
Abstract

This paper presents a testability improvement method for
digital systems described in VHDL behavioral specifica-
tion. The method is based on testability analysis at register-
transfer (RT) level which reflects test pattern generation
costs, fault coverage and test application time. The testabil-
ity is measured by controllability and observability, and
determined by the structure of a design, the depth from I/O
ports and the functional units used. In our approach, hard-
to-test parts are detected by a testability analysis algorithm
and transformed by some known DFT techniques. Our
experimental results show that testability improvement
transformations guided by the RT level testability analysis
have a strong correlation to ATPG results at gate level.

1 Introduction

Current VLSI design complexity has made test difficult
and expensive. Increasing testability of a design becomes
one of the important issues during a design cycle. It helps to
achieve high test quality and reduce both test development
cost and test application cost.

Many industrial design tools provide VHDL as an input
language for hardware description and simulation. Some of
them can also perform design synthesis and ATPG to ease
design processes. DFT techniques, such as scan path, are
sometimes used in these systems for ATPG to achieve high
test quality. Using testability measures such as SCOAP [1]
to guide the decision of using DFT techniques is proved to
be useful [2] and is adopted by Racal-Redac design tool in
test generation. Our experience shows that using SCOAP
for testability analysis to select test insertion points can effi-
ciently improve the testability. However, this decision made
at gate level after the main synthesis tasks are finished is too
late for design optimization. The performance and area may

This work has been sponsored by the Swedish National Board for
Industrial and Technical Development (NUTEK).

not be optimized. In other words, if we can make a decision
earlier, we will have more freedom to adjust the decision
and optimize the design together with other synthesis tasks
in terms of performance and cost. Another disadvantage of
this approach is the high computational complexity for gate
level testability calculation. This is important since testabil-
ity will be repetitively calculated during design
transformations.

Some structural approaches have been proposed for solv-
ing the complexity problem of testability analysis [3,4,5]. In
these approaches, flip-flops responsible for feedback loops
are selected for scan, so that the remaining circuit is acyclic.
It has been shown [3] that feedback loops are the main bur-
den for sequential test generation. However, optimal
solutions in these approaches are not guaranteed. Moreover,
the analysis of feedback loops requires thorough graph anal-
ysis, the complexity of which should also be considered.

Our approach is to raise the level of abstraction for test-
ability analysis. The advantage of our testability analysis
approach is the ability to capture hard-to-test parts not only
in feedback loops but also in acyclic design parts. We make
testability improvement decisions at RT level by using the
testability analysis results and some DFT techniques. The
early decision about testability improvement gives the pos-
sibility that this design can be optimized in later synthesis
processes. The testability analysis carried out at high level
of abstraction (RT level) will also reduce the computational
complexity, since the complexity of a design at that level is
significantly lower.

In our approach, a design described in VHDL behavioral
specification is compiled into an internal representation
used in our high-level synthesis system, called ETPN
(Extended Timed Petri Net) [6, 7]. The testability analysis
and improvement are carried out on this representation. Our
testability analysis algorithm measures the relative difficul-
ties of test generation (cpu time), test application (cycles)
and achieving high fault coverage for every line (multi-bit)
in a design, which links two RT level functional units, such
as adder, multiplier, register and multiplexer. Two strategies
are developed for using two DFT techniques to improve
testability based on these results. The two DFT techniques

Testability Analysis and Improvement from VHDL Behavioral Specifications

Xinli Gu, Krzysztof Kuchcinski, Zebo Peng

Dept. of Computer and Information Science
Linköping University

S-581 83 Linköping, Sweden
e-mail: xgu@ida.liu.se

Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

are partial scan technique and test-cell (T-cell) insertion
technique. If there exist registers responsible for the hard-
to-test parts, the first strategy will transform these registers
into scan registers. Otherwise, the second strategy will add
T-cells to hard-to-test lines. The design with these transfor-
mations will later be considered together with other high-
level synthesis tasks, so that the whole design is optimized.
The transformations of scan registers and T-cell insertions
can also be annotated back to the original VHDL specifica-
tion.

The rest of this paper will first briefly introduce the
ETPN representation and the VHDL to ETPN compiler. A
definition of testability and its algorithm are then given. The
testability improvement strategies based on testability anal-
ysis results are later described in detail. Finally,
experimental results are presented.

