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Abstract

In this paper, we study the simultaneousdriver and wire sizing (SDWS)
problem under two objective functions: (i) delay minimization only, or
(ii) combined delay and power dissipation minimization. e present
general formulations of the SDWS problem under these two objectives
based on the distributed EImore delay model with consideration of
both capacitive power dissipation and short-circuit power dissipation.
We show several interesting properties of the optimal SDWS solutions
under the two objectives, including an important result (Theorem 3)
which revealsthe relationship between driver sizing and optimal wire
sizing. Theseresultslead to polynomial time algorithmsfor computing
the lower and upper bounds of optimal SDWS solutions under the two
objectives, and efficient algorithmsfor computing optimal SDWS solu-
tions under the two objectives. \We have implemented these algorithms
and compared them with existing design methods for driver sizing
only or independent driver and wire sizing. Accurate SPICE simu-
lation shows that our methods reduce the delay by up to 11%-47%
and power dissipation by 26%—63% compared with existing design
methods.

1 Introduction

Delay minimization and power dissipation minimization are two im-
portant objectivesin the design of the high-performance, portable, and
wireless computing and communication systems. We believe that both
devicedesign (i.e. transistor/cell design) and interconnect design have
to be considered and optimized simultaneously in order to achievethese
two objectives. Theobjective of this paper isto study the simultaneous
driver and wire sizing problem for both delay and power optimization.

In the past, two methods are commonly used to improve the perfor-
mance of long interconnect lines. One method is driver sizing, which
uses a large driver or a series of cascaded drivers of increasing sizes
to drive long interconnect lines [2]. Another method is to break long
interconnect lines into shorter segments by inserting repeaters. These
repeaters can also be sized properly for further reduction ininterconnect
delay [2]. Both methods are effective for interconnect delay reduction
but with substantial increase in power consumption.

Recent studies show that interconnect delay can also be reduced
by interconnect topology optimization and wiresizing optimization. A
number of interconnect topologies have been proposed for intercon-
nect performance optimization, including bounded-radius bounded-
cost trees [6], AHHK trees [1], maximum performance trees [5], A-
trees[9], low-delay trees[3], and IDW/CFD trees[12]. Moreover, the
wiresizing algorithmin [9, 10] can further minimize interconnect delay

*Thiswork is partially supported by ARPA/CSTO under Contract J-FBI-93-
112, the National Science Foundation Young Investigator Award M1P9357582,
and by agrant from Intel Corporation.

Permissionto copy without fee al or part of this materia is granted,
provided that the copies are not made or distributed for direct commercia
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice isgiven that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission.

by optimally assigning different wire width to each wire segment in
the interconnect design.

Very recently, Cong, Koh and Leung [7] explored the possibility of
both driver sizing and wire sizing. A simple heuristic algorithm was
used to size drivers according to a fixed constant ratio, and an inde-
pendent wire sizing optimization is performed for each driver sizing
solution. Although encouraging experimental results were reported,
it is not difficult to see that this method often produces sub-optimal
solutions since driver sizing and wire sizing were carried out indepen-
dently.

In this paper, we study the simultaneous driver and wire sizing
(SDWS) problem under two objective functions: (i) delay minimiza-
tion only, or (ii) combined delay and power dissipation minimization.
In Section 2, we present the general formulation of the simultaneous
driver sizing and wiresizing problems under the two objective func-
tions. In Section 3, we present results on optimal SDWS solutions
for delay minimization. In Section 4, we present results on optimal
SDWS solutions under the combined delay and power minimization
objective. Section 5 shows the experimental results obtained by our
SDWS algorithms and the comparative study with other existing meth-
ods. Section 6 concludesthe paper. Due to page limitation, proofs of
the results are omitted. Details are available in technical report [8].
Thereader isalso strongly recommendedto be familiar with theresults
in [10], which are referred to several times in this paper.

2 Problem Formulation
2.1 Performance Optimization
Assume that we are given arouting tree 7' implementing a signal net
which consistsof asource V4, and aset of m sSinks{ N1, No, - - -, Ny, }.
A node in T' refers to the source, or a sink, or a Steiner node, and a
segment connectstwo nodesin 7. Assumethat {F1, Fa,---, En}is
the set of segments forming the tree T, where n is the total number of
segmentsin the tree. Each wire segment has a set of discrete choices
of wirewidths {Wy, Wo,--- /W, } (W1 < Wo < --- < W,). Weuse
wp, to denote the width of the wire segment £;, : = 1..n.
Furthermore, we assume that the signal net is driven by a chain of
cascaded drivers of k stages at the source as shown in Figure 1. We
use D = {di,d>,---,dr} to denote a driver sizing solution, where
d; denotes the size of driver D; at i-th stage (f = 1..k). We assume
that driver D1 is of minimum size, i.e. d1 = 1 (after normalization).
Given the above definitions, the problem of simultaneous driver and
wire sizing (SDWS) for performance optimization can be defined as
follows:

