
Multi-Level Logic Optimization by Implication Analysis *

Wolfgang Kunz

Max-Planck-Society
Fault-Tolerant Computing Group

at the University of Potsdam
14415 Potsdam, Germany

email: wkunz@rz.uni-potsdam.de

Prem R. Menon

Dept. of Electrical & Comp. Eng.
University of Massachusetts

at Amherst
Amherst, MA 01003, U.S.A.

Abstract — This paper proposes a new approach to multi-
level logic optimization based on ATPG (Automatic Test Pat-
tern Generation). Previous ATPG-based methods for logic
minimization suffered from the limitation that they were quite
restricted in the set of possible circuit transformations. We
show that the ATPG-based method presented here allows (in
principle) the transformation of a given combinational network
C into an arbitrary, structurally different but functionally
equivalent combinational network C’. Furthermore, powerful
heuristics are presented in order to decide what network ma-
nipulations are promising for minimizing the circuit. By iden-
tifying indirect implications between signals in the circuit,
transformations can be derived which are “good” candidates
for the minimization of the circuit. In particular, it is shown
that Recursive Learning can derive “good” Boolean divisors
justifying the effort to attempt a Boolean division. For 9 out of
10 ISCAS-85 benchmark circuits our tool HANNIBAL obtains
smaller circuits than the well-known synthesis system SIS.

1 Introduction

Multi-level logic optimization figures prominently in the syn-
thesis of highly integrated circuits. The goal of multi-level
logic optimization is transforming an arbitrary combinational
circuit C into a functionally equivalent circuit C’, circuit C’
being less expensive than C according to some cost function.
The cost function typically incorporates area, speed, power
consumption and testability as the main objectives of the op-
timization procedure. This research focuses on optimizing a
given circuit with respect to its area, a minimal area represen-
tation of the circuit representing a good basis for subsequent
steps targeting high speed, low power consumption and high
testability.

The field of multi-level logic optimization is not as well
delineated as the field of two-level optimization [6]. Even
with much recent progress, e.g. [7, 9, 11, 18, 20, 23], the size
and complexity of today’s integrated circuits leave multi-level
logic optimization a major challenge in the field of computer-
aided circuit design. In particular, high memory requirements
represent the dominating limitation for many methods.

*) Research reported supported in part by
NSF Grant MIP-9311185

The goal of this research is to work towards a general
ATPG-based approach to logic synthesis. In particular, our
work is motivated by recent advances in test generation. Over
the years, a lot of progress has been achieved in combinational
ATPG, e.g. [10, 13, 22, 24] and it seems wise to utilize the
power of modern ATPG methods also in synthesis. Most test
generation techniques operate on a structural gate-level de-
scription of the given circuit (netlist). Therefore, ATPG meth-
ods are very memory efficient and typically have memory
requirements linear in the size of the gate-level description.
The main limitation of previous ATPG-based methods in logic
minimization is the lack of generality. Redundancy removal
(e.g. [1]) alone is usually not sufficient because of the limited
types of circuit transformations that can be performed. Very
encouraging results using an ATPG approach to multi-level
optimization have recently been obtained by Entrena and
Cheng [9]. Their method is an extension to redundancy re-
moval based on adding and removing connections in the cir-
cuit. The approach to be presented in this paper can be seen as
a generalization of the technique in [9] applied to combina-
tional circuits.

A further advantage of operating on a gate-level descrip-
tion is that it is closer to the physical reality of the design than,
say, a functional description based on BDDs. This has been
recognized by Rohfleisch and Brglez [21] and it was shown
that such structural approaches have the advantage of being
applicable after technology mapping.
 The methods of [9] and [21] have been shown useful for
postprocessing networks that were preoptimized by traditional
techniques. However, they only consider a very restricted set
of possible network manipulations and hence do not provide
the same power and flexibility as traditional synthesis meth-
ods.

Presently, the most flexible and powerful synthesis tech-
niques for combinational circuits are based on Boolean and
algebraic manipulations of Boolean networks, e.g. [7], only
these enabling exploitation of the full range of possible trans-
formations in a combinational network. Since they provide
good optimization results and because they can handle circuits
of realistic size, these methods, pioneered by Brayton, et al. [6,
7], have become widely accepted.

As mentioned before, a long-term (and quite ambitious)
goal of this research is to replace such algebraic or Boolean

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.  1994 ACM 0-89791-690-5/94/0011/0006 $3.50

techniques for network manipulation by ATPG-based methods.
Therefore, we present a new approach to multi-level logic
minimization using a test generator as the basic Boolean rea-
soning engine. As will be proved, the method is general in the
sense that, in principle, it can perform arbitrary manipulations
in a combinational network. Throughout the paper, it is at-
tempted to relate concepts of our ATPG-based method to
common concepts in logic synthesis (“division”, “permissible
functions”, “don’t cares”).

