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Abstract
Modern CAD systems allow the designers to come up

with powerful programmable datapaths in a very short time.
The time to develop compilers for this datapaths is much
longer. This paper presents a new approach to compiler
generation. We show how a VHDL description of a pro-
grammable datapath can be analyzed to extract several
informations for compiler generation. The analysis finds
computing and storage resources, classifies signals as con-
trol or data, and extracts all the possible micro operations
for this datapath.

1 Introduction
Synthesis of synchronous datapaths has been one of the

hot research topics for the last years. Several algorithms
for scheduling, allocation, module binding,high level trans-
formations, etc. have been presented and discussed in the
literature. Special synthesis scripts for dedicated target
architectures have been developed. All of those systems
transform a given algorithm down to silicon. The gener-
ated datapath and its associated controller are more or less
well suited for the execution of the given algorithm. While
high level synthesis systems are still under development,
the lower level or logic synthesis and optimization systems
gain more and more acceptance in industry. VHDL with
its different levels of abstraction is widely used in all stages
of a design from specification down to gate level netlists of
optimized random logic.

1.1 Rapid Prototyping
However, designing a special purpose datapath and con-

troller still needs lot of time and man power. To prevent long
and costly fabrication runs rapid prototypingsystems based
on field programmable gate arrays (FPGAs) became pop-
ular. But even those rapid prototyping systems or “ASIC
emulators” result in a fixed architecture which is suitable
for the given algorithm only. If the algorithm has to be
changed, one has to redesign the datapath and/or the con-
troller.
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1.2 ASPPs
The architecture can be made more versatile if the data-

path is programmable. This leads to ASPPs (Application
Specific Programmable Processors). Such datapaths may
consist of several ALUs, registers, I/O ports, barrel shifters,
or special purpose functional units. Other possible compo-
nents may be memory structures like FIFOs, ring buffers,
register files, or dual port RAMs. There even may be
controller components like stacks, stack pointers, program
counters, loop register/counters. All of those components
can be connected by busses or multiplexors. The control
signals of all the components (selection signals of multi-
plexors, enable signals of tristate drivers, function selection
signals of ALUs, load signals of registers, etc.) may be
concatenated to form one big control word. This leads to
a VLIW like structure which has the potential parallelism
and versatility to fulfill the requirements of computation
intensive tasks. Different algorithms can be executed on
such a structure by applying sequences of control words.
The generation of this microcode is a very strenuous task
and should be left to compilers.

1.3 Microcode Generation
The micro programmed controllers of the first micro

processors have been the reason for microcode generation
and microcode programming. The first microcode was
written and optimized by hand and resident in a microcode
ROM. With the advent of writable microprogram storage
devices and the possibilityfor user specific microcode there
was a need for microcode generation and compaction.

The atomic operations of a microprogram are called mi-
cro operations. By combining several micro operations
into micro instructions horizontal microcode is generated.
Several algorithms for microcode compaction have been
published. See e.g. [2] for local microcode compaction
algorithms. More sophisticated global compaction algo-
rithms are mostly based on Fishers Trace Scheduling [4].
The improvements concentrate on the reduction of com-
putation time and better trace selection (e.g. [9], [17],[18],
[6] and [13]). A good overview on global microcode com-
paction can be found in [16].

The most promising optimizations are on frequently ex-
ecuted loops. This may have been the main drawback of
Fishers trace scheduling. Fisher worked with DAGs (Di-
rected Acyclic Graphs) to represent the micro operations
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and their dependencies. Therefore he could not model
loops. He proposed to compact loops without their loop-
back edge and treat the resulting compacted part as one
node (loop representative) in a hierarchical DAG. Many
algorithms especially for loop optimization have been pro-
posed. In terms of hardware synthesis they are based on
loop unrolling. The software (or microcode) people talk of
software pipelining. See e.g. [17] (URCR – UnRoll, Com-
pact, Reroll), [19] and [12] (URPR – UnRoll, Pipeline,
Reroll), [3] (pipeline scheduling), [18] (GURPR – Global
URPR), [10] (based on URPR) and [20] (GURPR*). A
good overview is given by [7] and [8].

1.4 Retargetable Code Generation
The reasons mentioned above require compilers which

can be easily adapted to new target architectures. The first
step to achieve this goal has been the splitting of compil-
ers into a target independent frontend and target dependent
backend. The frontend generates code for a virtual ma-
chine, the backend interprets this code and generates code
for the target architecture. This interpretative code gener-
ation requires a new backend for each new target architec-
ture. The pattern matched code generation uses a graph
or tree structured machine description in the backend. The
code is generated by pattern matching on this machine de-
scription (e.g. in MIMOLA [11] [14] [15]). However there
is still a target independent backend which is inefficient for
different architectures (think of RISC, CISC, vector, su-
per scalar, VLIW architectures). Modern code generators
therefore generate code in several phases (like register al-
location, storage allocation, loop optimizations, instruction
selection, delayed branch optimization). Each part of the
compiler corresponding to the different phases is generated
by a code-generator-generator. The input is a machine de-
scription file which not only contains informations on the
possible instructions but also on storage layout, functional
units (pipelines, parallelism), etc. For an overview see [5].

2 Our Approach to Compiler Generation
We try to set up a system which generates a C-compiler

for a given VHDL description of a datapath. The output of
this compiler will be microcode for this datapath. This mi-
crocode will be interpreted by a dedicated controller which
will be generated too. This paper focuses on the first step
of the compiler generation. The basic information needed
for a compiler generator are the possible micro operations
which can be executed on the datapath. We also need to
know which control signals have to be applied to perform
a given operation. Last not least we are interested in the
necessary resources. This information will make a later
micro code compaction possible.

