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Abstract

This work presents techniques for computing the switching
activities of all circuit nodes under pseudorandom or
biased input sequences and assuming a zero delay mode of
operation. Complex spatiotemporal correlations among
the circuit inputs and internal nodes are considered by
using a lag-one Markov Chain model. Evaluations of the
model and a comparative analysis presented for
benchmark circuits demonstrates the accuracy and the
practicality of the method. The results presented in this
paper are useful in power estimation and low power
design.

1. Introduction

In estimating the power consumption in a digital circuit,
knowledge about the average switching activity in the
circuit plays a significant part because most of the power in
CMOS circuits is consumed during charging and
discharging of the load capacitance. To estimate the power
consumption, one has to calculate the switching activity
factors of the internal nodes of the circuit. The key issue in
switching activity estimation is to account for various
dependencies, irrespective of the particular way in which
the inputs and the target circuits are described.

Common digital circuits exhibit a lot of dependencies;
by far, the most known one is the dependency due to
reconvergent fan-out among different signal lines, but even
structurally independent lines may have dependencies
(induced by the sequence of inputs applied to the circuit)
that cannot be neglected. Accounting for all kinds of
dependencies is impossible even for small circuits;
consequently, for real-size circuits, only some of the
dependencies have been considered and even then, only
heuristics have been proposed. The main reason for this
situation is the difficulty in managing complex data
dependencies at acceptable levels of computational work.

 Methods of estimating the activity factor at a circuit
node involve estimation of signal probability. Computing
signal probabilities has attracted much attention One of the
earliest works in computing the signal probabilities in a
combinational network is presented in [1]. For tree circuits
which consists of simple gates, the exact signal
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probabilities can be computed during a single post-order
traversal of the network [2]. Alternatively, one may use a
graph-based algorithm to compute the exact values of
signal probabilities using Shannon’s expansion [3]. The
cutting algorithm, which computes lower and upper bounds
on the signal probability of reconvergent nodes was
developed and presented in [4]. Also, the Ordered Binary
Decision Diagram representation (OBDD) was used for
computing the signal probability in [6] and [7].

The spatial correlations among different signals are
modelled in [5] where a procedure is described for
propagating signal probabilities from the circuit inputs
toward the circuit outputs using only pairwise correlations
between signals and ignoring higher order correlation
terms.

None of the above mentioned methods adequately
capture spatiotemporal correlations, that is correlations
among logic transitions on two or more circuit lines. The
approach proposed in this paper improves the state-of-the-
art by a new analytical model which accounts for this kind
of correlations. Its mathematical foundation is probabilistic
in nature and consists of using lag-one Markov Chains to
capture different kinds of depedencies in combinational
circuits under a zero-delay model. For the first time to our
knowledge, we have considered in a systematic way
different kinds of dependencies in large combinational
modules for both pseudorandom and biased input streams.

The results presented in this paper are useful in power
estimation and low power design. Our approach provides a
sound framework for efficiently and accurately estimating
the effects of different transformations/optimizations on
the power consumption of the circuits under complex
spatiotemporal correlations.

The paper is organized as follows. In section 2 we
present in detail our model for switching activity
estimation and provide a measure of its complexity. In
section 3 we give some discussions and our experimental
results on benchmark circuits. Finally, we summarize our
main results and indicate possible extensions in section 4.

2. An analytical model for dependencies

2.1. Temporal correlations

We treat the sequence that corresponds to different values
of a signal linex as a discrete process where time units
1,2,...,n represent the time instances when the input vectors
V1,V2,...,Vn are applied to the circuit under consideration.
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During the application of the input vectors,x may be 0 or 1,
so that if we define its state at timen by random variablexn,
then the behavior of linex can be described as a lag-one
Markov Chain {xn} n>1 over the state set S = {0,1} through
the transition matrix Q [12]:

Fig.1

 0 if x = 0
  = 

 1 if x = 1;
(1)

Every entrypi,j in the Q matrix represents a conditional
probability and may be viewed as the one-step transition
probability to statei at stepn from statej at stepn-1. The
expressions for these conditional probabilities are:

(2)

In theQ matrix, every column adds to unity, i.e:
                  (3)

