
A Transformation for Integrating VHDL Behavioral Speci�cation

with Synthesis and Software Generation

Frank Vahidy, Sanjiv Narayany and Daniel D. Gajski

Department of Information and Computer Science

University of California, Irvine, CA, 92717

Abstract
VHDL signals and wait statements provide great expres-

sive power for behavioral speci�cation. However, due to

their simulation semantics, most high-level synthesis tools

severely restrict their use, eliminating much of their power.

Thus, there exists a need for a tool to bridge the gap be-

tween an arbitrary VHDL behavioral speci�cation and ex-

isting synthesis tools. In this paper, we introduce a set of

transformations to convert a VHDL description with sig-

nals and wait statements to equivalent constructs that are

easily handled by high-level synthesis. The proposed trans-

formations greatly enlarge the synthesizable VHDL subset,

thus increasing the usefulness and practicality of the lan-

guage as an input to high-level synthesis tools. These same

transformations can also serve as a basis for converting a

VHDL process to a form suitable for generation of soft-

ware.

1 Introduction
VHDL is rapidly gaining acceptance as a behavioral

speci�cation language serving as input to high-level syn-
thesis tools [1, 2, 3, 4, 5, 6, 7] as well as to hard-
ware/software codesign tools [8, 9]. However, several of
its constructs, while possessing great expressive power, are
not easily handled by existing synthesis tools. Two such
constructs are the wait statement and the signal, both hav-
ing time-based semantics.

The wait statement provides the capability to suspend
the execution of a process until some condition is met. This
condition can be a fairly complex combination of events,
boolean expressions, and time. Hence a single wait state-
ment can be used in place of tens of lines of traditional
statements.

The signal not only provides the capability of maintain-
ing data values de�ned over time, but also provides a very
elegant means for representing �ne-grained parallelism in
a VHDL description (where processes provide for coarse-
grained parallelism).

Even though wait statements and signals are so pow-
erful, high-level synthesis tools and software translators
have yet to allow their general use. The time-based se-
mantics of these constructs are quite di�erent from those

yF. Vahid is presentlywith the Department of Computer Sci-

ence, University of California, Riverside, CA 92521. S. Narayan

is presently with Viewlogic Systems Inc., 293 Boston Post Road

West, Marlboro, MA 01752.

for traditional sequential programming constructs, such as
loops, variable assignments, and branches for which there
are simple techniques to generate a control/dataow graph
[2, 10, 11, 12, 13]. As a result, tools accept only extremely
limited forms of waits and signals. For example, some tools
restrict each process to a single read or write of a signal.
Other tools treat signals as variables, which changes the
functionality. Most do not di�erentiate properly between
simple, bus, and register signals. Wait statements usu-
ally can not appear in their general form. Some tools limit
their use to detecting clock edges and resets. Others ignore
one or more of the statement's various clauses (on, until,
and for). Even then, the behavior of the wait statement
is often interpreted incorrectly. For example, if signal S
has the value \1", and the statement \wait until S=1"
is encountered, S must �rst become \0" and then return
to \1" before execution can proceed. Many tools instead
implement the wait as sensitive to the level, not the edge,
of the signal.

W / S

RT−level
structural 
netlist

Assembly
code  for
existing 
processor

   VHDL 
Process   VHDL 

Process

  CDFG
creation

High−level
synthesis

  Software
compilation

Transformations   variables,
    signals,
general waits

  variables,
simple waits

Figure 1: W/S transformation integration.

To bridge this gap between the desired use of the con-
structs with the current state of high-level synthesis tools,
we have developed a set of wait statement and signal
(W/S) transformations. Very general uses of waits and
signals are automatically transformed into functionally-

equivalent traditional sequential programming language
constructs such as variables, loops, and branches. The
latter are easily handled by existing tools. Thus, W/S
transformations provide a major step forward in enlarging
the synthesizable VHDL subset. In addition, traditional
program constructs are also easily handled by software
compilers, so these transformations contribute towards au-
tomating approaches in which it is desirable to generate ei-
ther hardware or software from the same VHDL behavior.
Figure 1 shows where the W/S transformations �t in with
synthesis and compilation. Such transformation tools may
become a necessary prerequisite when a single functional
speci�cation must serve as input to a variety of high-level
synthesis and software generation tools. Similar transfor-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



mation tools for performing other types of transformations
before high-level synthesis are also beginning to emerge [6].