As pointed out [7], “division” can be considered a central
point in logic optimization. For example, take the function y
= ac + bc + ad + bd. A simpler representation of the same
function is y’ = (a+b)(c+d). This representation can be ob-
tained by defining a division operation ‘/’ such that (ac +bc
+ad +bd) / (a+b) = c+d. The expression a+b is referred to as
a “divisor” of y. When developing an ATPG-based method for
logic minimization the following two central issues have to be
addressed:
1) How can an ATPG-based method perform Boolean di-

vision?
2) How can an ATPG-based method provide “good” divi-

sors?
A major strength of our method is that it efficiently iden-

tifies or creates permissible functions [18]. Therefore, it also
relates to Muroga’s transduction method.

There are two main ingredients to our method: the D-
calculus of Roth [22] and Recursive Learning [13, 14]. The
latter represents an efficient technique to derive implications in
a combinational circuit. Analyzing implications is crucial for
deriving good circuit transformations. In this aspect our
method also relates to [2] and [11].

2 Indirect Implications

The method to be presented heavily depends on analyzing
implications being derived by recursive learning [13, 14].
Some previous results will be briefly summarized: Recursive
learning is a method to determine all value assignments which
are necessary for the detection of a single stuck-at fault in a
combinational circuit. This involves finding all value assign-
ments necessary for the consistency of a given situation of
value assignments. Determining value assignments necessary
for the consistency of a given set of value assignments is often
referred to as performing implications.

Consider the gate-level circuit of Fig. 1. Assume that the
value assignments a=0, f=1 have been made in the circuit. By
considering the truth table of an AND-gate we imply d=0. The
variable d is an input variable of f and by another implication
we obtain e=1. Variables b and c are input variables of e and
we perform the implications b=1 and c=1. In [13, 14], this
type of implication has been referred to as direct implication.
Direct implications are performed by evaluating the value as-
signments at each gate and by propagating the signal values
according to the connectivity in the circuit. While the per-
formance of direct implications is a straightforward procedure

it is more difficult to perform implications which are not di-
rect. Reconsider the circuit in Fig. 1 and assume a value as-
signment of f=1. A closer study reveals that f=1 implies b=1
[24]. The implication f=1 ⇒ b=1 is not direct and more so-
phisticated techniques are required to derive such indirect
implications. Recursive learning as presented in [13, 14] rep-
resents a technique which, more generally than [24], allows to
derive all, direct and indirect implications for a given situation
of value assignments.

Fig. 1: Implications in combinational circuit [24]

Indirect implications play an important role in our strat-
egy for circuit optimization. As will be shown, indirect impli-
cations indicate promising divisors for transforming the circuit.

3 Manipulating Combinational Networks by ATPG

Assume we are given a combinational circuit C with n primary
inputs and m primary outputs containing only the primitive
gates AND (⋅), OR (+), NOT (). The AND- and OR-gates can

only have two inputs. These restrictions have been made in
order to simplify the theoretical analysis of our method. Of
course, a reasonable implementation of our approach can also
handle multi-input gates including NAND, NOR and possibly
XOR. Furthermore, signals in the circuit can have constant
values of ‘0’ or ‘1’. More formally, such a combinational
circuit can be understood as an interpretation of a Boolean
network as defined e.g. in [12]. A combinational circuit con-
sisting of only the above elements is in the following referred
to as combinational network. All gates in the circuit have a
unique label and their output signals yi realize Boolean func-
tions yi(x): B2

n
 → B2 with B2 = {0, 1}, where the variables

x1,... xn correspond to the primary input signals of the circuit
C. Following the usual representation of a combinational cir-
cuit as a directed acyclic graph (DAG), we say as in [7], that a
signal f lies in the transitive fanout of y if and only if there
exists a directed path from y to f in the image of C as DAG.
Avoiding formalism, depending on the context, we will refer to
the primary input signals and the output signals yi of the gates
in circuit C as “signals”, “functions” or “nodes”. Furthermore,
we assume that there are no external don’t cares, the function
of the combinational network C(x): B2

n→ B2
m
 with B2 ={0, 1}

is completely specified. An extension to our method using
external don’t cares is possible, but will not be further consid-
ered in this work.

Two combinational networks C and C’ are called equiva-
lent, denoted C = C’, if they implement the same function

C(x): B2
n→ B2

m
 with B2 = {0, 1}. They are called structurally

identical or simply identical if there exists a one-to-one map-
ping between C and C’, such that for every node yi in C there is
a yi’ in C’ and vice versa, where yi and yi’ implement the same
function. We denote identical combinational networks by C ≡
C’.