Formulation 1 Given a routing tree 7', the SDWS problem for delay
minimization (SDWS-D) is to determine the number of stages %, a
driver sizing solution D, and a wiresizing solution W on T', such that
the performancemeasure (7', k, D, W) is optimized.
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Figure 1. A k-stage cascaded drivers driving an interconnect tree T' with

sinks {N1, N2, -+, Nm}. wg, denotes the width of the wire segment E;,
1 = 1..n and d; denotesthesize of driver D, at :-th stage, : = 1..k.
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Figure 2: (a) A switch-level RC model of adriver (b) Inter-stage delay of a
k-stage cascaded drivers until the gate of the k-th driver.

If we fix the number of stages %, arestricted version of the SDWS-
D problem called the k-SDWS-D problem can be defined as follows:
Givenaroutingtree 7' andachain of k drivers, thek-SDWS-D problem
is to determine the optimal driver and wire sizing solution D and W,
such that the performance measure t(T', k, D, W) is optimized.

The performance measure ¢(T', k, D, W) approximatesthe delay of
the signal net from the sourceto oneor several critical sinks, andit can
be decomposed as follows:

tT,k,D, W) = tp(k,D)+¢t:(T,k, D,W) Q)
where the first term ¢ (k, D) measures the delay due to the drivers
and the second term ¢ (T, k, D, W) measures the interconnect delay.
We estimate ¢, (k, D) based on a switch-level RC model of drivers.
Theinterconnect delay ¢; (7', k, P, W) is measured by the distributed

Elmore delay model [11].

211 RC Deay Mode for Drivers
We estimate the delay of a driver based on a switch-level RC model
of driver. Figure 2(a) shows a minimum-size inverter (driver) with a
p-transistor resistance R,, and an-transistor resistance R,,. We assume
that R, = R, = Rmin. Let Oy denote the gate capacitanceand Cy
denote the capacitance due to the source and drain diffusion of the
minimum-size driver.

Figure 2(b) illustrates the delay due to a sequence of & cascaded
drivers D. The delay from driver D; to D41 (1 < ¢ < k — 1) isthe
product of the resistance of D; and its capacitive load:

—2(Cadi+ Cy - dig1) = Ronin - Ca o+ Rinin - Cy - =12

Thetotal delay up to the gate of the last driver ¢ p (k, D) (excluding the

last driver) can be expressed as follows:
k—1

d;
T+ T2 +1

tolk D) = L 7d,

@

where J1 = (k — 1) - Rimin - Cq, and J2 = Rynin - Cy. Notice that
delay through the k-th driver will be counted as part of interconnect
delay in Section 2.1.2.

2.1.2 Distributed EImore Delay Model for I nterconnect
We usethe distributed EImore delay model [11] for interconnect delay
measure. The formulations used in this section are based on those
in [10]. The reader is strongly recommended to be familiar with
the notations defined in [10]. In order to model a routing tree as a
distributed RC circuit accurately, each wire segment in the routing
planeis divided into a sequence of wires of unit length. Inthiscase, T’
consistsof aset of unit-length wire segments, each may haveadifferent
width.

Givenangridedge F, weusew g, r g and c g to denotethewidth, the
interconnect resistance and capacitance, respectively, of the grid edge
E. Assumethat a unit-width unit-grid-length wire haswire resistance
ro, Wire area capacitance co and wire fringing capacitance c1, then
rE = Uf—; andcg = co- wg + c1 for any grid edge £.

Let R; and Cpr be the resistance and diffusion capacitance of
the last driver in the driver chain respectively, i.e. Rq = Rmin/dk,
Cpr = Cq4-dy. Followingasimilar derivationsin [10], the distributed
Elmoredelay ¢;(T', Ra, W) at N; under agiven wiresizing solution W
is:

t:(T, Ra, W)
= K : : : ", we
= Ko+Ki ) we+Keo D filBE)E g
EeT BB €T
Ks - Z f’(E’E)'E—FK“'Zg’(E)'E—F
B,B'eT EeT
1
Ks - (E) —
s ) hi(B) — )
EeT

where, Ké = Rq-Cpr+ Ra- ZuGSink(T) ¢u+ Ra- ZEGT 1+
T0°CO

ZEGP(N+,N,) 2
Ks = 2, andthefunctions fi( E, E'), gi(E) and hi( E) are defined
asfollows:

K1 = Ra-co, K2 =ro-co, K3 = ro-c1, Ka = ro,

e [ 1ifE € P(Ny,Ni)and E' € Des(E)
B E) = { 0 otherwise
. _ Zszink(E) cy IFE € P(Ny,Ni)
g:(E) = { 0 otherwise

‘ _ 1if B € P(N3, N))
hi(B) = { 0 otherwise
Let sink(T") denote the set of sinksin 7". When there are several
critical sinks of different priorities in the routing tree, the previous
formulation can be generalized asfollows:

2.

