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Abstract developed and standardised, for example CAN[1][2], J1850[3].

THE ELECTRONIC VEHICLE TODAYVHDL has been used to develop a simulator for automotive
databus networks. This is a design tool for early assessment of
system interactions. VHDL has proved ideal for this application
due to the flexibility of modelling permitted by features such as
generics and configurations. Analogue extensions to VHDL are
eagerly awaited for extending the capabilities of the simulator.
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Introduction

VHDL has been widely used as a hardware description
language at both the register transfer level (RTL) and at the
functional level. It has been used rather less at the system level.
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This paper introduces the application area of automotive
databusses and the subsequent need for a system simulation tool.
A discussion of the benefits of using VHDL as a language to
develop such a simulator is included and the features and
structure of the resulting simulator are presented.

Automotive databusses

Figure 1. Vehicle electronics
Over recent years there has been a rapid increase in the

amount and complexity of electronics on vehicles. The days have
gone when radios, electric windows, central locking and anti-lock
brakes were considered a luxury, available only on the most
expensive models of car. Today these items are no longer seen as
out of the ordinary. A car is expected to at least have the option
for all of these things and more. Items such as telephones and CD
players are also required to be easily incorporated into a vehicle as
and when required.

Networks

Networks are a familiar concept in the modern office, and
indeed in aircraft. Systems communicate with each other over a
network of dedicated cabling equipped with connection points.
Each system connected to the network can communicate with
other systems by using an appropriate protocol. A databus
provides the opportunity for less wiring and greater flexibility
within a vehicle. Data from sensors can be sent to multiple
destinations. The same physical network can be used as the
communication medium between different units and different
combinations of units. Individual units (e.g. sensors, controllers)
can be replaced by alternatives without the need for new wiring.
As new facilities become available for use within a vehicle, these
can be introduced into the existing network without the need for
costly and time-consuming wiring changes.

Today's vehicles still make use of the traditional wiring
harness to provide the interconnection between these systems.
This is now reaching its limit in terms of the demands which can
be placed upon it. Its size is becoming unwieldy and it is not
sufficiently adaptable to allow for every new item on an 'as you
like' basis. It has also been recognised that the wire harness is
costly. These factors have led the automotive industry to consider
possible alternatives. These alternatives are databusses with
automotive specific protocols. Several protocols have now been
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In addition to the 'comfort' benefits, there are also obvious
safety advantages. The failure of particular sensors can be
detected through the sophisticated diagnostics which become
possible with a network. There is the possibility of temporary data
sharing. This would allow information from an alternative source
to be used until the vehicle was brought into a safe state, or
serviced, depending on the failure. The remedial action required,
or the severity of the failure, could be indicated to the driver.
There are also possibilities of allowing the control of particular
functions to be taken over by other control units if a serious failure
was detected. For instance, if the engine controller were to fail,
another controller may be able to provide reduced but safe
control. This would reduce the consequences of the failure of
particular controllers.

full-scale introduction of databus technology into vehicles.
Proposed systems are becoming ever more complex, with more
and more units being suggested for inclusion on a network.

The importance of understanding the effect of adding 'just one
more' low priority controller cannot be overstated. The extra
controller itself may be able to cope with the message latencies
which will exist, but the extra traffic on the bus may cause
another unit to exhibit unsatisfactory behaviour because it no
longer receives information at an acceptable rate. Simulation is
clearly the quickest and most cost-effective way of assessing the
effects of such actions. In some cases simulation is the only way
of investigating what the outcome of a particular scenario is likely
to be; for example when assessing what will happen when a
particular failure occurs. Thus there is a need for a simulator
which is extendable and not tied to a single environment.

Message priorities
VHDL

With a dedicated wiring system such as an automotive wiring
harness, information is sent from its source directly to its
destination. The time it takes for the information to reach its
destination is known and is not subject to great variations.
Replacing such a system with a network and communication
protocol results in there no longer being any guarantees as to how
long it will take for data to reach its intended recipient. The
various units attempting to transmit and receive messages along
the same physical medium must co-operate with each other as to
who has the authority to transmit the next message. This
arbitration is achieved by assigning priorities to messages. An
identifier attached to a message indicates its source and
destination. It also assigns it a priority. The communication
protocols ensure that if more than one message requires to pass
along the bus at the same time, the one with the highest priority
will win control of the bus. The difficulty comes in selecting
which messages should be assigned the highest priority.