2 Design Representation

Our testability analysis algorithm analyzes the ETPN
representation of a design and predict hard-to-test parts. We
use the S’VHDL compiler [8] to compile a subset of VHDL
behavioral specifications into ETPN internal design repre-
sentations [7]. An example of a VHDL specification and its
ETPN representation is given in figure 1.

The ETPN design representation consists of two parts:
data path and control part. The data path is a directed graph
with nodes and lines. The node represents the storage and
manipulation of data. And the line connecting two nodes
represents the flow of data. The control part is modelled as
a timed Petri net. These two parts are related through the
control states in the control part controlling the data trans-
fers in the data path, and the condition signals in the data
path (for example,C1 in figure 1) controlling some transi-
tion(s) in the control part.

3 Testability Definition

Our testability definition assumes that the fault model is
stuck-at fault model and ATPG is random and/or determin-
istic. The assumptions are justified, since the stuck-at fault
model is the mostly used fault model and many ATPG’s
start by using random test generation to cover as many
faults as possible and then switch to deterministic test gen-
eration.

The testability is defined by the measures of controllabil-
ity and observability. The controllability measures the cost
of setting up any specific value on a line. The observability,
on the other hand, measures the cost of observing any spe-
cific value on a line. The term ‘cost’ reflects: 1) the costs of
cpu time to find out input vectors to set up a value on an
internal line or to distinguishably observe a value on an
internal line through primary outputs, 2) the cost of achiev-
ing high fault coverage, and 3) the time to control or observe
this fault during test execution. The controllability and

observability measures reflect respectively two procedures
during test generation and test application, namely the fault
sensitization and the fault propagation. Both the controlla-
bility and the observability are further defined by two
factors: combinational factor and sequential factor. The
combinational factor is used to measure the cost of generat-
ing a test and fault coverage. The sequential factor is used
to measure the sequential complexity of repeatedly using a
combinational test generation algorithm to a sequential cir-
cuit, and the cost (time and memory) of executing a test. As
a result, we have four measures for testability; combina-
tional controllability (CC), sequential controllability (SC),
combinational observability (CO), and sequential observa-
bility (SO).

The combinational factorsCC andCO range from 0 to 1,
where value 1 represents the best combinational controlla-
bility (or observability). TheCC’s (or CO’s) of all primary
inputs (or outputs) are equal to 1. The value 0 ofCC (orCO)
represents that we are unable to set up (or observe) that line.
The sequential factorsSC and SO are natural numbers
which represent 1) the estimated number of steps that a
combinational test generation algorithm needs to be repeat-
edly applied to a sequential circuit, and 2) the number of

+ ³

C1

X

S5

 S7

 S5 S3 S3

 S3

C1

 S6

 S3

C1

 S0

 S2 S7

 S3

 S6 S4

 S1 S5

C1

entity Sumis
port (p1: in bit_vector (0to 7);

p2:out bit_vector (0to 7));
end Sum;

architecture behof Sumis
signal x: bit_vector (0to 7) := “00000000”;
signal y: bit_vector (0to 7) := “00000000”;

begin
process
begin

wait until y’event;
y <= p1;
while y >= “00000000”loop

x <= x + y;
y <= p1;
wait until y’event;

end loop;
p2 <= x;

end process;
end beh;

 P2

 ≥

Figure 1 (a) VHDL Example, (b) ETPN Example

 Y

(a)

(b)

S5

control part data path

“0” “0” P 1

 “0”

S2 S4

clock cycles to control or observe a line under test. TheSC’s
(or SO’s) of all primary inputs (or outputs) are equal to 0.

A set of heuristics is developed to find the controllability
(or observability) at a functional unit’s output (or input)
based on the controllability (or observability) at its inputs
(or outputs). The relationship between the controllability (or
observability) at a unit’s input and output depends on the
controllability transfer factorCTF (or observability transfer
factor OTF) of a unit. The factorCTF reflects the probabil-
ity of setting a value at a unit’s output by randomly
exercising its inputs.OTF reflects the probability of observ-
ing a unit’s input by randomly exciting its other inputs and
observing its outputs. These two factors reflect not only the
difficulties in a random test generation but also the difficul-
ties in a deterministic test generation. The reason is that in
deterministic test generations, we need to set a maximum
cpu time for each fault and a maximum backup for each vec-
tor. Faults with small probability to detect will more often
cause conflicts between the vector to control them and the
vector to observe them. Therefore, backups are necessary,
which means that the probability of detecting the faults
becomes smaller within limited cpu time.