N; €sink(T)

HT, Ra, W) = i t(T, Ra, W) @

where )\; is the weight of the delay penalty to sink N, [3, 10]. The
larger A; is, the morecritical sink V; is. We normalize \;’s such that



A = 1. We canrewrite Egn. (4) asfollows:

ZN Gcznk

t(T7 Rd,W)
B . ] N, We
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EeT E,B'eT
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E,BE'€T EeT
Ks- > H(E ©)
EeT
Where KO ZN Esink(T )\ K:O‘ ZN €sink(T
Fil B, B, = ZNEW ~9i(E)‘ and H(E ) =
ZN €sink(T (

2.1.3 SDWS-D Performance Measure

Let¢r (T, k, D, W) = ¢(T, Ra, W). Hence, the performance measure
on both driver and interconnect delay ¢(T', k, D, W) in Eqn. (1) can
be written as

HT, k, D, W)
E—1

Zd;f1}+{lco+lcl~2wg +

i=1 EeT

= {.71+.72~
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2.2 Performance and Power Optimization

Driver and wire sizing are effective approachesto reduce interconnect
delay. However, larger driver size and additional routing capacitance
also increases the power dissipation. In practice, high-speed circuit
design requires a careful tradeoff between performance and power.
We define the SDWS problem for both delay and power optimization
(SDWS-DP) asfollows:

Formulation 2 Given a routing tree 7', the SDWS problem for both
delay and power optimization (SDWS-DP) is to determine the number
of stagesk, a driver sizing solution D, and awiresizing solution J/ on
T, such that the performancemeasureoby (T, k, D, W) defined below
is minimized:

obj(T,k, D, W) = a-Power(T,k, D, W) + ~v-t(T,k, D, W) (7)

where Power (T, k, D, W) isthepower dissipationand ¢(7T', k, D, W)
is the performance measure, o and v are adjustable non-negative
parameter s controlling the trade-off between performance and power
dissipation.

The k-SDWS-DP problem is similarly defined (as the k-SDWS-D
problem) if we fix the number of stagesk.

2.2.1 Power Dissipation Formulation

There are two components that determine the amount of power dis-
sipated in a CMOS circuit, namely, static dissipation due to leakage
current, and dynamic dissipation due to switching transient current
(short-circuit dissipation) and charging and discharging of load ca
pacitances (capacitive dissipation) [14]. We consider only dynamic
dissipation in our formulation since static dissipation is usually 2to 3
order of magnitude smaller. Given aloading capacitanceC/,, we can
write the capacitive and short-circuit dissipation of a single driver as
follows[14]:

f-CL-VE

f

Powercap =

- (Vaa — 2Vt) “lry

B
Power,. 7
where f is the switching frequency of the input signal, 3 is the MOS
transistor gain factor, V; isthe threshold voltageand ¢ ¢ istherise and
fall time of the input signal which are assumed to be equal .

Consider a chain of k drivers. For driver D; (1 = 1.k — 1), the
capacitive load of the driver is assumed to be the sum of its diffusion
capacitance Cy - d; and the gate capacitance C, - d;4+1 of the next
driver D;11. Thelast driver D}, has a capacitive load of Cy - dj, +
Cro(T, W) whereC; (T, W) isthetotal capacitance of interconnect
tree T' (including the loading capacitance at the sinks):

Z CZ+CO~ZwE+201

u€sink(T) EeT EeT

Cro(T\W) =

Hence the capacitive power of the cascaded driversis

Cri(T, W))

k
Powercap(k,D,CIL(T,W)):Co-l—Cl'(Zdi-l- e
g d

1=2

where Lo = f - V2, -Caand L1 = f - V2 - (Cy + Ca).

Let Bmin be the gain factor of a minimum-size driver. The gain
factor of adriver of sized can be definedasd - 8,.:n. Hence, we can
write the short-circuit power of the cascaded drivers asfollows [14]:

k
Lo+ Lo Zdi
i=2

Powers(k,D,Cr(T,W)) =

where £ = f - Bmin . (Vag — Vi) - oy
Summing up the capacitive and short-circuit power, the dynamic
power dissipation of the circuit can be written as:

Power(T,k, D, W)