This paper is organized as follows. In Section 2 we
summarize the relevant semantics of the signal and wait
constructs, and describe the constructs to which signals
and waits will be mapped. In Section 3, we introduce
the W/S transformations. Since it would appear that the
transformed VHDL would require excessive hardware due
to the increase in the number of variables and statements,
we include Section 4 to describe why this is not so; that in
fact standard CDFG optimizations already found in most
synthesis tools will yield e�cient and practical hardware.
Section 5 highlights results of applying the transformations
to several examples.

2 VHDL signals and waits

2.1 Signals

In [14] templates are introduced for signal hardware at
a process' interface and between processes. Although our
focus in this paper is internal to the process, we briey dis-
cuss those templates since we assume the high-level syn-
thesis tool uses them. Figure 2 shows the template for
the register signal. A bus signal di�ers in that it uses no
level-sensitive latch, and a simple signal does not require
tri-state drivers. Note that a process that drives a signal
may require its own latch to store the driving value. For
example, an assignment S <= 50 causes a process to drive
S with the value 50 until S is assigned a di�erent value in
the future. We assume that the high-level synthesis tool
uses the shown template as the interface for each process.

latch

enable

signal  S : resfun sometype register;

Resolution function

latch

S_on S_on

S
_driver

S
_driver

S_resolved
Process P Process  Q

Level−sensitive
latch

Figure 2: Hardware templates for three signal kinds

A signal assignment, S <= value, is quite di�erent from
the variable assignment, V := value. While the latter
updates the value of V , the former merely schedules a new
value for S. S is not actually updated until the next wait
statement is encountered, so reads of S before that wait
statement read the old rather than the new value. For
example, the following code swaps A and B:

A <= B;

B <= A;

wait for 10 ns;

2.2 Wait Statements

The syntax of the VHDL wait statement is:

wait statement ::= wait [sensitivity clause]
[condition clause]

[timeout clause] ;
sensitivity clause ::= on signal name, fsignal nameg
condition clause ::= until condition

timeout clause ::= for time expression

The sensitivity list speci�es the signals to which the
wait statement is sensitive. When an event occurs on a
signal in the sensitivity list, the condition clause speci�es
a condition that must be met for the process to resume ex-
ecution. The timeout clause speci�es the maximum time
that the process will be suspended at the current wait
statement.

The semantics of the wait statement are explained with
the help of the owgraph of Figure 3(a). The function
current time provides the current simulation time, while
advance time advances simulation time to the point when
the next event occurs. These two functions are used to
determine when the timeout interval has expired.

A process suspended at a wait statement can resume
in two ways: either an event occurs on a signal in the
sensitivity list and the condition in the condition clause
evaluates to true, or the timeout interval in the timeout
clause expires.

wait    on
           until
           for

sensitivity list
condition
time_expression ;

timeout() :
     return (  (current_time − start_time) >= maxtime  ) 

signal_change() :
   <returns true if any signal in the 
     has a different value than the previous time>

sensitivity list

true false

start

start_time = current_time ;
max_time =  evaluate time_expression ;

advance_time

timeout() ?

signal_change() ?

condition ?

true

true false

false

done

A

B

C

D

(a) (b)

sensitivity clause

condition clause

timeout clause

Wait  Statement
     Clause Default   Value

all the signals in the
condition  clause

TRUE

infinity

Figure 3: Wait statement owgraph.