BothCTF andOTF are in the range from 0 to 1, where 1
represents the best controllability and observability transfer
of a unit. The detailed calculation can be found in [9]. Dif-
ferent types of units have differentCTFs andOTFs. CTF
andOTF for each type of units are calculated only once and
stored in a library. In the following, we will describe the
heuristics of calculating controllability and observability.

3.1 Controllability of Combinational Units

Assume that a combinational unit has inputsX1, ..., Xp
with n1, ...,np bits respectively, and outputsY1, ...,Yq with
m1, ..., mq bits respectively. For combinational units, data
transfer from inputs to outputs is finished in the same con-
trol state. Combinational ATPG can be applied directly. The
controllability at an output of this unit is obtained by

,

where

, and

Clk(Si) is the number of clock cycles needed for data oper-
ation at a functional unit (we usually assume it to be zero).
The heuristic says that the averageCC from a unit’s input to
output is reduced because of the data transfer through the
unit, andCS is increased because of the delay for data oper-
ation.

CCYk
CCin CTFU×=

SCYk
SCin clk Si()+= 1 k q≤ ≤()

CCin

CCXi
ni×()

i 1=

p

∑

ni
i 1=

p

∑
= SCin Max SCXi

{ }=

3.2 Controllability of Sequential Units

For sequential units, such as registers, the data transfers
from inputX to outputY is determined by the related state
transitions (from Si to Sj) in the control part. We estimate
this by considering the controllability at condition nodes
responsible for the state transitions. TheCTF of a sequential
unit is one. Thus, we have,

whereCCcond(Si, Sj) is the product ofCC’s of all condition
nodes for state transitions fromSi to Sj. It reflects the cost of
an ATPG to find an input to make these conditions true.
Clk(Si, Sj) is the sum of clock cycles for state transitions
from Si to Sj. If there are several paths fromSi to Sj, the
shortest one is selected.

3.3 Observability of Combinational Units

To propagate a fault, we need both to control some input
lines and to observe output lines of a unit. The observability
at an input lineXk of a unit is obtained by

,

where

, and

CCin is the average controllability (withoutCCXk) as
defined in section 3.1.

3.4 Observability of Sequential Units

TheOTFof a sequential unit is one. Similar to the formu-
las in 3.2, we have

4 Testability Analysis Algorithm

The testability analysis algorithm calculates the testabil-
ity { CC, SC, CO, SO} for each line in a design. It first
assigns ones toCCs and zeros toSCs for all primary inputs
in the data path of the ETPN. These values are then propa-
gated according to the heuristics described above until
primary outputs are reached. A similar approach is used in
calculating observability, but it starts from primary outputs
towards inputs. A simplified version of the algorithm forCC
andSC calculation is presented in the following:

A1 assign all primary inputs: CCprim_in = 1, SCprim_in = 0.
A2 calculate controllability at a unit U’s outputs by using the

average controllability calculated at its inputs:

CCY CCX CCcond Si Sj,()×=
SCY SCX clk Si Sj,()+=

COXk
COout OTFU CCin××=

SOXk
SOout clk Si()+= 1 k q≤ ≤()

COout

COYi
mi×()

i 1=

q

∑

mi
i 1=

q

∑
= SOout

SOYi
mi×()

i 1=

q

∑

mi
i 1=

q

∑
=

COX COY CCcond Si Sj,()×=
SOX SOY clk Si Sj,()+=

a) if U is a combinational unit:
CCout=CCin * CTFU, SCout = SCin + clk(Si),

b) if U is a sequential unit:
CCout = CCin * CCcond(Si, Sj), SCout = SCin+ clk(Si, Sj).

A3 if U is involved in a feedback loop:
CCout = CCout * CCloop, SCout = SCout + SCloop.

A4 repeat A2 until all primary outputs are reached.

In the algorithm, clk(Si), clk(Si, Sj) andCCcond(Si, Sj)are
the same as defined in section 3. CCloop andSCloop are the
combinational controllability and sequential controllability
at the condition node that controls the termination of a feed-
back loop. We can see that controllability becomes worse
with the increase of depth in the data path from primary
inputs. Observability becomes worse with the increase of
depths both from primary inputs for control and primary
outputs for observation (see its definition in section 3).

Traditional testability calculation for feedback loops in
data path usually requires long iterative computations [1].
To simplify this problem, we use the controllability at the
condition node that controls the termination of a loop (see
step A3 in the algorithm above).