Crp (T, W)
C1g + C10l

k

+ Lo+ (Lat L) Y di
1=2

= Lo+ L1-

2.2.2 Trade-Off Between Performance and Power

Eqgn. (7) formulates the trade-off between performance and power.
Substituting the terms Power (T, k, D, W) and ¢(T, k, D, W) in Eqn.
(7) with Egns. (8) and (6), respectively, we can observe that there
are two terms that links the driver chain and the interconnect in both
the power formula and delay formula, namely the last driver d;, and
the capacitiveload C; ., (T', W). Suppose awire-width assignment W
is given for arouting tree T, the capacitive load C; (7, W) can be



computed. Eliminating the constant terms, the drivers are sized to
minimize the following:

k

Oz~(C1+C2)~Zdi+

1=2

E—1
=1

objrrw(D) =

di - Cy d;

7

Given a driver size assignment, the wires are sized to minimize the
following tradeoff between routing area and interconnect delay after
eliminating the constant terms:

objr (W)
1
= (a'ﬁl'm'co-i-V'Kl)'ZwE—l—
g EeT
v Ko Z F(E,E’)~E
E,BE'€T we
1
1K Y F(EE)-—+
E,BE'€T a
1 1
7~IC4~ZG(E)~E+7~IC5~ZH(E)~E(10)
EeT EeT

Thisformulationissimilar to Eqn. (5) except with differencein con-
stant coefficients, which implies that the wiresizing results for delay
minimization can also be applied to simultaneous power and perfor-
mance optimization.

Since Power(T, k, D, W) and (T, k, D, W) areusually of differ-
ent orders of magnitude. The choice of « and v in Eqn. (7) might
be difficult. We find in our study that it is convenient to optimize the
following objective:

obj(T, k, D, W)
_ Power(T,k, D, W) _ tT,k, D, W)
- Powermin(T) +t(l-a) tmin(T, D, W) (1)

where Power (1) is the minimum power required for driving an
interconnect tree T and ¢y (1, D, W) is the minimum delay achiev-
able by a chain of drivers driving an interconnect tree 7'.

Note that given a SDWS-DP problem, Power,:»(1") can be com-
puted easily by assuming a single driver driving an interconnect tree
where all interconnect grid edges are assigned with minimum wire
width. On the other hand, ¢ (1", D, W) can be computed using the
algorithmsto be presentedin Section 3. Therefore, they can be treated
as constants. In this case, we can easily adjust parameter o between 0
and 1 to achieve smooth trade-off between performance and power. By
choosing the parameters carefully, we can compute a driver and wire
sizing solution to meet a delay constraint while minimizing the power
dissipation.

3 SimultaneousDriver and Wire Sizing for Per-
formance Optimization
3.1 Optimal SDWS-D Solutions

We consider the simultaneous driver and wire sizing problem for
performance optimization which minimizes the performance measure
t(T, k, D, W) specified by Egn. (6).

Theorem 1 [14] Given the loading capacitance C';,, the number of
stages k£ and the minimum gate capacitance C,, the optimal stage
ratioiss = (=)Y". O

Theorem 2 [10] Given a routing tree, the optimal wiresizing solution
satisfies the separability, the monotone property and the dominance

property. O

The three properties still hold after we model the driver capacitance
and fringing capacitancein interconnect delay formulation.

Given arouting tree T' with one or more critical sinks. Let Ry be
the resistance of the last driver driving the routing tree and W* be the
corresponding optimal wire width assignment. Consider another chain
of cascaded drivers such that 12 is the resistance of the last driver and
W' is the optimal wire width assignment. We have shown in this
work the following result that

Theorem 3 (DS/WS Relation): For any tree T with one or more
critical sinks, Ry < R} implies W* dominates W'". m]

Thisresult revealsthe relation between driver sizing and wiresizing,
and it plays an important role in determining the lower and upper
bounds of the optimal k-SDWS-D solutionsin next subsection.

3.2 Lower and Upper Bound Computation for Opti-
mal k-SDWS-D Solutions
Wefirst present an algorithm called thek-SDWS/'D LU-Bound agorithm
for computing the upper and lower bounds of an optimal k-SDWS-D
solution for a given number of stage k: Starting with an initial wire
width assignment (say, all segments have the minimum width), we
compute the capacitive load of the routing tree. Based on Theorem 1,
the optimal stage ratio, denoted by s, of the cascaded driver of & stage
can be computed and a driver sizing solution is obtained. Now, we
perform delay optimal wiresizing [10] on the routing tree T based on
the resistanceof the k-th driver. If the wire width assignment changes,
the capacitive load changes. A new driver stage ratio is computed to
yieldanew optimal driver sizing solution. Then, the optimal wiresizing
solution will be computed again based on the new driver size of the
k-th driver. The process is repeated until the wire width assignment
does not change in consecutive iterations. The algorithm is described
formally in Table 1. We have shown that

Theorem 4 Given a chain of k drivers, the k-SDWSD LU-Bound
algorithm computes the lower and upper bounds of an optimal k-
SDWS-D solution. o

Experimental results show that the algorithm terminates after three
orfour iterationsin most cases. In addition, the upper and lower bounds
meet for most instances, which implies that the optimal k-SDWS-D
solution is obtained. Note that the upper and lower bounds include
both the driver and wire sizes.