VHDL de�nes default values for all the clauses in the
wait statement, shown in Figure 3(b). Thus, if some of
the clauses are omitted in the wait statement, the result-
ing owgraph can be simpli�ed greatly. For example, in
the absence of a condition clause, the default value is true
and we can thus eliminate the branch-node D from the
owgraph of Figure 3. Similarly, in the absence of a time-
out clause, the branch node labeled B can be eliminated
along with the statement block A.

2.3 Problem Statement

Given a VHDL process possessing the signal and wait
constructs described above, we wish to obtain a VHDL
process which: 1. Has no signals; instead the process



now accesses variables representing the original signal, and
2. Has only trivial wait statements that detect a clock edge.

Such statements are easily handled by existing synthesis
tools. The output VHDL should be such that e�cient
hardware can be synthesized; in other words, the hardware
created from the output VHDL should be what would be
expected from the input VHDL, and not more complex.

We assume that the subsequent high-level synthesis tool
uses the template shown in Figure 2. S driver represents
the value of the signal S driven by the process. Since
several processes could be driving the signal, S resolved
represents its resolved value. This is also the value that is
used in all reads of S. A tristate bu�er may be required
in case the driver is turned o� in the process by a null
assignment. S on represents the control signal for this
tristate bu�er. S driver and S resolved are of the same
type as the signal S while S on is of type boolean. We
assume that the subsequent synthesis tool recognizes these
three variables. We do not currently permit the use of after
clauses in signal assignments.

3 W/S transformations

Figure 4 shows the W/S transformations applied to the
VHDL signal assignment and wait statements. We now
discuss these transformations in detail.

(a)  Signal  Assignment  Statement

s <= expr; s <= null;

s_driver_next := expr;
s_on_next := true;* s_on_next := false;

s_update := true;**

if s_update then**
   s_driver := s_driver_next;
   s_on      := s_on_next;*
   s_update := false;**
end if;**

...

* statement required only if  s <= null  exists
** statement required only if signal is assigned to on some
    paths to a wait statement, but not on other paths (very rare)

(b)  Wait Statement  (wait_template_1  flowgraph)

on 
until
for

a,b,..
cond
texpr

wait

a_old := a_resolved;
b_old := b_resolved;
...

wait until clock_rising;

        count_out >=
    texpr / clk_period

a_resol /= a_old or 
b_resol /= b_old or ...

cond

count_start

true false

true false

true false
a_old := a_resolved;
b_old := b_resolved;
...

X

Y
...

<driver update block;
  see above>

<appears in driver 
 update block of the 
 following wait 
 statements>

a_old := a_resolved;
b_old := b_resolved;
...
<driver updates>

waitloop : loop
   wait until clock_rising;
   if (timer_out >=
      ceiling(texpr/clk_period))  then
      exit waitloop;
   end if;
   if (a_resolved /= a_old or 
       b_resolved /= b_old  ...) then
      if (cond) then
         exit waitloop;
      end if;
      a_old := a_resolved;
      b_old := b_resolved;
      ...
   end if;
end loop;
timer_start;

Figure 4: The Wait/Signal transformations.

3.1 Signal Assignment Statements

Figure 4(a) shows how signal assignment statements are
represented using variables only. In a signal assignment \S
<= expression ;", the driver for S is only updated with
the value of the expression at the next wait statement. We
need to store this next value of S in a new variable called
S driver next. Thus, all assignments to S are replaced by
\S driver next := expression ;".

In case the driver for signal S is turned o� in the pro-
cess, then each non-null assignment to S must turn on
the driver. This can be achieved by adding \S on next

:= true" after the assignment statement, where the vari-
able S on next represents the next value of S on; S on
will be updated when the next wait statement is reached.
A null assignment to S in the process should turn o� the
driver. This is achieved by replacing \S <= null ;" by
\S on next := false ;".

3.2 Wait Statements

We will �rst de�ne some of the terminology used in
this section. A statement block is de�ned as the set of
statements between any two successive wait statements.
The term preceding paths refers to all paths leading from
any preceding wait statement to the current one, while
following paths represents all paths from the current wait
statement to the next wait statement.