Multi-level logic optimization relies heavily on the effi-
cient use of factorization techniques. A fundamental factori-
zation technique of switching algebra is the well-known Shan-
non expansion. Let y be a Boolean function of n variables
x1...xn. The Shannon expansion for y with respect to xi is given
by:

(Eq. 1)
y(x1,... xn) = xi ⋅ y(x1,.. xi =1,.., xn) + xi ⋅ y(x1,.. xi =0,.. xn)

The suggested approach to logic optimization is based on
expanding Boolean functions as given in Eq. 2. Let f be a
function of n variables x1...xn, f(x): B2

n→ B2 , B2 = {0, 1} and
let y(x)|f(x)=V , V ∈ {0, 1} be an incompletely specified func-
tion: B2

n → B3, B3 = {0, 1, X}, defined as follows:

 y(x)|f(x)=V := { y(x), if f(x) = V
‘X’ (don’t care) otherwise

For an arbitrary Boolean function f(x): B2
n
 → B2 and y(x): B2

n

→ B2 with B2= {0, 1} the following equation holds:

y(x) = f(x) ⋅ y(x)|f(x)=1
+ f (x) ⋅ y(x)|f(x)=0 (Eq. 2)

short notation: y = f · y|1 + f · y|0

In the special case, that f(x)=xi, Eq. 2 is identical to Shan-
non’s expansion. Note that Eq. 2 is a special case of a well-
known generalization of Shannon’s expansion using an or-
thonormal basis (see e.g. [5]).

It is easy to see why Eq. 2 is true: If we first consider the
part of the truth table of y for which f is true, we can set y to
the don’t care value for all rows in which f is false. This first
part of the function is described by the expression f(x)⋅
y(x)|f(x)=1. In the second part we are looking at those rows of
the truth table for which f is false and obtain f (x)⋅y(x)|f(x)=0.

In the case of Shannon expansion, f(x)=xi, and the ex-
pressions y(x)|f(x)=1 and y(x)|f(x)=0 are often called the cofactors
of y with respect to the variable xi [6]. More generally, the
partially specified functions y(x)|f(x)=1 and y(x)|f(x)=0 can be
termed as cofactors of y with respect to the function f.

Eq. 2 is the basis of our approach to transforming a com-
binational network. In the well-known notation of [7], we
refer to function f(x) as divisor of y(x). Similarly, y(x)|f(x)=1

can be referred to as quotient and f (x)⋅y(x)|f(x)=0 represents
the remainder of the division. The main issue of this approach
is to divide function y(x) by appropriate divisors f(x) such that
the exploitation of the internally created don’t cares results in a
reduction of the circuit.

Obviously, the result of such a Boolean division depends
on how the don’t cares are used in order to minimize the cir-
cuit. (Boolean division is not unique.) As already observed in
[3], circuitry may contain untestable single stuck-at faults if it
is not properly optimized with respect to a given don’t care set.
The approach to be presented will exploit don’t cares for
minimization, exclusively, by simply performing redundancy
elimination. Throughout this paper we examine transforma-
tions that create internal don’t cares. However, these don’t
care conditions are only considered in our theoretical analysis
in order to keep track of where the redundant faults to be
eliminated come from. They are not used in our constructions.

As an example, consider the special case where the divisor
f(x) is some variable xi. Take function y as a possible cover for
both y(x)|f(x)=1 and y(x)|f(x)=0, i.e. we form y = xi ·y + xi ·y.

Suppose this is implemented by some combinational logic.
The fact that the cofactors y are not carefully optimized with
respect to the don’t cares existing according to Eq. 2 explains
why we obtain untestable stuck-at faults in the cofactors. By
ATPG we can find that xi , stuck-at-1 and xi , stuck-at-0 in the
respective cofactor are untestable and can be removed by set-
ting xi to a constant ‘1’ or ‘0’, respectively.

By viewing redundancy elimination as a method to set
signals in cofactors to constant values, we have just described
an ATPG-based method to perform a Shannon expansion. This
ATPG interpretation of Shannon’s expansion may seem awk-
ward but it is quite useful in the general case where we expand
in terms of some arbitrary function f(x). In the general case,
unlike in Shannon’s expansion, it is a priori not known if and
what signals in the cofactors can be set to constant values.
This however can be determined by means of a test generator.
We therefore suggest the following two-step methodology:

1) Transformation: y = f ⋅ y + f ⋅ y (Eq. 3)
2) Reduction: Redundancy elimination in each cofactor

By combining the transformation of Eq. 3 with ATPG-
based redundancy elimination we obtain an expansion that can
also be seen as a special transduction (transformation and re-
duction) according to Muroga et al. [18]. We therefore refer to
the above two-step methodology as “expansion” or
“transduction” interchangeably. Since Eq. 3 is only one out of
many possible transformations in a network and since redun-
dancy elimination is only one out of many possibilities to
simplify the representation of each cofactor, it is important to
investigate what network manipulations are theoretically pos-
sible using the above transduction. In the following theorem
we prove that by using Eq. 3 and redundancy elimination as
the only means of manipulating a network, we do not lose any
generality. It turns out that the above ATPG-based expansion
can be used to perform arbitrary manipulations in a combina-
tional network.

Theorem 3.1: Let yi be a node of a combinational network Ci

as defined above. Further, let f i be a divisor which is real-

ized as a function of no more than two signals which may
or may not be nodes in Ci such that

1) The transformation of node yi into yi+ 1 given by

yi+ 1 = f i · yi + f i · yi or its dual yi+ 1 =(f i +yi)(f i +yi)
followed by

2) Redundancy removal (with appropriate fault list)
generates a combinational network Ci+1.