A databus network is essentially discrete in nature, making
VHDL an ideal candidate to use as the modelling language. The
non-proprietary nature of VHDL, and its existence as an
international standard also add to its suitability for developing a
long-term tool. An additional attraction is the existence of an
analogue extensions working group. Many of the systems which
will interface to a vehicle network via digital controllers are
continuous systems. Whilst digital approximations to these
systems can be modelled, this is not ideal, and the inclusion of
analogue modelling capabilities in the future will allow more
detailed modelling of the effects of a network on the subsystems.
The modular nature of VHDL also allows great flexibility of
modelling, ensuring that any future extensions to the simulator
can be made with a minimum of effort.

Simulator
It is quite clear that the command to turn on the sidelights

does not need to be transmitted as urgently as a message to apply
the brakes. There are many other situations which are far from
straightforward. For example, is the information which is sent to
or from the braking system always more important than that sent
by the engine? How long is it reasonable to delay the message to
turn on the lights? Or the radio? A simulation capability is clearly
required in order to address such issues, and to determine which
protocol is most suitable.

An automotive databus simulator is a design tool to aid system
understanding and development. It allows the implications on
performance of particular architectures to be assessed.
Additionally it allows the effects of using different protocols to be
addressed.

One of the great strengths of VHDL is the ability to model
components at different levels of abstraction, and to mix these
within a simulation. Component interactions can be studied in
detail, and once understood simplified models of this behaviour
can be developed, allowing simulation effort to be concentrated in
other areas. In the case of automotive databusses, the simulation
of each bit in the protocol can be performed, or a simplified
model of the protocol behaviour which refers to messages by their
type can be used. For example, a behavioural protocol model
would refer to a 'data message' whereas a bit-level model would
use a bit-pattern.

History

A few years ago, Lucas developed a databus simulator for use
in the development of vehicle databus protocols[4]. However, the
environment in which this simulator was written is no longer
maintained and the simulator itself has ceased to fulfil our needs.
Whilst the protocols themselves are now well-understood, the
issues of message delays and system interactions still remain to be
tackled. Understanding these issues is vital to the successful

The ability to mix the levels of simulation will become
increasingly important as the proposed systems grow in both size



and complexity. There will undoubtedly be times when there is
apparently some 'odd' behaviour which will require close scrutiny.
The reasons for such unexpected behaviour may only become
apparent from the study of the low-level interactions which are
taking place.

physical layer are specified according to the ISO 8802.2/3 Local
Area Network Standards. All other layers of the OSI model do
not have counterparts within the definition of the CAN protocol
but form part of the user's level.

At the same time, the ability to incorporate more generalised
descriptions into a simulation lead to the ultimate possibility of
complete vehicle simulation. The arrival of analogue extensions
to the language will bring this a step closer.

Modelling a databus network Figure 2. The OSI l ayers of the CAN protocol

The data link layer is formed of 2 parts- the logical link
control (LLC) and the medium access control (MAC). The LLC
layer is concerned with message acceptance filtering, overload
notification and recovery management. Working under this, the
MAC layer is concerned with message frame coding (bit-stuffing
and de-stuffing), error detection, error signalling,
acknowledgement, data encapsulation and decapsulation. Finally
the physical layer is concerned with bit representations, timing
and synchronisation.

A databus network is made up of a databus and various nodes.
Each node has a protocol specific 'unit' which interfaces to
controllers and sensors. These units are duplicated at each node in
the network, whilst the controllers and sensors with which they
interact are not necessarily the same, or even similar to each
other.

Databus protocols are generally built in layers, as defined in
ISO's Reference Model for Open Systems Interconnection
(OSI)[5]. Such protocols can be modelled in the same
hierarchical layers in VHDL, allowing future modifications to the
specification of any layer to be incorporated quickly and easily.

The hierarchical nature of VHDL has allowed the protocol to
be modelled in these layers. Thus a MAC layer entity instantiates
a physical layer entity, and an LLC layer entity instantiates a
MAC layer entity. A model of an ECU therefore requires an
instantiation of the LLC layer- the top of the data link layer- along
with suitable buffers for storing actuator and sensor data. The
modelling of the physical layer makes use of enumerated types for
data transfer to the MAC layer- 'recessive', 'dominant' and 'fault'
bits- with appropriate resolution functions. Once the data has
reached the MAC layer, record types are used for inter-layer
communications. For example, communication between the LLC
and MAC layers involves the transfer of signals defined as
'llc_mac_frame' and 'mac_llc_frame' types. The 'llc_mac_frame'
type is for communication from the LLC layer to the MAC layer,
and is a record with the fields 'command_field', 'identifier',
'data_length', 'data_field', and 'time_stamp'.