Before we present the transformations associated with
wait statements, we briey discuss how they are inter-
preted with a view to synthesize hardware. A wait state-
ment indicates that all targets of signal assignment state-
ments in the statement block preceding it have been up-
dated with their new values. Thus, a wait statement im-
plies an explicit clock boundary for synthesis. However,
the synthesis tool is free to add more clock boundaries to
implement the computations in the statement block, as we
shall see later in Section 4.

In VHDL, all signals assigned a value in a statement
block are updated at the next wait, and these updated
values are available to statements following the wait state-
ment. Thus, all computations that are performed in the
statement block must have completed before the process
can resume execution due to the expiration of the timeout
interval. This implies that the process, when synthesized,
is suspended at the wait statement for an amount of time
equal to the di�erence between the timeout interval and
the time required to perform the computations. For ex-
ample, if the statement block requires 200 ns to compute
the new values for all the signals, the next wait statement
\wait for 300 ns" will e�ectively wait for 100 ns after the
computations have been completed. On the other hand, a
sensitivity list or a condition clause will be evaluated only
after all the computations in the preceding statement block
have been completed.

The owchart representing the wait statement imple-
mented using only \wait until clock rising" is shown
in Figure 4(b). The equivalent VHDL code generated for
this template is also shown in the �gure. This code is used
by the W/S transformations as a template for replacing
wait statements. The clock boundary can be speci�ed in
any manner acceptable to the synthesis tool.



To be able to monitor a change on the signals in the sen-
sitivity list we need to store the current value (S resolved)
of each sensitivity list signal S in the variable S old. This is
shown for signals in box X in the owchart of Figure 4(b).
The value S old can then be compared with S resolved
after each rising edge of the clock to detect a change on S.

If the signal S was assigned a value in the preceding
statement block, the driver value S driver needs to be up-
dated, as shown in box Y of in the owchart of Figure 4(b).
Since there could be several preceding paths leading up to
the wait statement under consideration, it might be the
case that the signal S is updated on only some of those
paths. Thus, an additional boolean variable is set to true
whenever the signal is assigned to in any of the paths.
At the wait statement, if S update is true, we can update
S driver with the variable S driver next (computed at
the previous signal assignment).

VARIABLE TYPE DESCRIPTION

S_resolved

S_update

S_on

S_old

S_driver_next

boolean

boolean

same as S

same as S

same as S

S_driver same as S Value of S  driven by process.

Old  value  of the signal, which is used to
detect a change in the signal. 

S_on_next boolean

WHEN   CREATED

If  S is  a  resolved  signal.

If  S occurs  in the sensitivity list
of a wait statement.

If  S  is assigned a value on some
paths (but not all) between  two 
wait statements. 

If  signal is assigned  a NULL value

If  signal is assigned  a NULL value

If  S  is assigned a value AND 
occurs in an expression in same 
statement block between two waits. 

Always created if process writes S.

Signal value resolved from multiple 
process drivers. This is the value used 
in all expressions  involving S.

Value with which S_driver will be updated
at the next wait statement.  Appears as 
the target  for all  assignments  to S.     

Indicates whether  S is to be updated at
next  wait statement. Set to TRUE when
S is written. Set to FALSE at wait.

Control Input of driver’s tristate buffer.

Value with which the S_on will be 
updated at the next wait  statement.

Figure 5: Variables created by the Wait/Signal

Transformations for a signal S written to in a process

To implement timeout clauses, we can use a counter
which is incremented on every clock. In pure VHDL behav-
ior, the statements between two wait statements take zero
time to execute. In synthesized hardware, these statements
may require one or more clock cycles to execute. To main-
tain the same timing with respect to any external interface,
the counter is started when we leave a wait statement so
that it can be used by the next wait statement to deter-
mine the time elapsed since the previous wait. A timeout is
detected whenever the counter value, count out, is greater
than or equal to the timeout expression expressed in terms
of clock cycles (i.e. dtimeout expression=clock periode).
As explained earlier, this also ensures that the time spent
at the wait statement includes the time required to perform
the computations in the preceding statement block. The
function count start initializes the counter. We assume
that the functions count start and count out are recog-
nized by the subsequent synthesis tool.