For an arbitrary pair of equivalent combinational networks
C and C’ there exists a sequence of combinational net-
works C1, C2, ...Ck such that C1 ≡ C and Ck ≡ C’.

Proof: see [16]

 Note that Theorem 3.1 only states the existence of a se-
quence of the specified transduction operations to transform a
combinational network C into some other equivalent network
C’. It does not say which divisors shall be used when applying
Eq. 3. As stated in the theorem, it is sufficient to only consider
two-input divisors created as a function of two nodes in the
network. This drastically reduces the number of divisors that
(theoretically) have to be examined. However, this restriction
does not imply that more complex divisors are of no use in the
presented transduction scheme. If more complex divisors are
used, the network is transformed in bigger steps. Theorem 3.1
does not put any restriction on the choice of divisors to trans-
form the network. Further degrees of freedom for the trans-
ductions lie within redundancy elimination. The result of re-
dundancy elimination depends on what faults are targeted and
in which order they are processed.

In some sense, the transduction steps of Theorem 3.1 can
be understood as an ATPG-based generalization of Shannon’s
expansion. In both cases, the circuit (function) is transformed
by a) using Eq. 3 and then b) setting certain signals to a con-
stant value. Both are methods to change the representation of
a Boolean function or combinational network. Shannon’s ex-
pansion is the classical approach to bring a Boolean function
into its canonical representation. More generally, the trans-
duction in Theorem 3.1 allows us to transform a combinational
network into any equivalent one.

Theorem 3.1 represents the theoretical basis of a general
ATPG-based framework to logic optimization. However, re-
dundancy elimination and the transformation given by Eq. 3
per se do not represent an optimization technique. They only
provide the basic tool kit to modify a combinational network.
In order to obtain good optimization results efficient heuristics
have to be developed to decide what divisors to choose and
how to set up the fault list for redundancy elimination. This
will be described in the following section.

4 Identifying Divisors by Implications

Our method of identifying divisors has been motivated by an
observation first mentioned in [19] and further discussed in

[14]. Indirect implications indicate suboptimality in the cir-
cuit. This is illustrated in Fig. 2:

f y

a

c

a
c

f
y

optimized

y=0 => f=0 is indirect y=0 => f=0 is direct

Fig. 2: Indirect implication and optimization

In the left circuit of Fig. 2 we consider y=0 as the initial
situation of value assignments for which we can indirectly
imply f=0. This is can be accomplished by means of recursive
learning. Note that the existence of the indirect implication
y=0 ⇒ f=0 is due to the fact that the circuit is not properly
optimized. In the optimized right circuit which is functionally
equivalent to the left circuit we note that the implication y=0
⇒ f=0 is direct. One may verify that all examples of indirect
implications shown in [13] or [24] are also due to poorly op-
timized circuitry. Apparently, indirect implications are the key
to identifying and optimizing suboptimal circuitry.

Before developing an optimization strategy based on dis-
tinguishing between direct and indirect implications, we first
study the role of implications in general for multi-level mini-
mization. Implications can be used in an easy way to identify
divisors for Eq. 3. If a value assignment at a node y allows to
imply a unique value assignment at node f, then Eq. 2 can be
simplified as stated in the below lemmas. Let f and y be nodes
of the combinational network C and f is not in the transitive
fanout of y. The node f must not be in the transitive fanout of
y, in order to ensure that the circuit remains combinational
after the transformation.

Lemma 4.1:
Consider the transformation T1: y' = y|1 + f . Then y’=y if
and only if the implication y=0 ⇒ f=1 is true.

Lemma 4.2:
Consider the transformation T2: y' = f + y|0. Then y’=y if
and only if the implication y=0 ⇒ f=0 is true.

Lemma 4.3:
Consider the transformation T3: y' = f · y|1. Then y’=y if
and only if the implication y=1 ⇒ f=1 is true.

Lemma 4.4:
Consider the transformation T4: y' = f · y|0. Then y’=y if
and only if the implication y=1 ⇒ f=0 is true.

The proofs can be found in [16]. The lemmas state that
implications determine exactly those functions f present in the
network with respect to which function y has only one cofactor.
Such cases are of interest in logic optimization because they

often permit a simplification of the circuit. With recursive
learning it is possible to derive all implications in a combina-
tional network so that - if given enough time - all cases can be
determined where the above lemmas apply.