3.3 Optimal SDWS-D Algorithm

For a given stage number &, we compute the optimal driver and wire
sizing solution as follows: we compute the upper and lower bounds
of the k-SDWS-D optimal solutions using the k-SDWS/D LU-Bound
algorithm. In the case where the bounds do not meet, we can obtain a
set of discrete driver sizes defined by the bounds computed by the k-
SDWS/D L U-Bound algorithm for the k-th driver. For eachdriver size,
we can compute the optimal wiresizing solution using the algorithm
in [10] and use Theorem 1 to compute the sizes of driver Dy - -+ Dj_1
using dy. - C,4 asthe capacitive load that the (k — 1)-stage drivers have
to drive. Based on this algorithm, we have shown that



k-SDWS/D LU-Bound Algorithm

Function k — SDWS/D LU — Bound(7T, Rmin, k)
W; + Min Wire Width;
whilet r ue
Compute capacitiveload: Cr (T, W,);
Compute optimal driver stageratio:

51— (CIL(CTywl) )1/k.

Compute the k-th driver resistance: Ry < W'

W + Delay Optimal Wires 121ng(Rd, );
if W > W, then
Wl L 4%
else break;
end while
Output s; asthe lower bound of the stage ratio of
driver sizing solution and W; asthe
lower bound of wire sizing solution;
Wy, + Max Wire Width;
whilet rue
Compute capacitiveload: Crp (T, Wu);
Compute optimal driver stageratio:
Crp(TWu) y1/k.
Su — ( Cy )

Computethe k-th drlver resistance: Ry +

(k 1) ’
W + Delay Optimal Wires 121ng(Rd, );
if W < W, then

Wy < W
else break;
end while
Output s,, asthe upper bound of the stage ratio of
driver sizing solution and W,, asthe
upper bound of wire sizing solution;
end Function;

Table 1: The k-SDWS/D LU-Bound algorithm for computing lower and
upper boundsof optimal SDWS solution for a given stage number k.

Theorem 5 Givenachain of k driversand p possiblesizesfor thelast
driver and a routing tree with n segmentsand r possible wire widths,
the wor st case time complexity to compute the optimal driver and wire
sizesfor the k-SDWS-D problemisO(p - n"). 0

Note that p is usually very small since the lower and upper bounds
computedin Section 3.2 are very tight (in fact, they meet for ailmost all
test cases). Thefactor O(rn") isthe worst case complexity of optimal
wiresizing algorithm which in fact run in O(n® - r) time based on
effective lower and upper bound computation using the dominance
property (Details of the optimal wiresizing algorithm can be found in
[10]). Therefore, the k-SDWS/D Optimal algorithm runsin O(n® - r)
time in practice.

Our SDWS'D Optimal algorithm for SDWS-D problem performs a
linear search for the number of stages required, starting with & = 1.
The process terminates when stage k£ do not perform better than stage
k — 1 (i.e. when adding an additional driver actually slows down the
circuit).

4 SimultaneousDriver and Wire Sizingfor Both
Delay and Power Optimization
4.1 Optimal SDWS-DP Solutions
Differentiating objr,x,w (D) specified by specified by Eqn. (9) with
respect to d;, and setting %@MD) = 0for 2 < i < k, we obtain
asystem of equations as follows:
1 di+1) _ 0

a~(£1+£2)+7~.72~<d‘_1 7

forali=2.k—1

1 C(T,W)
dim1 &2,

(12)

|
o

oz~(£1+£2)+7~.72'<

The set of equations which will be used for optimal driver sizing
solution computation for afixed loading capacitanceC'; .. (7, W) when
v > 0in Section 4.2.

In this paper, we have proved the following result:

Theorem 6 (Monotone Property): For any given capacitive load
Cr(T, W), any optimal driver sizing solution to the SDWS-DP prob-
lem under the combined delay and power optimization objective func-
tion specified by Egn. (9) is monotone, i.e. d;+1 > d; for all
i=1,2--k—1 o

The following result allows us to apply a similar approach as that
in Section 3 to solve the SDWS-DP problem. First, we define the
dominance property for the driver sizing solutions.

Definition 1 Given two driver sizing solutions D = {d1,d>, - - -
and D/ = {d{h d/27 )

di}
w1, D dominates D’ ifd; > dfor1 < < k.