3.3 Common Simpli�cations

Figure 5 summarizes all the seven variables that may be
required to implement a signal S in the most general case.
However, we will rarely need all of these variables. In this
section we present some simpli�cations that are part of the
W/S transformations that reduce the number of variables
used for any given signal.

cond

wait until clock_rising;

cond

timeout

wait until clock_rising;

cond

timeout

count_start

b1_driver := b1_driver_next;
b2_driver := b2_driver_next;
...

true false

true false

true false

true false

false true

Y

Figure 6: Template for wait statement where signals

in sensitivity clause and condition clause are identical

(wait template 2)

First, for a signal S, we can eliminate the variable
S update if it is updated on all paths between every two
successive wait statements, which is usually the case. Sec-
ond, if S is an unresolved signal written only by the process
under consideration, S resolved always equals S driver.
Thus all occurrences of S resolved in the transformed
VHDL can be replaced by S driver. Third, if the driver for
S is never turned o� using a null assignment, the boolean
variables S on and S on next are not needed.

Another simpli�cation can be invoked with wait state-
ments whenever all the signals in the condition clause and
sensitivity list are identical. This is very common in VHDL
descriptions, especially since this is the default when no
sensitivity list is explicitly speci�ed. In such cases, check-
ing for a change on the signals and then evaluating the con-
dition is redundant, because a change in condition value
implies a signal in the sensitivity list has changed. If the
condition is false before the wait statement, we only need
to wait until it becomes true, which also implies that some
sensitivity list signal must have changed. If the condition
was true before the wait statement, we must �rst wait until
it becomes becomes false, then wait until it becomes true.
The template shown in Figure 6 can be applied to avoid
using the S old variables.

Even after the above-mentioned simpli�cations are per-
formed, the transformations performed by the high-level
synthesis tool would further optimize these variables and
very few of them will actually be implemented as stor-
age. The next section discusses these optimizations.
The Wait/Signal transformations are summarized in Al-
gorithm 3.1.



Algorithm 3.1 : Wait/Signal transformation

for each signal S loop
Replace reads of S by reads of S resolved

if S is assigned null in the process then
Replace each assignment S <= expr; by:

S driver next := expr;

S on next := true;

Replace each assignment S <= null; by
S on next := false;

else
Replace each assignment S <= expr; by

S driver next := expr;

end if
end for

for each wait statement w loop
if w's sensitivity-list and condition-clause

signals are the same then
Replace w by wait-template-2,

leaving section Y empty (Figure 6)
else

Replace w by wait-template-1,
leaving section Y empty (Figure 4)

end if
for each signal S in preceding paths of w loop

if all preceding paths assign to S then
Add to section Y of template:

S driver := S driver next ;

if S is assigned null in the process then
Add to section Y of template:

S on := S on next;

end if
else

Add after writes to S in a preceding path:
S update := true;

Add to section Y of template:
if S update then

S driver := S driver next;

S update := false;

end if;

if S is assigned null in the process then
Add to section Y of template:

S on := S on next;

end if
end if

end for
end for

for each signal S loop
if S is assigned to in the process

AND S is unresolved then
Replace S resolved reads by S driver reads

end if
end for

4 E�cient-hardware synthesis
The many variables and complex templates introduced

by W/S transformations might appear to lead to a complex
hardware implementation. In general, this is not the case
since the dataow representation in a CDFG eliminates
many intermediate variables, and CDFG transformations
eliminate many branches and statements. It is not our pur-
pose here to discuss CDFG representations and transfor-
mations in detail; instead we refer the reader to [2, 10, 15].
Here we shall illustrate that e�cient hardware is obtain-
able by applying some of the common transformations to
reduce registers, eliminate some paths, and eliminating the
need for an external timer.