Generally speaking, the controllability of all fanout
branchesX1, ...,Xn are the same as the controllability of an
original lineX, and the observability ofX should be the best
of X1, ...,Xn. However, if there is a redundant fault caused
by a reconvergent fanout, some fanout branches cannot be
controlled and observed. Therefore, checking redundant
fault is required at fanout points. To reduce the computa-
tional complexity (NP-complete), we have developed a set
of heuristics [10] to quickly find out if there is no redundant
fault or to point out if there is one. This is, however, beyond
the scope of this paper.

5 Testability Improvement Strategies

Two DFT techniques, the partial scan technique and the
T-cell insertion technique are used to improve testability.
The former technique can make some registers totally
accessible. The latter one can make some lines totally acces-
sible, but is only used when no register is responsible for
hard-to-test parts. Two strategies of identifying hard-to-test
registers and hard-to-test lines for the uses of these two
techniques are developed.

5.1 Sequential Unit Selection Strategy

Experiments [3] show that feedback loops are mainly
responsible for test generation complexity. To solve this
problem, we break feedback loops by making nodes directly
accessible. Partial scan technique which makes some regis-
ters directly accessible is relatively cheap and easy. The
proposed sequential unit selection strategy uses this tech-
nique to transform registers with the worst testability and
involved in feedback loops to scan registers. It first evalu-

ates the testability of registers by the formula:

whereCRi andSRi areCCRi+CORi and SCRi +SORi at the
output of registerRi respectively.C andS are the average of
all CRi and the average of allSRi in a design.k equals C/S,
which scales the combinational and sequential factors to the
same level. Thisformula measures the sum of combina-
tional and sequential testability derivations at register
Ri from the averagetestabilities of all registers. The larger
ERi, the better the testability of registerRi.

After the evaluations, this strategy suggests several reg-
isters (about 10% from the beginning) with the worst
testability evaluation results and involved in feedback loops
to be transformed to scan registers first. It also requires that
these registers must be in different feedback loops, since
once a register in a feedback loop becomes directly accessi-
ble, the testability of the whole feedback loop will be
improved. After the first step, testability analysis and evalu-
ation are re-calculated. If the testability evaluations of some
registers are still very poor, it will transform them in the
next step no matter if they are involved in the same feedback
loop as the registers transformed before. If no register is
involved in feedback loops, this strategy only transforms
one register with the worst evaluation result every time,
since testability dependency may exist between registers.

This strategy is usually used at the beginning. When no
register is responsible for the bad testability of a design, the
following line selection strategy can be used.

5.2 Line Selection Strategy

The line selection strategy uses a similar formula to
evaluate the relative difficulty of testing each line in a
design. We only need to changeCRi andSRi for registers
in the above formula to those for lines. This strategy
suggests the insertion of a T-cell inthe line with the worst
testability. The T-cell is a scan-like element designed to
enhance controllability and observability at any line in a
design. The detailed schematic design can be found in
Racal-Redac system user’s manual. This strategy only
selects one line for transformation each time because of test-
ability dependencies between relevant lines. Testabilities at
these relevant lines must be re-calculated after each trans-
formation.

6 Experimental Results

To verify the correlation between our testability analysis
results at RT level and test generation results at gate level,
we use the Racal-Redac design tool to synthesize RT level
designs with different testability improvement transforma-
tions to gate level (by SilcSyn) and then do test generation
(by Intelligen). Comparing the test generation results, we

ERi

CRi
C−

C
k

S SRi
−

S
⋅+=

can find the influence of our testability improvement trans-
formations guided by the testability analysis results at RT
level to the test generation results at gate level. The input
designs are specified in behavioral VHDL and the partial
scan transformations are specified in VHDL attributes that

 VHDL

 analysis SilcSyn

 ATPG

Redac

VHDL compiler

 testability

 design

Figure 2 Experimental Framework

TAIP

Intelligentestability
improved

synthesizer

ETPN

entity Cnt is
port (

clk : in std_logic;
reset :in std_logic;
x : in std_logic_vector (7downto 0);
max :out std_logic_vector (7downto 0);
sum :out std_logic_vector (15downto 0)
);

attribute clock_sourceof clk : signal is true;
attribute reset_sourceof reset :signal is true;

end Cnt;

architecture behof Cnt is
signal c : std_logic_vector (7downto 0);
signal m : std_logic_vector (7downto 0);
signal s : std_logic_vector (15downto 0);
attribute rtsof c :signal is include; -- if c needs to be scanned
attribute rtsof s :signal is include; -- if s needs to be scanned