Theorem 7 (WS/DSRelation): Giventwowirewidth assignments W
and W' for arouting tree T' driven by a chain of k drivers. Let D and
D’ be the optimal driver sizing solutionsfor 1 and W', respectlvely
If Cro (T, W) > Cr (T, W'), then D dominates D’.

Also, one can see that Formulation (10) implies that Theorem 3
in Section 3.1 till apply to the optimal wiresizing solution under the
combined delay and power optimization objective as defined in Eqgn.
(10). Therefore, the same optimal wiresizing solution algorithm in
[10] can be used to optimize objr x,» (W) in Egn. (10).

4.2 Bound Computation and Optimal Algorithm for
SDW S-DP Problem

For a given stage number %, we take the same approach as in solv-
ing the k-SDWS-D problem to compute the optimal solutions to the
k-SDWS-DP problem: we first compute the upper and lower bounds
of the optimal k-SDWS-DP solution. To computethe lower bound, we
start with an initial wire width assignment in which all segments have
minimum width wire. Based on the capacitiveload of the routing tree,
we compute a driver sizing solution using Egn. (12). In our imple-
mentation, these equations are solved using MAPLE, a mathematical
software for symbolic computation developed by University of Water-
loo. Then, the optimal wiresizing solution based on the current driver
sizing solution is computed using the algorithmin [10]. Theprocessof
alternative driver sizing and wiresizing is repeated until thewire sizing
solutions do not changein consecutive iterations. The upper bound is
computed similarly by starting with maximum wire width assignment.
The algorithm outlined above is referred to as the k-SDWSDP LU-
Bound algorithm (to differentiate it from the k-SDWS/D LU-Bound
algorithm in which the driver sizing solution is computed differently).
We have the following result (similar to the SDWS-D problem):



Theorem 8 Given a chain of k drivers, the k-SDWSDP LU-Bound
algorithm computes the lower and upper bounds of an optimal k-
SDWS-DP solution. |

Given the lower and upper bounds|d’,, %] of the k-th driver, the k-
SDWS/DP Optimal algorithm tries every possibledriver sizein[d, d¥]
for the k-th driver size. Again, Eqn. (12) (instead of Theorem 1) is
used to compute the sizes of driver D5 - - - D_1 using di, - Cy asthe
capacitive load that the (k — 1)-stage drivers have to drive. For each
possibled;,, the optimal wiresizing solution can still becomputed using
the algorithm in [10]. Asin the SDWS-D problem, we have d!, = d%
for most cases and a very small interval [d}, d¥] when d, # d¥. We
establish the following result which is similar to Theorem 5:

Theorem 9 Givenachain of k driversand p possiblesizesfor thelast
driver and a routing tree with n segmentsand r possible wire widths,
let T'(k) bethetime takento compute the sizesof drivers Dz - - - D1
given thesizes of D, by solving the systems of equationsin Eqgn. (12).
Then, the worst case time complexity to compute the optimal driver
andwiresizesisO(p - (n” + T'(k))). 0

Again, thefactor O(n") is the worst case time complexity for com-
puting an optimal wiresizing solution. In practice, when dominance
property is used to compute the lower and upper bounds of the optimal
wiresizing solution, this term is reduced to O(n® - r) for almost all
designs.

To obtain the optimal stage number k7, , the SDWSDP Optimal
algorithm performs asearch for 1 < k < karax wherekasrax isthe
smallest stage number such that that capacitive load C; 1, (T, Wiz ax)
for arouting tree 7" with maximum wirewidth assignment W 4 x does
not haveamonotoneoptimal solutionfor achainof ks 4 x drivers. The
correctness of the algorithm is guaranteed by the following theorem:

Theorem 10 Let kyrax be the smallest stage number such that ca-
pacitiveload Cr 1, (T', Was ax ) for arouting tree’” with maximumwire
width assignment Was 4 x does not have a monotone optimal solution
for achain of k7.4 x drivers. Thereexists no monotone optimal driver
sizing solution for any & > ks ax cascaded drivers given any wire
width assignments. o

5 Experimental Results

We haveimplemented the optimal SDWS/D and SDWS/DP algorithms
in ANSI C for the Sun SPARC station environment. The algorithm
is tested on a number of MCM and IC design examples consisting
of achain of cascaded drivers driving (1) a single sink net through a
long interconnect and (2) a multiple-sink net through a tree-structure
interconnect. HSPICE isused to simulate thecircuit for accuratetiming
and power simulation to verify both our models and algorithms. The
technology parameters used by HSPICE are summarized in Table 2
and 3.

The parametersfor the driver arebasedonthe CAZM 0.5pm CMOS
process model [13]. The minimum driver resistance is obtained for a
minimum size transistor (width = 1.0um, length = 0.5um) through
HSPICE simulation of the drain-to-source current available when the
drain-to-source voltage for a n-device is 0.95 x Vg4 (Vaa = 5.0V).
The minimum gate and diffusion capacitance is the gate and diffu-
sion capacitance of a minimum size n-transistor. We assume in the
experiments that drivers in all design examples (MCM and IC) are
cascaded on-chip CMOSdrivers. The minimum driver resistance, gate
and diffusion capacitanceare used to guide the design of drivers.