A common misconception of synthesis from VHDL is
that variables correspond to registers. In fact, a variable
may be implemented as a register or as a wire. A reg-
ister is required only when the value of variable must be
maintained across control step boundaries; in other words,
the variable is updated in one control-step and read in
a subsequent control-step. Since wait statements in the
description denote explicit control steps, and since the
sig driver next, sig on next, and sig update values need
not be maintained across those explicit control steps, then
these variables will rarely require a register. For exam-
ple, recall the swap example of Section 2. The variables
A driver next and B driver next created by W/S trans-
formations will be mapped to wires.

If a particular path of a branch can never be reached due
to the condition for that path always being false, then the
condition leading to that path, along with the path's op-
erations, can be deleted. While such code is rarely written
by the modeler, it occurs quite often after the W/S trans-
formations. For example, consider the simple code portion
shown in Figure 7(a). The code after transformations is
shown in owchart form in Figure 7(b). After CDFG cre-
ation, simple dataow analysis of the branch condition re-
sults in determination that the condition is always true, as
shown in Figure 7(c). Hence we can eliminate the branch
condition and the false path. After doing so, pc old is writ-
ten but not read, so it too can be eliminated. Although
these optimizations are performed on the CDFG, for il-
lustrative purposes we show the equivalent code in Fig-
ure 7(d). Note its simplicity. Also note that as discussed
above, no register will be needed for pc driver next.

pc <= pc + 1;
wait on pc;

pc_old := pc_driver;
pc_driver := pc_driver_next;

wait until clk_rising

pc_driver /= pc_old

pc_driver

+

1

pc_driverpc_old

=
branch
contition

state1

state2

branch_condition:
 (pc_driver_state1 + 1 /= pc_driver_state1)
−−> always true

pc_driver_next

pc_driver := pc_driver + 1;

wait until clk_rising

true false

(a)

(b) (c) (d)

pc_driver_next := pc_driver + 1;

w
ai

t t
em

pl
at

e

Figure 7: Eliminating false branches.

Finally, it is always possible for the synthesis tool to
eliminate the need for an external timer, because after
scheduling the CDFG, all the control-steps are known. A
counter variable can be created that is incremented on each



clock, and incorporated into the scheduled CDFG. Often
this variable itself will then be eliminated, especially af-
ter loop unrolling transformations. For example, consider
the code in Figure 8(a). Assume a clock period of 100 ns.
W/S transformations would use the timer portions of the
wait-template in Figure 4. Figure 8(b) illustrates a sim-
ple CDFG transformation in which a variable called count
is declared; all occurrences of count start are replaced by
count := 0, all clocks are followed by count := count+ 1,
and all occurrences of count out are replaced by count.
Complete independence from an external timer is thus
achieved. The design can be further improved by loop
unrolling, as shown in Figure 8(c). The variable count
becomes useless and is therefore eliminated.

wait ...
pc <= pc + 1;
wait for 150 ns;

pc_driver_next := pc_driver + 1;

pc_driver := pc_driver_next;

wait until clock_rising;
count :=  count + 1;

<wait template>
count := 0;

<ceiling(150/100) = 2>

count >= 2
true false

pc_driver := pc_driver + 1;

wait until clock_rising;

<wait template>

wait until clock_rising;

(a) (b) (c)

Figure 8: Eliminating the external timer.

5 Results

The W/S transformations have been integrated with
our VHDL parser and internal representation, all of which
make up roughly 15,000 lines of C code. The input to the
W/S transformations is any general VHDL process, and
the output is another VHDL process without any signal
assignments and containing only wait statements sensitive
to the clock.

Ethernet Network
   Coprocessor

1057 2527

1154 1577 1.8

2.2

657 1203 1.7

282 1.2407

No. of  lines 
 in  example 

  Time for W/S
 transformations

  No. of lines after
W/S transformationExample 

Answering Machine

Microwave Transmitter
          Controller

DRACO

Figure 9: Results of the W/S transformations.

