only pack another Dc of the leftover nets. The same reasoning is
valid until finally the number of leftover nets are less then or
equal to Dc and packable in one domain. In this case, there is no
detailed routing solution without using exactly N tracks, and MR
= N/Wg, which is clearly not constant bounded. Consequently,
there can be no perfect routing for this architecture either. The
key left for this proof is to show this kind of completely distrib-
uted global route can be built on regular architectures.

Fig. 4 shows an example on how a completely distributed glo-
bal route with N = 4, and Wg = 3, can be built on a regular routing
architecture. By allocating each of such C box diagonally, we can
assign a unique vertical route for each net and then connect it to
all its segments in all the appropriate C boxes. It is clear that this
is a valid global route without adding new routing constraints.
Q.E.D.

It is not hard to see that these undesired results are not just on
even regular structures, it is also true on any uneven regular mod-
el .

Theorem 2. All 2-D (even or non-even) regular routing archi-
tectures do not have constant mapping ratio bound if Wg > max
(|Di|), where |Di| is the domain capacity of the ith domain, and
cannot achieve perfect routing.

Considering an uneven regular routing architecture with just
two routing domains, one with capacity W - 1 and the other with
capacity one. In such a routing architecture, the switch density of
a switch box is 6(W - 1)2 + 6, which is close to thecomplete flex-
ibility of 6W2, however, both CMR and PR are still not achiev-
able.

5. Greedy Routing Architectures

The design style of a routing architecture seems to have a
dominating impact on the existence of some desired routing
properties. In this section, we show a different design style, a
greedy routing structure, that can lead to some better routing
properties.

A Greedy Routing Architecture (GRA) is defined to be a rout-
ing architecture possessing the followinggreedy routing proper-
ty: "A global optimum routing can be extended from a local
optimal routing." A classical example of GRA is the channel
routing problem with no vertical constraint for which an opti-
mum routing can be achieved from greedily packing each track
domain using the left-edge algorithm. Most other known routing
architectures do not possess this greedy routing property, there-
fore an optimally routed partial routing can not be extended into
an optimum global solution. For example, a single net may be
routed optimally, but this route may be a poor choice when the
routing of all nets is considered. Among many possibilities, we
just show two simple examples to illustrate this notion.

5.1 type I: 3-Way Switch Box

A T-box is defined to be an S Box with incoming and outgo-
ing nets in only 3 directions. Two T-box structures are shown at
Fig. 5.  Fig. 5a shows a T-box with Fs of 2 for each track while
in Fig. 5b, complete flexibility (In fact, models with less flexibil-
ities can also achieve these same properties.) is added in between
the top and the left sides. Using these T-boxes, the global routing
of all nets can be limited into a tree type topology. And an opti-
mum greedy routing can be carried out in linear time with the
worst case mapping ratio of 3/2 for T-box-1 based architecture
[7]. Here, we demonstrate a simple way of conducting a greedy
perfect routing for a T-box-2 based architecture by solving a local
[ one-side constrained 3-way routing problem  ]:

Instance: A T-box-2 routing architecture, a global route of
nets on the 3 surrounding C boxes of the T-box-2, with detailed
route of one side (top) pre-determined (one-side constrained).

Question: Does there exist a valid detailed routing of this glo-
bal routing on the given T-box-2 routing architecture?

The routing problem can be solved by
1. first applying the left edge routing algorithm from the top

to the right C boxes, then from the right to the left C boxes.
2. applying bipartite matching between the top and left C box-

es.



This algorithm solves the PR problem of the T-box-2 locally,
and a global optimum routing can be achieved by propagating
this local routing to the whole chip by either depth first or
breadth-first manner from the root. ( Fig. 6.)

5.2 Type II: Non-Symmetric 4-Way Switch Box
By binding a routing architecture to a pre-specified routing

procedure (or algorithm), many greedy routing structures can
also be built. The architecture shown at Fig. 7 is an example of
applying a prespecified spiral routing sequence with the preallo-
cated three kinds of non-symmetric 4-way S boxes. A 4-way non-
symmetric S box can be built by adding more switches on certain
side pairs to make a prescribed routing procedure perfect. The
number, starting from 1,  shown in the figure is the routing se-
quence of those C boxes. In this example three kinds of S boxes
are used, each kind is used to implement a 4-way routing with
one-side, two-side, or three-side constrained respectively. Com-
pared to a regular structure that requires 6W2 (complete flexibil-
ity) switches per S box to achieve CMR or PR, this greedy
architecture requires fewer switches while achieving CMR and
PR without any additional limitation on net topologies [7].

Theorem 3. Both Type I and II greedy architectures can
achieve PRDA, CMR, and PR with incomplete switch box flexi-
bilities.

6. Conclusions

In this paper, we investigate several fundamental routing
problems on a well-known regular 2-D FPGA architecture with
substantial addition of switching flexibility. The results seem to
be a bit counterintuitive. We also see that two types of greedy ar-
chitectures can be developed by either limiting the global route
topology (3-way S box) or applying non-symmetric 4-way S box-
es without limiting the global route topology. The common
theme of these greedy architectures is a strong tie between the
routing algorithms and their correspondingly designed architec-
tures.  Probably, a more interesting point is: the routing algorithm
is decided first and then the architecture is.

Although in the worst-case analysis (CMR and PR), the
greedy architecture shows a clear superiority over the regular
one, it is still unknown how a more practical "semi-greedy" ar-
chitecture performs on average cases over a regular architecture
with comparable routing resources. And it is still open if a type I
greedy architecture would pay-off with the sacrifice of some to-
pological freedom in choosing a global route. With respect to the
PRDA, some regular architectures may still possess efficient
routing heuristics [8]. It will be a future challenge to justify these

complicated trade-offs in choosing these two different style of ar-
chitectures and its extension to higher design automation levels.
We suspect that this may be a strongly application dependent is-
sue and greedy architectures should find some application in very
large real-time reconfigurable circuitries. Our theoretical results
help understand the implications the routing architecture imposes
on routing problems and also suggest a new view in routing ar-
chitecture designs.
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