A lag-one Markov Chain has the property that one-step
transition probabilities do not depend on the ‘history’, i.e
they are the same irrespective of the number of previous
steps. If the process {xn} n>1 is homogenous, then the
probability distribution of the chain is  where

 is the initial distribution vector. If we assume the
stationarity of the process {xn} n>1, then the previous
relation becomes . Based on this, we get the
following (all the proofs can be found in [11]):

Proposition 1: The signal probabilities may be expressed in
terms of conditional probabilities as follows:

            (4)

❒
Definition 1: Transition probabilities are defined as:

                    (5)

Proposition 2: Transition probabilities may be expressed in
terms of conditional probabilities as:

(6)

❒
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Proposition 3: Conditional probabilities may be expressed
in terms of transition probabilities as:

(7)

❒
Relying on Propositions 1-3, the relationship between all
kinds of probabilities can be illustrated as below:

Fig.2
As we can see, we need less information to compute the
signal probabilities, but the ability to derive anything else is
severely limited; on the other side, once we get either
conditional or transition probabilities we have all we need
for that particular signal.

Definition 2: For any given line x, the switching activity is:

                   (8)

2.2. Spatial correlations

This type of correlations has two important sources:
- Structural dependencies due to reconvergent fan-out

(RFO);
- Pattern dependencies, that is, normally independent

signal lines that become correlated due to a particular
sequence of inputs.

To take into account the exact correlations is practically
impossible even for small circuits. To make this problem
more tractable, we allow only pairwise correlated signals,
which is undoubtedly an approximation but provides good
results in practice. Consequently, we consider the
correlations for all 16 possible transitions of a pair of
signals (x,y) and model it as a lag-one Markov Chain with 4
states (states 0, 1, 2, 3 which stand for encodings 00, 01, 10,
11 of (x,y)):

Fig.3
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Definition 3: Conditional probabilitypa, b is defined as:

  (9)

wherea, b = 0, 1, 2, 3, a is encoded asij andb askl.
Ercolani et al. consider in [5] structural dependencies
between any two signals in a circuit by using the signal
correlation coefficients (SC); these coefficients can be
expressed as:

                                                  (10)

wherei, k = 0,1. Assuming that higher order correlations of
two signals to a third one can be neglected, they
approximated the correlation coefficient among three
signals as:

                                                      (11)

Our approach is more general in that we capture the
spatial correlations between signals, for each pair of signals
(x,y) and for all possible transitions between them as
described next:

Definition 4: Transition correlation coefficients (TC) for
two signalsx, y is defined as:

     (12)

wherei,j, k, l = 0, 1.

Proposition 4: For every pair of signals (x,y) and all
possible valuesi, j, k, l = 0, 1, the following holds:

                            (13)
❒
Proposition 5: For every pair of signals (x,y) and all
possible values i, j = 0, 1, the following equations hold:

∀ i = 0, 1;
(14)

∀ j = 0, 1.

❒
Proposition 6: For every pair of signals (x,y) and all
possible valuesi, j, k, l = 0, 1 the following equations hold:

∀ i, k = 0, 1;
 (15)

∀ j, l = 0, 1.

❒
We provide in the following other two useful results:

Proposition 7: The set of 4 equations and 4 unknowns
SCij

xy, i, j = 0, 1 in Proposition 5 is indeterminate.
Moreover, the matrix of the system has the rank 3 in the
non-trivial cases (the trivial case is when any one of the
signal probabilities is either 0 or 1).
❒
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Proposition 8: The set of 8 equations and 16 unknowns
TCij,kl

xy, i, j, k, l = 0, 1 is indeterminate; the matrix of the
system has the rank 7 in the non-trivial cases (the trivial
case is when any three of the transition probabilities are
zero).
❒
The last two propositions are very important from a
practical point of view. The set of equations involvingSC’s
may be solved knowing onlySC11

xy, for example, and that
was the approach taken by Ercolani et al. in [5] (although,
no similar analysis appeared in the original paper). In the
more complex case involvingTC’s, we need to know 9 out
of 16 coefficients in order to deduce all values.