begin
max <= m;
sum <= s;

count:process
begin

wait until (reset = ‘1’);
resetloop:loop

if reset = ‘1’then -- initialization.
c <= “11111111”;
m <= “00000000”;
d <= “0000000000000000”;

end if;
wait until rising_edge(clk)or (reset = ‘1’);
next resetloopwhen (reset = ‘1’);
while c /= 0loop

c <= c - 1;
if (x > m)then

m <= x;
end if;
s <= s + x;
wait until rising_edge(clk)or (reset = ‘1’);
next resetloopwhen (reset = ‘1’);

end loop; -- while loop.
end loop; -- resetloop.

end process;
end beh;

Figure 3 Counter SilcSyn VHDL Specification

SilcSyn can accept. The experimental framework is illus-
trated in figure 2.

The experiment was carried out on a Sparc-10 station
and the default setting of maximum cpu time for each fault
(500 seconds) and maximum backup for each vector (25)
were used. Designs used for experiments are three high-
level synthesis benchmarks and one illustrative example,
counter.

Figure 3 describes the SilcSyn VHDL specification for
the counter example. Table 1 lists its testability evaluation
results when the sequential selection strategy is used. The
testability evaluation results show that registerC has the
worst testability evaluation value 0.20. In fact, registerC
which controls the iteration of the counter is uncontrollable.
After registerC is inserted into a scan path, the average
CC+CO (0 CC+CO 2) is improved from 0.4 to 1.59.
The averageSC+SO (0) is improved from 7,707 to 7. By
a similar step, registerS is selected for scan insertion, and
CC+CO is improved from 1.59 to 1.68, not as much
improvement as in the first step. On the other hand,SC+SO
becomes worse, from 7 to 13. This is explained by the fact
that with more registers scanned, the delay in test applica-
tion caused by the scan path starts to increase.

Table 2 lists Intelligen test generation results of all differ-
ent scan transformation schemes for this design. Our partial
scan scheme with registersC andS scanned achieves much
shorter cpu time of test generation (76 seconds) and the best
fault coverage (97.08%). In full scan case, the added logic
for scanning registerM does not help test, since it is easy to
access. On the contrary, the unnecessary added logic
increases the test generation complexity. As a result, the
fault coverage is decreased and the test application cycle is
increased.

Table 1: Testability Analysis Results for Counter Example
 register in

design
testability evaluation (ER)

no scan C scanned C and S scanned
C (8 bits) 0.20 1.88 1.91
M (8 bits) 1.70 1.71 1.84
S (16 bits) 1.70 1.50 1.95
CC+CO 0.40 1.59 1.68
SC+SO 7,707 7 13

Table 2: Test Generation Results for Counter Example

 register(s)
scanned our selections

synthesis ATPG
no. of
gates

cpu time
(s.)

fault cov.
(%)

test appl.
(cycle)

no scan no 595 8,912 94.72 7,209
 C selected 868 146 92.83 6,741
M no - 2,821 95.31 11,056
S no - 5,030 90.95 13,786

C, M no - 169 90.42 7,122
C, S finally selected 907 76 97.08 8,876
M, S no - 2,819 96.30 17,535

C, S, M
full scan no 931 58 96.48 10,746

≤ ≤
≥

Table 3 shows the SilcSyn synthesis result and Intelligen
test generation results with different test transformation
schemes: no scan, full scan and our partial scan for the Dif-
ferential-equation benchmark [11], the Square-root
benchmark [12], and the Elliptic-filter benchmark [13]. We
can see the test improvement by our partial scan transforma-
tion in test generation time and fault coverage when
comparing with no scan, and the improvement in hardware
overhead (number of gate) and test application time when
comparing with full scan design. These results conform well
to our testability predictions at RT-level.

7 Conclusion and Discussion

A testability improvement method based on testability
analysis for designs described in VHDL behavioral specifi-
cation is presented. This approach is able to detect and
improve hard-to-test parts not only in feedback loops but
also in acyclic parts, which other structural approaches are
not applicable. The computational complexity is also much
lower than that at gate level. The early testability improve-
ment decision makes the optimization of the testability-
improved design possible in other synthesis processes, and
the test development (test generation, etc.) much easier.

The testability improvement techniques discussed in the
paper are partial scan technique and T-cell insertion tech-
nique. This means that we are able to improve testability not
only for registers, but also for any other parts in a design.