Among the examples tested were a three-stage pipelined
processor, the Rockwell DRACO I/O backplane custom in-
tegrated circuit, a telephone answering machine, an Eth-
ernet network coprocessor, and a microwave transmitter
controller. The table in Figure 9 shows the number of
lines of VHDL process code before and after the trans-
formations, as well as the CPU time in seconds for the
transformations to run on a Sparc. In all cases, the sig-
nals and waits were successfully converted to sequential
program constructs easily handled by high-level synthesis
tools.

6 Conclusions
In this paper we have presented a transformation which

will enable integration of VHDL behavioral speci�cation
and synthesis tools. The W/S transformations increase
the expressive power of VHDL speci�cations that are syn-
thesizable by enlarging the synthesizable subset of VHDL.
This reduces the restrictions which are placed on designers
writing VHDL behavioral descriptions intended as input to
high-level synthesis tools. The W/S transformations are
easy to incorporate into existing synthesis methodologies.
In addition they can provide a path from VHDL to soft-
ware which can be mapped to a processor, thus enabling
the designer to generate hardware or software from the
same VHDL description.

References
[1] J. Lis and D. Gajski, \VHDL synthesis using struc-

tured modeling," in DAC, pp. 606{609, 1989.

[2] R. Camposano, L. Saunders, and R. Tabet, \VHDL
as input for high level synthesis," IEEE Design & Test
of Computers, pp. 43{49, March 1991.

[3] P. Eles, K. Kuchcinski, Z. Peng, and M.Minea, \Com-
piling vhdl into a high-level synthesis design represen-
tation," in EuroDAC, pp. 604{609, 1992.

[4] A. Stoll, J. Biesenack, and S. Rumler, \Flexible tim-
ing speci�cation in a vhdl synthesis subset," in Euro-
DAC, pp. 610{615, 1992.

[5] W. Ecker and S. Marz, \Subtype concept of vhdl for
synthesis constraints," in EuroDAC, pp. 720{725,
1992.

[6] N. Wehn, J. Biesenack, and P. Duzy, \Scheduling
of behavioral vhdl by retiming techniques," in Eu-
roDAC, 1994.

[7] R. Walker and R. Camposano, A Survey of High-
Level Synthesis Systems. Kluwer Academic Publish-
ers, 1991.

[8] D. Gajski, F. Vahid, and S. Narayan, \A system-
design methodology: Executable-speci�cation re�ne-
ment," in EDAC, 1994.

[9] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno,
H. Hsieh, and A. Sangiovanni-Vincentelli, \Synthe-
sis of mixed software-hardware implementations from
cfsm speci�cations," in International Workshop on
Hardware-Software Co-Design, 1993.

[10] G. DeMicheli and D. Ku, \HERCULES - a system for
high-level synthesis," in DAC, 1988.

[11] A. Orailoglu and D. Gajski, \Flow graph representa-
tion," in DAC, pp. 503{509, 1986.

[12] D. Thomas, E. Langese, R. Walker, J. Nestor, J. Ra-
jan, and R. Blackburn, Algorithmic and Register-
Transfer Level Synthesis: The System Architect's
Workbench. Kluwer Academic Publishers, 1990.

[13] D. Gajski, N. Dutt, C. Wu, and Y. Lin, High-Level
Synthesis: Introduction to Chip and System Design.
Boston, Massachusetts: Kluwer Academic Publishers,
1991.

[14] L. Ramachandran, F. Vahid, S. Narayan, and
D. Gajski, \Semantics and synthesis of signals in be-
havioral VHDL," in EuroDAC, 1992.

[15] R. Walker, Design Representation and Behavioral
Transformation for Algorithmic Level Integrated Cir-
cuit Design. PhD thesis, Carnegie Mellon Unversity.,
April 1988.


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