2.3. Propagation mechanisms

In what follows we ignore higher order correlations, that is,
the correlation between any number of signals is expressed
only in terms of pairwise correlation coefficients; the same
assumption was used in [5], but only for signal correlation
coefficients.
Definition 5: We define theTC among three signals as:

Neglecting higher order correlations, we therefore assume
that the following holds for any signalsx, y, z and any
valuesi, j, k, l, m, n = 0, 1:

                                (16)

Definition 5 and relation (16) may be easily extended to any
number of signals. Based on the above assumption, we use
an OBDD-based procedure for computing the transition
probabilities and for propagating theTC’s through the
network. The main reason for using the OBDD
representation [8] for a signal is that it is a compact and
canonical representation of a Boolean function and that it
offers a disjoint cover which is essential for our purposes.
Depending on the set of signals with respect to which we
represent a node of the boolean network, two approaches
may be used:

- The global approach - for each node, we build the
OBDD in terms of the primary inputs of the circuit;

- The incremental approach - for each node, we build
the OBDD in terms of its immediate fanin and propagate the
transition probabilities and theTC’s through the circuit.

The first approach is more accurate, but requires much
more memory and running time; indeed, for many large
circuits, it is nearly impractical. The second one, offers
accurate enough results whilst being more efficient as far as
memory requirement and running time are concerned.

a) Computation of the transition probabilities

Let f be a node in the boolean network represented in terms
of n (immediate or primary input) variablesx1, x2,..., xn. f
may be defined through the following two sets of OBDD
paths:
 - ∏1 - the set of all paths in the ON-set of f
 - ∏0 - the set of all paths in the OFF-set off

Some of the approaches reported in the literature (e.g.
[9]), use the XOR-OBDD off at two consecutive time steps
to compute the transition probabilities. We consider instead
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only the OBDD off and by using a dynamic programming
approach, compute the transition probabilities more
efficiently.

Based on the above representation, the event‘f  switching
from valuei to valuej’ ( i, j = 0, 1) may be written as:

                                         (17)

whereik, jk are the values of variablexk on pathsπ andπ’
respectively (ik, jk = 0, 1, 2, where 2 stands for don’t care
values) for eachk = 1, 2,...,n. Thus the probability thatf
switches fromi to j may be expressed as:

                                (18)

Applying the property of disjoint events (that is satisfied by
the collection of paths in the OBDD representation), the
above formula becomes:

                                (19)

However, since the variablesxk may not be spatially
independent of one another, the probability of a path to
‘switch’ from (i1, i2,..., in) to (j1, j2,..., jn) may not be
expressed as the product of transition probabilities for
individual variables. If relation (16) is true for any three
signals from the set {x1, x2,..., xn}, then:

         (20)

We therefore obtain the following result:

Proposition 9 The transition probability of a signalf from
statei to statej (i, j = 0, 1) is:

(21)

❒
Although this expression seems to be very complicated, its
complexity is within reasonable bounds; it is not necessary
to enumerate allpairs of paths in the OBDD (which would
provide a quadratic complexity in the number of paths in the
OBDD), but for a fixed path inΠi the computation may be
done in linear time in the number of OBDD nodes.

For the incremental approach, we need a mechanism not
only for computing the transition probabilities, but also for
propagating theTC’s through the boolean network. For a
given node in the circuit, it is only necessary to propagate
theTC of the output with respect to the signals on which the
inputs depend.

b) Propagation of the transition correlation coefficients

Let f be a node with immediate inputsx1, x2,..., xn andx a
signal on which at least one of the inputsx1, x2,..., xn
depends. According to the definition of theTC, for everyi,
j, p, q = 0, 1 possible values off andx respectively, we have:

                                            (22)
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Since the transition probabilities forf and x are already
computed at this point, the only problem is to compute the
probability of bothf andx switching fromi to j and fromp
to q, respectively. We get the following important result:

Proposition 10 The TC between signals f and x, for any
valuesi, j, p, q = 0, 1 may be expressed as:

(23)
❒
c) Complexity issues

In order to assess the complexity claimed above, let us
define the following notation:

                                                (24)

whereπ is a fixed path inΠi. Thus, using the disjointedness
property, the corresponding probability is:

Since pathπ is fixed, the above probability may be
computed on the OBDD in the same way as a signal
probability. The idea is that, using Shannon decomposition,
the signal probability (and hence the above probability)
may be computed in linear time in the number of the
OBDD-nodes [6]. Thus,  may be decomposed as
follows:

                                   (25)

where  are the cofactors with respect toxk and
xk, respectively. Based on this recursive decomposition, we
may also write a similar relation for the corresponding
probabilities, taking also into account the possible existing
correlations:

                      (26)

Having computed this probability for each pathπ, we
immediately get the corresponding transition probabilities
and hence the switching activity.Thus, for a fixed pathπ,
the complexity is O(n2N) wheren is the number of variables
andN is the number of nodes in the OBDD. Then2 factor
comes from the necessity of taking into account the
correlations: in addition to the transition probabilities, we
have to keep track of theTC’s involved on each path. There
is a number ofCn

2 factors in the product, thus the
complexity is quadratic in the number of variables.