In a practical system, an implementation of the protocol will
supply additional features, e.g. sensor and actuator interfaces
together with appropriate input and output buffers. Accordingly
an 'ECU' (electronic control unit) model has been developed for
network modelling. This provides a protocol model, simple
buffering and an interface to sensors and actuators. The ECU
model can be reproduced any number of times for a single
simulation, each instance being customised for its particular
situation by the use of generics.

Sensors provide the data for a bus, and actuators are the
ultimate recipients of the data. Models for these components, as
with the ECU model, can be replicated and customised as
required by a simulation. The modularity of VHDL and the ease
with which different entities and architectures can be included or
removed from a simulation has allowed us to develop several
generalised models for sensors and actuators. These can be
customised with parameters such as identifier, name and
repetition rate.

Access types

An apparently little used feature of VHDL has proved very
useful in the modelling of particular entities. Access types provide
powerful programming language type operations. They are
similar to pointers in languages like C, and act as an address or
handle to a specific object.

The protocol itself does not add time indicators to its
messages. However, in order to collect useful data such time-
stamps have been added to the messages. This does not affect the
modelled transmission times since it is a parameter which is
associated with a message, and not an integral part of the
message itself. A non-intrusive monitor has also been developed
to monitor the traffic on the bus.

The functions NEW and DEALLOCATE are automatically
available to any object which is declared to be of an access type.
The first of these, NEW, allocates an area of memory of the size
of the object in bytes, and returns the access value.
DEALLOCATE is supplied with an access value and returns that
area of memory back to the system. This allows objects of a
dynamic nature to be modelled; for instance anything which
requires some form of list to be created and maintained.

Layered protocol model

Automotive databus protocols are specified in layers, as
defined by the ISO 7-layer model. The data link layer and the Access types have been employed in the modelling of a FIFO



(first-in, first-out) buffer which is assigned to each of the network
nodes. This is a system level model of an infinite-size buffer. This
allows all information which is generated for the network to be
monitored. The build-up of messages can be watched, and aid the
choice of buffer size for an implementation. Additionally it is
possible to see if there are some messages which never get
launched onto the bus.

field on progressing through the code are indicated in figure 3..
Once this has been completed, the access value held in variable
fifo_new can be updated to indicate the location of the next
fifo_store (i.e. the second fifo_store to be created in this sequence).
This is done on line 5. Thus each time the code is executed, a new
empty fifo_store is created, and the access values held by the
existing fifo_store objects are updated to indicate the previous and
the next fifo_store objects in the chain. This creates a linked list.
Manipulation of a second variable, fifo_old, allows the objects in
the list to be accessed in the order in which they were created, and
subsequently return the allotted memory to the system.

An example of the use of access types is given below, for
entity FIFO, which uses linked lists.

ARCHITECTURE a1 OF fifo IS --

TYPE fifo_store; --Declarations for type fifo_store

TYPE fifo_ptr IS ACCESS fifo_store; --as a record and fifo_ptr as an LINE 1
completed:TYPE fifo_store IS --access type for fifo_store.

'fifo_new' a fifo_store accessible as:-
RECORD --That is, fifo_ptr is an address, or handle, for a

access value → value :empty fifo_new.value
value :frame; --fifo_store. Notice also that the incomplete type' prev_ptr :NULL fifo_new.prev_ptr
prev_ptr : fifo_ptr; --'feature of the language is employed. This allows next_ptr :NULL fifo_new.next_ptr
next_ptr : fifo_ptr; --the type fifo_store to be used in the definition of LINES 2 AND

3 completed:END RECORD; --fifo_ptr before it has been defined. Incomplete
'fifo_new' a fifo_store--types are needed whenever self-referencing

access value → value :data_in
BEGIN --structures, such as linked lists, are to be used.

prev_ptr :NULL
PROCESS next_ptr :access a second fifo_store
VARIABLE fifo_new: fifo_ptr := value →     value :empty

NEW fifo_store'(empty_frame, NULL, NULL) --LINE 1 prev_ptr :NULL
VARIABLE fifo_old : fifo_ptr := fifo_new; LINE 4 next_ptr :NULL

completed:BEGIN
'fifo_new' a fifo_store:

**access value → value :data_inIF data_in'EVENT THEN
prev_ptr :NULLfifo_new.value := data_in; -- LINE 2
next_ptr :access a second fifo_store

fifo_new.next_ptr :=
value → value :empty     

NEW fifo_store'(empty_frame, NULL, NULL); -- LINE 3 prev_ptr :access value →**
fifo_new.next_ptr.prev_ptr := fifo_new; -- LINE 4 next_ptr :NULL          
fifo_new := fifo_new.next_ptr -- LINE 5