Note however that Lemmas 4.1 - 4.4 only cover those
cases where a node y in a combinational network can be re-
placed by some equivalent function y’. A function at node y
can also be replaced by some non-equivalent function y’ if this
does not change the function C(x): B2

n
 → B2

m
 of the combina-

tional network as a whole. Such functions are called permis-
sible function [18]. By considering permissible functions
rather than only equivalent functions as candidates for substi-
tution at each node, we exploit additional degrees of freedom
as given by observability don’t cares [7]. Permissible func-
tions can also be obtained by recursive learning:

Definition: For an arbitrary node y in a combinational network
C assume the single fault y stuck-at-V, V∈{0, 1}: If f = U,
U ∈ {0, 1} is a value assignment at a node f which is neces-
sary to detect the fault at at least one primary output of C,
then f=U follows from y=V by “D-implication” and is de-

noted: y=V D → f=U

The conventional implications are a special case of such
D-implications. Replacing the implications in Lemmas 4.1 -
4.4 by D-implications we obtain the following generalization:

Theorem 4.1: Let f and y be arbitrary nodes in a combina-
tional network C where f is not in the transitive fanout of y
and both stuck-at faults at node y are testable.
The function y’: B2

n
 → B2, B2 = {0, 1} with y' = y|1 + f is

a permissible function at node y if and only if the D-

implication y=0 D → f=1 is true.
Proof: see [16]

Theorems 4.2 - 4.4: analogous to Lemmas 4.2 - 4.4

Theorems 4.1 - 4.4 represent the basis for the circuit trans-
formations in our optimization method. As the transforma-
tions given in Theorems 4.1 - 4.4 represent special, simplified
cases of Eq. 2, they also provide simplified cases of Eq. 3. As
will be illustrated in Section 5, the constructions based on Eq.
3 and the above theorems provide good candidates for the
setting up of the transduction of Theorem 3.1.

Recursive learning permits to determine all value assign-
ments necessary to detect a single stuck-at fault, i.e. it is a
technique to perform all D-implications. This is accomplished
by two routines make_all_implications(), and fault_propaga-
tion_learning() as given in [13] if they are performed for the
five-valued logic alphabet B5 = {0, 1, X, D, D} of Roth [22].
Therefore, by recursive learning it is possible to derive all
cases where Theorems 4.1 - 4.4 apply.

The number of implications and D-implications can be
very large so that it is impossible to examine all transforma-
tions. At this point however we come back to the observation

discussed earlier. Implications which can only be derived by
“great effort” represent the promising candidates for the trans-
formations as given in Theorems 4.1 - 4.4. These indirect
implications are only a small fraction of all possible implica-

tions. In the following we refer to a D-implication y=V D →
f=U , U, V ∈ {0, 1} as indirect if it can neither be derived by
direct implication nor by unique sensitization [10] at the domi-
nators of y. In other words, all those necessary assignments
obtained by the learning case of routines fault_propagation-
_learning() and make_all_implications() are implied indirectly
and provide the set of promising candidates for the circuit
transformations.

With the transduction procedure described above, we pur-
sue a simple optimization strategy: At every node in the cir-
cuit we check by means of recursive learning whether indirect
D-implications can be derived. If this is the case, the circuit is
transformed according to Theorems 4.1 - 4.4. Then we per-
form redundancy elimination. If the resulting circuit is smaller
than the previous one the transformation is maintained, other-
wise it is reversed. This process is repeated until no more
improvements can be found. In order to make the redundancy
elimination process as efficient as possible the deterministic
test set for the original circuit is stored and simulated after
each transformation in order to quickly reduce the fault set for
which redundancy has to be checked.

When identifying implications there are several advan-
tages of recursive learning over other implication techniques
like e.g. [2], [19], or [24]. First, recursive learning can iden-
tify more implications than previous techniques. If given
enough time to perform a sufficient number of recursions, all
implications can be identified. However, the CPU-time grows
exponentially with the number of recursions. Fortunately, our
experiments show that usually a small number of recursions is
sufficient to identify most of the implications that exist in a
realistic circuit. Secondly, recursive learning can perform D-
implications. This is essential for identifying permissible
functions and would not be possible, e.g., with the learning
method of [24]. Thirdly, recursive learning identifies implica-
tions for a given node by local analysis. This avoids problems
of incremental updating after modifying the circuit as they
would occur for methods like in [2] or [19].

In the current implementation, after each transformation
the fault list for redundancy identification is set up in the fol-
lowing simple way:
1) Include in the fault list, both stuck-at faults at all signals

that were “touched” by recursive learning when deriving
the current divisor;

2) Exclude from the fault list, all faults in the circuitry added
for the current transformation.

5 Example

In this section it is illustrated how Theorems 4.1 - 4.4 are used
to construct the transformations for the transduction of Theo-

rem 3.1 and how redundancy removal is used to reduce the
circuit.

a
b

c

d

y

f
u

v

w

y=1

f=1

Fig. 3: Combinational network C with indirect implication

Consider Fig. 3. By recursive learning it is possible to
identify the indirect implication y=1 ⇒ f=1. (Please refer to
[14] for details of recursive learning.) The fact that the impli-
cation y=1 ⇒ f=1 is indirect means that it is promising to
attempt a Boolean division at node y using the divisor f. This
could be performed by any traditional method of Boolean di-
vision. Instead, we use the ATPG-based expansion introduced
in Section 3.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

a
b

c

d

y

f
u

v

w

y'

stuck-at-1

stuck-at-1

Fig. 4: Combinational network after transformation y’ = f·y
using internal node f as divisor