Hence, overall, the time complexity is O(n2NP) whereP
is the number of paths in the OBDD. In the incremental
approach, this is within reasonable limits sincen does not
exceed 5 or 6 variables in the immediate fanin of the node.
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3. Experimental results and discussions

All experiments were performed in the SIS environment
[14] on a SPARC II workstation with 64Mbytes of memory.
The experimental setup is shown below:

Fig.4
To generate pseudorandom (PR) inputs we have used as

input generator a maximal-length linear feed-back shift
register (LFSR) modified to include the all-zero pattern
[13]. The average power consumption of a gate in a
synchronous CMOS circuit, one can use the well-known
formulaPavg = 0.5 (Vdd

2 / Tcycle) Cload sw(x)whereVdd is
the supply voltage,Tcycle is the clock cycle period,Cload is
the load capacitance,x is the output of the gate andsw(x) is
computed as in (9). In our experiments, we were mainly
interested to measure the accuracy of the model in
estimating the switching activity locally (at each internal
node of interest) and globally (for the entire circuit), given
a set of inputs with spatiotemporal correlations.

To bound the error during the propagation procedure, we
used two mechanisms:

- One based on the paradigm in fig.2, that is we calculate
the signal probabilities independently and use these values
as a more reliable measure for correcting the values of
transition probabilities that fall out of range [0, 1]; more
precisely, we normalize conditional probabilities such that
relations (4) hold at each step;

- The other based on limiting theTC values, that is we
normalize the values of coefficients using the set of
equations (15).

To assess the impact of spatiotemporal correlations on
switching activity estimations, we considered thef51m
benchmark circuit and performed the following set of
experiments:

- a PR experiment where the inputs were generated with
the polynomialp(x) = 1⊕ x ⊕ x2 ⊕ x7 ⊕ x8;

- a biased experiment where the switching activities of
the inputs weresw(i) = 0.25,i = 1, 2..., 7 andsw(8) = 0.375.

 In addition to the difference in switching activities of the
circuit inputs, the biased input stream shows a higher
amount of spatial and temporal correlations.

To compare our model with different other approaches
reported in the literature, we analyzed exhaustively this
circuit for the switching activity at primary outputs and all
internal nodes. Comparing our estimations with the exact
logic simulation results, we report in Tables 1 & 2, the
usual measures for accuracy: maximum error (MAX), mean
error (MEAN), root-mean square (RMS) and standard
deviation (STD).

    (input correlations)

Switching activity

estimation
Response analysis

Comparison

 Input sequence analysis
Binary logic simulation

Input sequence
generation

Table 1 :f51m -PR inputs

Table 2 :f51m - biased inputs

For PR inputs, global approaches with spatiotemporal
correlations are almost 50 times more accurate than the
approaches that do not account for any of these
dependencies. Incremental approaches that consider both
types of correlations are on average 3 times more accurate
than the ones that neglect any of these. The price we have to
pay in terms of accuracy is justified by a significant
computational speed-up of incremental method vs. the
global one. It is worthwhile to note that taking into account
any of the spatial or temporal correlations by itself does not
really improve the accuracy of the estimations.