Figure 4. A ccess valuesEND IF;

Simulation map
:

END a1;

Figure 3. E xample of the use of access types
A graphical user interface is being developed for our

simulator. This will allow the user to select components from a
menu and place them on the display screen. Components will be
'wired' together graphically (see figure 5.), and any necessary
values prompted for. Defaults will be available for use if the user
fails to supply a value. The menus will allow the user to select the
protocol to be used in the simulation. At the time of writing,
(January 1994), only the CAN protocol has been modelled, but
this will be extended to include CAN2, J1850, and any others
which are required. Values which can be set by the user, for
example the identifiers of sensors and actuators, will be available
via a menu. Once the user has completed the simulation map and
parameter setting, this will be indicated by selection of the
appropriate menu items and the simulation can be prepared for
execution.

In figure 3., line 1 declares the variable fifo_new to be of the
type 'fifo_ptr', i.e. it is an access type. It is initialised to allocate a
memory location for a fifo_store which is empty. The variable
fifo_old is initialised to contain to the same value as fifo_new, that
is, it points to the same fifo_store object.

On line 2 the value of the access types is updated. When an
event occurs on data_in, the 'value' field of fifo_new is updated to
contain the value of 'data_in'. Line 3 assigns the 'next_ptr' field to
contain the access value for a new second fifo_store, which is
empty. The second fifo_store created now requires it's 'prev_ptr'
field to be updated to contain the access value for the fifo_store
which was originally created. The 'prev_ptr' field of the second
fifo_store can be accessed via 'fifo_new.next_ptr.prev_ptr'. Line 4
assigns this field the access value of the original fifo_store, which
is held in the variable fifo_new. The objects addressed by each



Preparing for simulation   END COMPONENT ;

  COMPONENT actuator
The preparation for a simulation involves the generation of a

configuration file and a test harness. The configuration file
contains the detail about which entities have been selected for use
in the simulation, e.g. which protocol chips are to be simulated.
The test harness contains the information about specific values
which are to be applied in the simulation, e.g. the process time for
a chip. Additionally the test-harness will contain the information
detailing the interconnection of the components for the particular
simulation. These files will be automatically generated from the
graphical map which is built up by the user, and from the
property selections made for the components.

GENERIC ( actuator_id :Identifier_type ;
repeat_period :TIME ) ;

PORT ( actuator_in : actuator_frame ;
: ) ;

  END COMPONENT ;

  COMPONENT logger
GENERIC ( sensor_id : identifier_type ) ;
PORT ( latency_data : latency_frame ) ;

  END COMPONENT ;

  COMPONENT bus_monitor
GENERIC ( bit_period : TIME ;

sample_period : TIME ) ;
PORT ( can_h : INOUT can_logic ;

can_l : INOUT can_logic ) ;
  END COMPONENT ;

  FOR ALL : logger      USE
    ENTITY work.logger(a1);Figure 5. A simple 'map' of databus int erconnections :

Test harness
  FOR ALL : actuator USE
    ENTITY work.actuator(a1);
---------------------------------------------------------------------------------------------------------------------------

BEGIN
The overall simulation is described by a 'test harness', which
typically looks as follows:

  ecu1     : ecu
GENERIC MAP (bit_rate , ecu1_sensor_no , ecu1_actuator_no )
PORT    MAP ( sensor_array1,actuator_comm_array1,

LIBRARY .. can_h,can_l,actuator_array1,rx_latency1 ) ;
:   sensor1_1 : sensor

ENTITY simulation IS GENERIC MAP ( 500 , 1 , 1100 us , 1.0 )
END simulation; PORT    MAP ( sensor_array1(1) ) ;
--------------------------------------------------------------------------------------------------------------------------- :
ARCHITECTURE behav OF simulation IS   logger1_1 : logger
  CONSTANT bit_rate : TIME    := 1000 ns ; GENERIC MAP ( 500 )
  CONSTANT monitor_sample_period : TIME    := 100 us ; PORT    MAP ( rx_latency1(1) ) ;
  CONSTANT ecu1_sensor_no : INTEGER := 1 ; --no. of   ecu2     : ecu

--sensors on ecu1 :
  CONSTANT ecu1_actuator_no : INTEGER := 1 ; --no. of   actuator2_1 : actuator