Applying Theorem 4.3 we obtain the combinational net-
work as shown in Fig. 4. Actually, in this case we could also
apply Lemma 4.3 since y=1 ⇒ f=1 is obtained without using
any requirements for fault propagation. Note that Theorem
4.3. states that y’=f ⋅ y|1 is a permissible function for y. (In
this case, y and y’ are equivalent.) By transformation as shown
in Fig. 4 we introduce the node y’=f ⋅y. Since y is used as a
cover for y|1 it is likely that the internal don’t cares result in
untestable single stuck-at faults. This is used in the next step
(reduction).

a
b

c

d

u

v

w

y'

Fig. 5: Combinational network after reduction by redundancy
elimination

By ATPG the untestable faults indicated in Fig. 4 can be
identified. Performing redundancy removal (e.g. [1]) results in
the minimized combinational network as shown in Fig. 5.
Note that we have to exclude the stuck-at faults at the added
circuitry in the shaded area of Fig. 4. If we performed redun-
dancy elimination on line f in Fig. 4 we would return to the
original network.

In the example, node y in Fig. 3 is implemented by y =
c(a+b) + ab . By indirect implication we identified the Boo-
lean divisor f = a+b as “promising” and performed the (non-
unique) division c(a+b)+ab / (a+b), resulting in y’= (a+b)⋅
(c+b) in Fig. 5. Note that this is a Boolean - as opposed to
algebraic - division [7]. As the example shows, indirect im-
plications help to identify good divisors that justify the effort
to attempt a Boolean division.

On the other hand, the example also shows the limitation
of our method. By implication analysis we only consider divi-
sors that are already present as nodes in the network. There-
fore, we do not completely utilize the generality of our basic
approach as presented in Section 3. Future work will investi-
gate how the information processed by the recursive learning
routines can be exploited more generally in order to create
divisors that are not present in the network.

Note that our method is more general than the method of
Cheng and Entrena [9]. In the above example, the minimiza-
tion cannot be obtained by only adding and removing connec-
tions. Cheng’s method can be viewed as a special case of the
transduction of Section 3, where both, the divisor and the gates
needed to form the expansion are already present in the net-
work. Note that also Entrena and Cheng use necessary as-
signments in order to derive transformations. However, their
reasoning to derive transformations is different. Being more
restricted, the advantage of the method in [9] is that it can be
predicted where the redundant faults will be created. Our
method has the advantage that more general transformations
are obtained and that the notion of “indirect” implications can
be used to guide the search for good divisors. This leads to
significantly better optimization results.

6 Experimental Results

The described methods have been implemented by making
extensions to the tool HANNIBAL (HANNover Implication
tool Based on Learning) [15]. Table 1 compares the optimiza-
tion results of SIS 1.1 (based on [7]), RAMBO_C [9] and
HANNIBAL for the ISCAS-85 circuits. Since HANNIBAL
operates directly on a gate-level netlist description we post-
processed the circuits optimized by HANNIBAL in the same
way [8] as in [9] in order to compare literal counts between
SIS, RAMBO_C and HANNIBAL. Since the literal counts
may not always accurately reflect the number of gates and
connections, we also list the number of connections when the
circuit is mapped to a library that corresponds to the gate types
in the ISCAS circuits.

Columns 3 to 6 show the results after optimizing the cir-
cuits with different scripts of SIS, script.algebraic,
script.boolean, script.rugged, script. The script script.rugged
is the recommended script and includes the methods of [20]
and [23]. All scripts were run once; in the case of
script.rugged we first applied the SIS command full_simplify.
Columns 7 and 8 in Table 1 show the number of literals and
connections for the circuits optimized by HANNIBAL as well
as the required CPU-time. Column 9 shows the results for
RAMBO_C as published in [9]. The last column shows the
results if HANNIBAL is run after optimizing with SIS
(script.rugged) first.

Name Initial SIS 1.1 HANNIBAL RAMBO SIS +
H.