For biased inputs, the global approach using both spatial
and temporal correlations is 6 times more accurate than the
one that ignores both dependencies; on the other hand, the
incremental approach provides a gain in accuracy of 4

 Global approach
 W/ spatial correlations W/o spatial correlations

Error W/ temporal

 correlations

W/o tempo-

ral correla-

tions

W/ temporal

 correlations

W/o tempo-

ral correla-

tions
MAX 0.0078 0.1949 0.1949 0.1949

MEAN 0.0003 0.0464 0.0463 0.0464
RMS 0.0014 0.0699 0.0699 0.0699
STD 0.0013 0.0526 0.0527 0.0526
TIME 254.16 s 1.64 s 7.31 s 0.42 s

 Incremental approach
 W/ spatial correlations W/o spatial correlations

Error W/ temporal
 correlations

W/o tempo-
ral correla-

tions

W/ temporal
 correlations

W/o tempo-
ral correla-

tions
MAX 0.1615 0.2062 0.2265 0.2264

MEAN 0.0131 0.0464 0.0473 0.0474
RMS 0.0289 0.0701 0.0714 0.0714
STD 0.0258 0.0528 0.0538 0.0537
TIME 44.57 s 4.16 s 0.64 s 0.43 s

 Global approach
 W/ spatial correlations W/o spatial correlations

Error W/ temporal
 correlations

W/o tempo-
ral correla-

tions

W/ temporal
 correlations

W/o tempo-
ral correla-

tions
MAX 0.0767 0.2893 0.1714 0.3110

MEAN 0.0111 0.0939 0.0380 0.1049
RMS 0.0205 0.1164 0.0511 0.1239
STD 0.0174 0.0692 0.0344 0.0663
TIME 266.23 s 1.73 s 6.81 s 0.44 s

 Incremental approach
 W/ spatial correlations W/o spatial correlations

Error W/ temporal
 correlations

W/o tempo-
ral correla-

tions

W/ temporal
 correlations

W/o tempo-
ral correla-

tions
MAX 0.1517 0.2885 0.1714 0.3110

MEAN 0.0158 0.0930 0.0344 0.0972
RMS 0.0296 0.1162 0.0480 0.1166
STD 0.0252 0.0702 0.0337 0.0648
TIME 48.86 s 4.22 s 0.69 s 0.41 s



times. Although the incremental approach with
spatiotemporal correlation provide roughly the same gain in
accuracy as the global one, the running time is clearly much
shorter.

The ratio of running times when neglecting one or both
of the spatial or temporal correlations is different for the
global vs. incremental approach: for the global one, it is
more expensive to consider temporal correlations, while in
the incremental approach, the spatial correlations are more
time consuming.

These observations were proved to be consistent in all
our experiments on benchmark circuits. In the following,
we give the error values only for PR inputs, using the
incremental approach. In reporting the error, we compared
our switching activity estimates with the results of logic
simulation at every internal node and primary output.

Table 3: Benchmark circuits -PR inputs

To conclude, two important observations should be
made. First, Markov Chains are useful in modelling input
correlations. Second, the degree in which any type of
correlations affects the overall quality of estimations,
depends on the internal structure of the circuit and the
correlations among the primary inputs. The best way to use
this framework in practice would be to combine both
approaches in a hierarchical manner.

4. Conclusions

We have proposed a novel approach for estimation of the
switching activities in combinational logic circuits under
pseudorandom or biased inputs. Using the zero-delay
hypothesis, we have derived a probabilistic model based on
lag-one Markov Chains and conditional probabilities. The
main feature of our approach is the systematic way in which
we can deal with complex dependencies that may appear in
practice; more precisely, our model supports
spatiotemporal correlations among the primary inputs and
internal lines of the circuit under consideration. A
comparative analysis and benchmark evaluations
emphasize the superiority of our approach over the current
existing techniques and show its practicality on large
combinational circuits. Our future work will concentrate on
heuristics for improving the accuracy and time/space
complexity and also on extensions of this approach beyond
the logic level.

Circuit MAX MEAN RMS STD TIME
C17 0.0565 0.0119 0.0238 0.0226 0.35 s
C432 0.0716 0.0133 0.0222 0.0179 276.43 s
C499 0.0334 0.0047 0.0072 0.0055 519.56 s
C880 0.1131 0.0158 0.0306 0.0264 320.11 s
C1355 0.0393 0.0027 0.0051 0.0044 333.02 s
C1908 0.0353 0.0044 0.0082 0.0069 489.23 s
C3540 0.1765 0.0276 0.0429 0.0318 3307.11 s
C6288 0.2046 0.0204 0.0443 0.0396 4530.84 s
z4ml 0.0672 0.0106 0.0197 0.0168 7.85 s
duke2 0.3199 0.0272 0.0657 0.0609 350.75 s
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