Theminimum loading capacitanceonaMCM substrate, whichisthe
pad capacitance, is 1000 f F' whereas the minimum | oading capacitance

Min Driver Resistance (£2): | 13598
Min Gate Capacitance (f F'): | 2.6802
Min Diffusion Capacitance (f F'): | 1.0403

Table 2: Driver parametersfor CAZM 0.5pm CMOS[13].

Parameters | MCM IC
Min Loading Capacitance (f¥'): | 1000 | 2.6802
Wire Resistance (2/0): 0.02 0.044
Wire Capacitance (area) (aF'/um?): | 3.46 41.3
Fringing Capacitance (2 sides) (a F'/ um): 50.4 150

Table 3: Interconnect parameters based on (8) MCM10 technology [4] and
(b) CAZM 0.5 CMOS model [13].

on an IC chip is the minimum gate capacitance. The interconnect
parameters are obtained from MCM10 model [4] and CAZM 0.5um
CMOS process model [13].

5.1 Performance of SDWS/D Algorithm

In our experiments, we compare our SDWS/D wiresizing solutionswith
the solutions obtained using (a) driver sizing with constant stage ratio
s = e and minimum-wire-width (CDSMIN), (b) optimal driver sizing
based on Theorem 1 and minimum-wire-width (ODSMIN), and (c)
independent driver and wire sizing algorithm (DWSA), i.e. it performs
driver sizing with constant stageratio s = e and optimal wiresizing[7].
The set of wire width allowed is {W1, 2W1, 3W1, 4W1}, where W1 is
the minimum width (10, in MCM10 technology and 0.95.m in IC
technology). Hence, every wire segment in CDSMIN and ODSMIN
haswidth 17;.

For the experiment on MCM (1C) design examples, we assume that
the cascaded drivers are driving (a) a sink through a 5cm (1cm) long
interconnect, (b) a 4-sink net randomly placed on 10cm x 10cm sub-
strate (1em x 1em IC chip), and (c) a 8-sink net randomly placed on
10cm x 10cm substrate (1cm x lem IC chip). Thefirst driver in the
chainisin turn driven by an ideal voltage source and the input signal
is a square wave with rise and fall time of 1ns and a period of 40ns
(25M Hz). The sink capacitances for MCM and IC design are the
minimum loading capacitance (1p F") and 10 times the minimum load-
ing capacitance (26.8f F), respectively. In each case, the interconnect
is divided into wire segments and modeled by a =-type RC circuit in
order to model the distributed nature of interconnect. The grid edges
are of length 100 and 10um for MCM and IC design, respectively.
Werandomly generatetwo critical sinksfor 4-sink net and four critical
sinksfor 8-sinks net.

Table 4 summarizes the signal delays by the four design methods
for MCM and IC design, respectively. Our SDWS/D algorithm con-
sistently outperforms the other three methods. Compared with the
CDSMIN, ODSMIN and DWSA methods, our SDWS/D solutions
achieved an improvement of up to 47% (45%), 47% (43%) and 11%
(11%), respectively for MCM (IC) design.

5.2 Performance of SDWS/DP Algorithm

We have studied the trade-off between power dissipation and delay
using our SDWS/DP algorithm. In Tables 5 and 6, we compare the
power requirement of the test circuit under different design methods
(CDSMIN, ODSMIN, DWSA and SDWS-DP) in order for the net to
meet the delay specification for MCM and I C design examples, respec-
tively. Each table lists a set of target delays that the net is expected
to achieve and the most power economical solution by each design



MCM IC
Net CDSMIN | ODSMIN | DWSA | SDWSD || CDSMIN | ODSMIN | DWSA | SDWSD
1-sink 131 117 115 1.02 154 1.48 1.05 0.95
4-sink 4.35 4.33 245 231 214 2.05 1.28 117
8-sink 4.05 3.63 2.24 214 191 1.83 1.22 1.09

Table 4: Averagesignal delay (ns) for (2) MCM 10 technology and (b) CAZM 0.5:m CMOS technology.

Delay CDSMIN ODSMIN DWSA SDWS-DP
Constraint (ns) | Power | Delay | & | Power | Delay | £ | Power | Delay | & | Power | Delay | &
10 29 767 | 5 29 | 1000 | 2 30 731 | 5 26 910 | 3
5 44 499 | 7 83 463 | 4 54 386 | 6 43 474 | 3
4 - - - - - - 54 386 | 6 50 387 | 4
3 - - - - - - 86 269 | 7 77 277 | 5
25 - - - - - - 139 245 | 8 113 241 | 6

Table 5; Comparisons of power requirement (m W) of various solutions meeting the delay specification (n.s) for MCM design.