: --actuators on ecu1 GENERIC MAP ( 500 , 100 sec )
 -------------------------------------------------------------------------------------------------------------------------- PORT    MAP ( actuator_array2(1),actuator_comm_array2(1) ) ;
  SIGNAL can_h : can_logic ; ---------------------------------------------------------------------------------------------------------------------------
  SIGNAL can_l : can_logic ;   monitor1  : bus_monitor
  SIGNAL sensor_array1 : sensor_array_type(ecu1_sensor_no GENERIC MAP ( bit_rate,monitor_sample_period )

DOWNTO 1); PORT    MAP ( can_h,can_l ) ;
  SIGNAL actuator_array1 : actuator_array_type(ecu1_actuator_no ---------------------------------------------------------------------------------------------------------------------------

END behav ;DOWNTO 1);
  SIGNAL rx_latency1 : latency_array_type(ecu1_sensor_no

: DOWNTO 1); The library used is the one which is associated with the
protocol selected by the user. Each library contains a 'definitions'
package which incorporates definitions specific to that protocol.
The name assigned to the simulation by the user is taken as the
architecture name.

  :

  COMPONENT ecu
GENERIC (bit_period : TIME ;

num_of_sensors : Positive ;
num_of_actuators : Positive ) ;

PORT ( sensor_array : sensor_array_type ;
The connections between instances on the simulation map are

represented by signals of the same name in the architecture. The
connections, and hence the signals, will be assigned default
names when they are created and will have a type appropriate to
the port types which they connect. The user can specify more
meaningful names if required. Any unconnected ports are defined
as 'open'.

:  ) ;
  END COMPONENT ;

  COMPONENT sensor
GENERIC ( sensor_id : Identifier_type ;

data_length : data_length_code ;
sample_period :TIME ;
freq : REAL ); -- in Hertz

PORT ( sensor_out : OUT sensor_frame   ) ;



Logging simulation results command line is also generated automatically from the menu
system, so that the user of the simulator selects a menu item and
the simulation begins automatically.The primary reasons for simulating a databus are to discover

the message latencies; i.e. how long it takes to get from source to
destination and how this varies with bus loading. An entity
known as a 'logger' has been developed solely to maintain an
ASCII log file of latency data. There is a logger for each sensor
requiring latency data to be recorded. The latency of a message is
calculated by the ECU from the difference between the time
stamps on the original data passing to the application layer, and
the subsequently returned data confirmation. An array of latency
data, with an entry for each sensor on the ECU, is maintained.
Each logger monitors one array entry corresponding to a
particular sensor identifier, and maintains a corresponding text
file of latency related data. This information may be
post-processed in whatever way the user chooses.

At the time of writing, the underlying simulator has been
written. It has successfully reproduced the results of a large
simulation performed on our previous databus simulator (which
was verified against real data), with a simulation speed
improvement in the order of 100 times. The graphical interface,
necessary to allow non-VHDL trained personnel to use the tool,
has not yet been completed.

Summary

VHDL is an ideal language for modelling databus networks.
Whilst the language is primarily intended for hardware
descriptions, the inclusion of 'software-like' features in the
language has greatly aided the development of a databus
simulator. The ability to model at different levels of abstraction,
and to easily mix these levels through the use of configurations,
has allowed the creation of a very useful and flexible tool. It
allows performance prediction of different system architectures to
be carried out quickly. Potential problem areas can be highlighted
at an early stage in a project and detailed investigations into these
areas can be carried out using the simulator.

A 'bus-monitor'- entity has also been developed. This acts as a
window onto the modelled data highway, sampling the activity
on the bus at regular intervals. It maintains a count of the total
number of samples which have been made during a simulation,
and also a count of the number of times the bus was found to be
busy. The bus is considered to be 'busy' if the MAC layer is
receiving a frame or an interframe space. A calculation of bus
loading averaged over time is made by dividing the number of
busy samples by the total number of samples taken. Only one bus-
monitor is required for a simulation.

Additionally, since VHDL is a hardware description
language, descriptions for devices which connect to a databus can
also be generated, and it is hoped that in the future manufacturers
will supply models of their devices in VHDL. Meanwhile it is
possible to create our own library of device descriptions.

Plotting the maximum latency of the lowest priority node in a
typical network against the bus loading might yield a result
similar to that shown in figure 6.

B us  L oading (%)

0

0.5

1

1.5

2
The simulator is flexible, not tied to a specific vendor, and

allows us scope with future developments. These will include the
addition of more protocols, refinement of sensor and actuator
models, and the enhancement of the graphical user interface. The
addition of data analysis facilities is likely to be achieved through
the development of interfaces to existing analysis tools.
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