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

#L
#C

alg
#L
#C

bol
#L
#C

rug
#L
#C

scr
#L
#C

#L
#C

time

h:min:s
#L #L

#C

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c1355 992
994

670
911

554
771

550
768

554
771

547
759

0:09:11 546 544
759

A A A A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A
A
A
A
A

c1908 1058
1046

564
723

552
734

536
713

552
734

515
711

0:15:35 551 517
701

A
A

A A
A

A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c2670 1570
1465

840
1251

759
1130

746
1166

759
1130

697
1067

0:29:42 861 718
1008

A A A A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c3540 2221
2141

1486
1821

1299
1870

1288
1818

1299
1870

1188
1707

1:53:05 1331 1154
1609

A A A A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c432 335
344

252
315

240
310

190
246

240
310

179
224

0:01:35 207 161
217

A
A

A
A

A
A

A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c499 992
994

670
911

554
771

550
768

554
771

547
759

0:09:03 546 544
759

A A A A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c5315 3531
3443

2008
2769

1815
2664

1758
2564

1815
2664

1756
2683

4:20:11 1851 1697
2456

A A A A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c6288 4705
4734

3787
4294

3550
5222

3337
4373

3550
5222

3252
3768

3:48:23 3294 3240
3758

A
A

A
A

A
A

A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c7552 4750
4655

2584
3593

2297
3423

2157
3388

2584
3423

1894
2703

6:54:20 2188 1855
2607

A A A A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A

c880 648
591

473
640

427
625

415
599

427
625

398
542

0:04:29 410 417
596

Table 1: Results for ISCAS-85 circuits, Sun SPARC 10

As can be noted, the optimization results of HANNIBAL
are superior to the ones of SIS 1.1 in all cases except for c5315
(# connections). If HANNIBAL is used in addition to SIS
further improvements are obtained in most cases. Further-
more, our literal counts are significantly smaller than the ones
obtained by RAMBO_C [9]. This is due to the fact that
HANNIBAL can perform a larger set of network manipulations
than RAMBO_C and is heuristically guided by the indirectness
of implications.

These results are very encouraging and clearly show the
great potential of the presented ATPG-based method in logic
optimization. Given our general ATPG-based framework for
optimization many other heuristics seem possible to further
improve the method. The CPU-times of our preliminary im-
plementation are still unsatisfactory but can be improved dras-
tically. For fault simulation we use the fault simulator FSIM
[17]. In our preliminary implementation, FSIM is used exter-

nally so that a lot of CPU-time is wasted for the communica-
tion between the two tools. In our prototype implementation
the memory requirements range from 1.9 Mbytes for c432 to
16 Mbytes for c7552. In SIS 1.1 using script.rugged memory
requirements ranged from 20 Mbytes for c432 to about 60
Mbytes for c7552.

All experiments are run with a recursion depth of ‘2’ for
recursive learning. At recursion depth ‘2’ the CPU-time for
recursive learning is still small compared to the fault simula-
tion times that dominate in our current implementation. We
also experimented with higher depths of recursion. In the cir-
cuits examined, only few cases occured where this provided
additional necessary assignments. Although these additional
necessary assignments are “particularly good” candidates ac-
cording to our heursitic, optimization results in these cases did
not improve substantially. In the circuits examined, the im-
provement obtained by a single good transformation derived
with recursion depth greater than ‘2’ could also be obtained
from several smaller optimization steps with recursion depths
of ‘1’ or ‘2’.

Circuit SIS (script.rugged) HANNIBAL Original

c432 308 134 568
c880 269 138 580

c1355 320 72 942
c1908 755 835 6,239
c2670 617 419 4,041
c3540 18,082 10,767 16,770
c5315 3,149 3,157 9,383
c6288 3,275 618 3,516
c7552 3,189 1,118 27,644

Table 2: Indirect D-implications before and after optimization

Further experiments confirmed the heuristic that indirect
implications indicate promising divisors. We examined how
many indirect D-implications existed in the circuits before and
after optimization. Table 2 shows the number of indirect D-
implications that have been identified by recursive learning
with depth ‘2’ for the original circuits as well as for the opti-
mized circuits. We note that HANNIBAL reduces the number
of indirect D-implications drastically for all circuits. It is in-
teresting, that this is also true for SIS in most cases. This ex-
periment confirms that optimization in general is related to
reducing the number of indirect implications in the circuit.
The results of Table 2 reflect that many (but not all) “good”
divisors for optimization can be obtained by indirect implica-
tion. Another experiment was conducted including some di-
rect implications into the optimization procedure: The result
was increased CPU-time without any improvement of the final
optimization result.

7 Conclusion

This work was originally motivated by the observation that
indirect implications indicate suboptimal circuitry. We have

presented a general ATPG-based approach to logic optimiza-
tion deriving circuit transformations from implications. The
essence of the presented method is the D-calculus of Roth in
combination with the precise implication procedure of [13,
14]. It has been shown that implications can be used to de-
termine for each node those functions in the network with re-
spect to which this node has only one cofactor. Our prelimi-
nary results clearly prove the great potential of our approach.
They also show that our notion of “indirect” implications is
indeed most helpful to identify good Boolean divisors. The
theoretical relationship between the complexity of performing
implications and minimality of the circuit is subject to current
research.

Note that the presented approach to multi-level optimiza-
tion is also useful for logic verification. As shown in [15]
storing implications can be very useful to simplify the verifi-
cation process. Another possibility is to use the implications
to transform the circuit by Theorems 4.1 - 4.4. It is interesting
to note that the transformations conducted in Brand’s method
for logic verification [4] can be identified by D-implications as
a special case. With heuristics adjusted appropriately, Brand’s
ATPG-based verification algorithm is a special case of the
optimization method presented here.

Acknowledgments
We acknowledge the contributions of Hitesh Ahuja in the ini-
tial phase of this research. We are also grateful to Daniel
Brand for valuable comments and to Martin Cobernuss for his
help in various ways.