Delay CDSMIN ODSMIN DWSA SDWS-DP
Constraint (ns) | Power | Delay | & | Power | Delay | £ | Power | Delay | & | Power | Delay | &
5 7.7 369 | 4 8.3 411 | 2 8.0 366 | 4 6.6 447 | 2
4 7.7 369 | 4 15.0 248 | 3 8.0 366 | 4 7.0 4.00 | 3
3 119 231 | 5 15.0 248 | 3 138 187 | 5 8.8 276 | 3
2 - - - 323 205 | 6 138 187 | 5 118 200 | 4
15 - - - - - - 232 137 | 6 16.8 147 | 4

Table 6; Comparisons of power requirement (m W) of various solutions meeting the delay specification (r.s) for IC design.

method under the performance requirement. An empty entry implies
that the solution cannot meet the delay specification. The SDWS
solutions are obtained by choosing suitable « in objective function
obj(T,k, D,W) specified by Eqn. (11) using binary search. We can
observe that our SDWS solutions require least power while meeting
the delay specification. Our SDWS solutions achieved an reduction in
power dissipation by up to 10% (26%), 48% (63%) and 19% (36%)
reduction, respectively, when compared with the CDSMIN, ODSMIN

[7] J. Cong, C.-K. Koh, and K. S. Leung, “Wiresizing with Driver Sizing
for Performance and Power Optimization”, Proc. 1994 Int'| Workshop on
Lower Power Design, 1994, pp. 81-86.

[8] J.CongandC.-K. Koh, “ SimultaneousDriver and Wire Sizing for Perfor-
mance and Power Optimization”, UCLA Computer Science Department
Tech. Report CSD-940020, Los Angeles, CA 90024, May 1994.

[9] J. Cong, K. S. Leung, and D. Zhou, “Performance-Driven Interconnect
Design Based on Distributed RC Delay Model”, Proc. ACM/IEEE Design
Automation Conf., 1993, pp. 606-611.

and DWSA methodsfor MCM (IC) design. In addition, our SDWS so- [20] J. Cong and K. S. Leung, “Optimal Wiresizing Under the Distributed

lutions alwaysrequire fewer stagesof drivers (smaller k) which results
in simpler layout designin practice.

Elmore Delay Model”, Proc. |EEE Int’'l. Conf. on Computer-Aided De-
sign, 1993, pp. 634-639 (full version accepted for publication in IEEE
Trans. on CAD and available as UCLA Computer Science Department
Tech. Report CSD-930012, Los Angeles, CA 90024, April 1993).

6 Conclusions [11] W.C.Elmore, “The Transient Responseof Damped Linear Network with

To the best of our knowledge, thisis thefirst paper which presentsin-
depth study of the simultaneous driver and wire sizing problem and its

Particular Regard to Wideband Amplifier”, J. Applied Physics, 19(1948),
pp. 55-63.

effect on performance and power optimization. Our SDWS solutions  [121 X. Hong, T. Xue, E. S. Kuh, C. K. Cheng, and J. Huang, * Performance-

provide alow power interconnect design solution to high performance

Driven Steiner Tree Algorithms For Global Routing”, Proc. ACM/IEEE
Design Automation Conf., 1993, pp. 177-181.

circuits. [13] MCNC Designers Manual, MCNC.

References

[1] C.J. Alpert, T. C. Hu, J. H. Huang, and A. B. Kahng, “A Direct Combina-
tion of the Prim and Dijkstra Constructions for Improved Performance-
Driven Routing”, Proc. IEEE Int'l Symp. on Circuits and Systems, May
1993, pp. 1869-1872.

[2] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLS,
Addison-Wesley, 1990.

[3] K.D.Boese, A. B. Kahng, and G. Robins, “High-Performance Routing
Trees With Identified Critical Sinks”, Proc. ACM/IEEE Design Automa-
tion Conf., 1993, pp. 182-187.

[4] J. B. Burr, J. R. Burnham, and A. M. Peterson, “ System-wide Energy
Optimization inthe MCM Environment”, Proc. |EEE MCM Conf., 1991,

. 66-83.

[5] ng Cohoonand L. J. Randall, “Critical Net Routing”, Proc. |[EEE Int’l.
Conf. on Computer Design, 1991, pp. 174-177.

[6] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong,
“Provably Good Performance-Driven Global Routing”, IEEE Trans. on
CAD, 11(6), June 1992, pp. 739-752.

[24] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLS Design: a

Systems Per spective— 2nd ed, Addison-Wesley, 1993.



	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index