Our experiments with high level synthesis benchmarks
show that designs without test consideration will cause huge
cpu time for test generation and very low fault coverage.
The full scan technique does not always solve these prob-
lems. Not only the long delay in test application and high
hardware overhead, the added logic for full scan may also
increase the test generation complexity.

We are trying to detect gate level test problems by test-
ability analysis at RT level. This is under the assumption
that we estimateCTFs andOTFs of RT level functional
units only by their functional tables, since we do not know

Table 3: ATPG Results with Different Scan Schemes

bench-
mark

scan scheme
(bits scanned)

synthesis ATPG
no. of
gates

cpu time
(s.)

fault cov.
(%)

test appl.
(cycle)

Diff-
Equation

non (0) 3,269 12,915 49.68 6,224
partial (32) 3,398 3,937 94.17 18,345
full (144) 3,687 497 98.05 108,308

Square-
Root

non (0) 2,746 8,014 32.76 3,266
partial (64) 2,899 1,177 92.65 53,773
full (80) 2,942 1,011 91.72 51,344

Elliptic-
Filter

non (0) 8,383 72,852 6.55 2,901
partial (64) 8,646 61,782 54.77 79,280
partial (144) 8,974 35,343 79.88 280,271
partial (272) 9,495 31,893 88.35 887,247
full (576) 10,736 11,442 96.10 964,589

their detailed implementations at that level. We can calcu-
late them more accurately if we know their
implementations.

In this paper, we have discussed the usage of two DFT
techniques to improve testability. The use of other DFT
techniques, such as BIST, is our on going research.

Acknowledgement

Many thanks to Staffan Persson from CynCrona Redac
in Sweden who helped us in using the Racal-Redac system
for experiments.

References

[1] Goldstein, L.H., and Thigpen, E.L., SCOAP: SANDIA
Controllability/Observability Analysis Program,Proc. 17th
Design Automation Conf., 1980.

[2] Trischler, E., Design for Testability Using Incomplete Scan
Path and Testability Analysis,Siemens Forsch.- u. Entwickl.-
Ber. Bd. 13, Nr2, 1984.

[3] Cheng, K.-T., and Agrawal, V.D., A Partial Scan Method for
Sequential Circuits with Feedbacks,IEEE Trans. on
Computers, Vol.39, No.4, pp.544-548, April 1990.

[4] Gupta, R., Gupta, R., and Breuer, M.A., The BALLAST
Methodology for Structured Partial Scan Design,IEEE
Trans. on Computers, Vol.39, No.4, pp.538-544, April 1990.

[5] Kunzman, A. and Wunderlich, H.-J., An Analytical
Approach to the Partial Scan Problem,J. of Electronic
Testing: Theory and Applications, No.1, pp.163-174, 1990.

[6] Peng, Z., Semantics of a Parallel Computation Model and its
Applications in Digital hardware Design,Proc. of the
International Conference on Parallel Processing, pp.69-73,
August, 1988.

[7] Peng, Z. and Kuchcinski, K., Automated Transformation of
Algorithms into Register-Transfer Level Implementation,
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, No. 2, Vol. 13, 1994.

[8] P. Eles, K. Kuchcinski, Z. Peng, and M. Minea, Compiling
VHDL into a High-Level Synthesis Design Representation,
Proc. of EURO-DAC’92, 1992.

[9] Gu, X., Testability Analysis and Improvement in High-Level
Synthesis Systems, licentiate thesis, thesis No. 333,
Linköping University, Sweden, 1992.

[10] Gu, X., Kuchcinski, K., Peng, Z., Testability Measure with
Reconvergent Fanout Analysis and Its Applications,The
Euromicro Journal, Microprocessing and
Microprogramming, nrs 1-5, August, 1991.

[11] P. Paulin and J. Knight, Force-directed scheduling for the
behavioral synthesis of ASIC’s,IEEE Trans. Computer-
Aided Design, vol. 8, pp.661-679, June 1989.

[12] H. Trickey,Compiling Pascal programs into silicon, Ph.D.
thesis, Dept. of Computer Science, Stanford University,
1985.

[13] P. Dewilde, E. Deprettere and R. Nouta, Parallel and
pipelined VLSI implementation of signal processing
algorithms, inVLSI and Modern Signal Processing, S. Y.
Kung et al., Eds. Englewood Cliffs, NJ: Prentice-Hall,
pp.257-264, 1985.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