References

[1] Abramovici M., Breuer M., Friedman A.: “Digital Sys-
tems Testing and Testable Design”, Computer Science
Press, 1990.

[2] Berman L., Trevillyan L.: “Global Flow Optimization in
Automatic Logic Design”, IEEE Transactions on
Computer-Aided Design, vol. 10, No. 5, May 1991.

[3] Brand D.: “Redundancy and Don’t Cares in Logic Syn-
thesis”, IEEE Trans. on Computers, vol. C-32, pp. 947-
952, Oct. 1983.

[4] Brand D.: “Verification of Large Synthesized Designs”,
Proc. Int. Conf. on Computer-Aided Circuit Design,
Santa Clara, Nov. 1993, pp. 534-537.

[5] Brown F.: “Boolean Reasoning”, Kluwer Academic Pub-
lishers, Boston, MA 1990.

[6] Brayton R. K., Hachtel G. D., McMullen C. T., Sangio-
vanni-Vincentelli A. L.: “Logic Minimization Algo-
rithms for VLSI Synthesis”, Kluwer Academic Publish-
ers, Massachusetts, 1984.

[7] Brayton R. K., Rudell R., Sangiovanni-Vincentelli A.,
Wang A. R.: “MIS: Multi-level Interactive Logic Opti-
mization System”, IEEE Trans. on CAD, CAD-6(6), pp.
1062-1081, Nov. 1987.

[8] Cheng K.T., April 1994, private communication

[9] Entrena L. A., Cheng K.T: “Sequential Logic Optimiza-
tion by Redundancy Addition and Removal”, Proc. Intl.
Conf. on Computer-Aided Design, Nov. 1993, pp. 310-
315.

[10] Fujiwara H., Shimono T.: “On the Acceleration of Test
Generation Algorithms”, in Proc. 13th Int. Symp. on
Fault Tolerant Computing, 1983, pp. 98-105.

 [11] Hachtel G. et al.: “Performance Enhancements in BOLD
using Implications,” Proc. Intl. Conf. on Computer-
Aided Design, pp. 94-97, Nov. 1988.

 [12] Hotz G.: “Einführung in die Informatik”, Teubner Ver-
lag, Stuttgart 1990.

 [13] Kunz W., Pradhan D.K.: “Recursive Learning: An At-
tractive Alternative to the Decision Tree for Test Gen-
eration in Digital Circuits”, Proceedings Intl. Test Con-
ference, 1992, pp.816-825.

[14] Kunz W., Pradhan D.K.: “Recursive Learning: A New
Implication Technique for Efficient Solutions to CAD
Problems: Test, Verification and Optimization”, ac-
cepted for publication in IEEE Transactions of Com-
puter-Aided Design (probably Sept. 1994).

 [15] Kunz W.: “HANNIBAL: An Efficient Tool for Logic
Verification Based on Recursive Learning”, Proc. Intl.
Conference on Computer-Aided Design, Santa Clara,
Nov. 1993, pp. 538-543.

[16] Kunz W., Menon P.: “Multi-Level Logic Optimization
by Implication Analysis” Technical Report, Max-Planck
Institut für Informatik, MPI -I-94-602, April 1994.

[17] Lee H.K., Ha D.S.: “An Efficient Forward Fault Simu-
lation Algorithm Based on the Parallel Pattern Single
Fault Propagation”, Proc. Intl. Test Conference, pp. 946-
953, Sept, 1991.

[18] Muroga S. et al.: “The Transduction Method - Design of
Logic Networks Based on Permissible Functions”, IEEE
Trans. on Computers, Oct. 1989, pp. 1404-1424.

[19] Rajski J., Cox H.: “A Method to Calculate NecessaryAs-
signments in Algorithmic Test Pattern Generation”,
Proc., Int. Test Conf., 1990, pp. 25-34.

[20] Rajski J., Vasudevamurthy J.: “Testability Preserving
Transformations in Multi-Level Logic Synthesis”, Proc.
Intl. Test Conference, 1990, pp. 265-273.

[21] Rohfleisch B., Brglez F.: “Introduction of Permissible
Bridges with Application to Logic Optimization after
Technology Mapping” , Proc. EDAC/ETC/EUROASIC
1994, pp. 87 - 93.

[22] Roth J.P.: “Diagnosis of Automata Failures: A Calculus
and a Method”, IBM Journal of Research and Develop-
ment, Vol. 10, No. 4, July 1966, pp. 278-291.

[23] Savoj H., Brayton, R.K., Touati H.: “Extracting Local
Don’t Cares for Network Optimization”, Proc. Intl. Conf.
on Computer-Aided Design, Nov. 1991

[24] Schulz M., Trischler E., Sarfert T.: “SOCRATES: A
highly efficient automatic test pattern generation sys-
tem”, IEEE Transactions on Computer-Aided Design,
vol. 10. no.4, April 1991.

	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index