2.1 Modeling the Datapath
Our approach to generate a compiler starts with a given

VHDL description of a programmable datapath. As an
example consider fig. 1. There are three functional units
and three registers connected by several busses. The control
word shown on the right consists of six control bits for the
multiplexors (two bits each), three enable signals for the
registers, and one control bit for the ALU.

The components of this datapath are modeled in behav-
ioral VHDL. The “ALU” (which can only add or subtract)
for example can be described like in fig. 2. Note that the
level of abstraction is very well suited for modern design

architecture Behave of ALU is
begin

process (a, b, mode)
begin

case mode is
when ’1’ => o <= a + b;
when ’0’ => o <= a - b;

end case;
end process;

end;

Figure 2: Behavioural VHDL Description – ALU

systems. On one hand it is simple enough to be handled
by synthesis systems like e.g. Synopsys Design Compiler.
On the other hand our tool is able to extract possible micro
operations (the addition and the subtraction) and control
signals (signal ‘mode’) from it. Registers are inferred by
either wait statements or clock sensitive processes. In fig. 3
for example a positive edge triggered register will be in-
ferred.

architecture Behave of REG is
begin

process (clk)
begin

if (clk = ’1’) then
o <= i;

end if;
end process;

end;

Figure 3: Behavioral VHDL Description – Register

2.2 Extracting the CDFG of the Datapath
The next step in our approach is to extract the con-

trol/data flow graph (CDFG) of the given VHDL descrip-
tion. We make use of the VTIP (VHDL Tool Integration
Platform) toolbox from COMPASS for this purpose.

VTIP provides tools to transform VHDL descriptions to
an internal data structure and a C-language interface SPI
(Software Procedural Interface) to work on it. VTIP cur-
rently provides two possible views of a VHDL description:

� The VHDL View is an attributed syntax tree of the
VHDL description. It is possible to do transformations
on this tree (optimizations) and convert it to a VHDL
description again.

� The Synthesis View is composed of more abstract ob-
jects like State Machines, Logic Networks and Black
Boxes. The control and data flow graph are explicitly
available in this representation.

For our purpose we use the Synthesis View only. All the
objects in VTIP are realized as C-structures. We use graphi-
cal representations to show how our example is transformed
to the synthesis view. In fig. 4 you see the top level object
of our small example. Note that this a typical representa-
tion of a structural VHDL description. Each component
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Figure 1: Programmable Datapath

instantiation results in a BlackBox. The BlackBoxes repre-
sent hierarchy: the BlackBox datapath2 contains more
BlackBoxes – the three registers. Fig. 5 shows the ALU in
the Synthesis View representation. There are special fork
and join nodes which represent the control flow. Only one
of the two conditional logic blocks is executed depending
on the input of the fork op. We can identify control sig-
nals as input to control nodes. By backtracking them to
the top entity it is possible to define a control word. All
of the nodes in this representation are atomic, i.e. there is
no more level of hierarchy. By looking at the operations
on the datapath we can extract the micro operations Add
and Sub. Finally fig. 6 shows the register representation.
The important node is the TimingOp. Associated with the
TimingOp are attributes which give the signal name and
the condition for “firing” this operation. In this case the
attributes help us to find the clock signal (clk).

2.3 Extracting Micro Operations
Our tool traverses the synthesis view and associates sev-

eral attributes to the different nodes:

1. Signals are categorized in different groups:

(a) Control signals are determined as the inputs to
the known control flow operators. E.g.case and
if statements result in fork and join operators.
Inputs to this operators are classified as control
signals. All the control signals are concatenated
to a single control word.

(b) Clock signals are determined by the attributes of
the TimingOps.

(c) All the other signals are classified as data signals.

(d) Signals with more than one driver are classified
as busses.

(e) Signals with exactly one driver and one sink are
classified as “transient” registers. This signals
can appear as a sink to micro operations. How-
ever the stored result has to be used by another
micro operation in the same micro instruction.

2. Storage units (registers and the transient registers) are
marked as such.

3. From every input of a storage unit we trace back the
data signals to possible sources. This is equivalent to
searching all possible paths from a storage units in-
put to any storage units output. The functional units
passed on this path give the micro operation. To per-
form this micro operation it is necessary to set the
following bits in the control word:

� The enable signals of the involved registers.

� The selection signals of multiplexorson the path.

� The control signals of ALUs on the path.

4. For every micro operation we note

� The name of the operation. Up to now
we can identify the following: move,
and, not, nand, nor, xor, equal,
notequal, less, notless, greater,
notgreater, add, sub, neg, abs,
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Figure 4: Synthesis View: top level entity

mul, div, remain, modulo, shl, asr,
shr, rol.

� A list of input registers.
� The output register.
� A list of necessary resources (ALUs, multiplex-

ors, busses).
� The – incompletely specified – control word.

2.4 Results
The result of our example is given in fig. 7. The lines

marked with a colon show the classified control lines and
how they make up the control word. E.g. bits 3 and 4
of the control word are the control lines for multiplexor 1
(selmu1). The lines with the greater sign show the classified
I/O ports of the whole circuit. The rest of the lines are the
possible micro operations.

3 Conclusion and Future Work
We have shown how a VHDL description can be ana-

lyzed to extract possible micro operations on this hardware.
The prototype system shows the feasibility of this approach.
However there are some modifications necessary:

� The type (and bit width) of the data signals is not
taken into account. However the information on this
is already in the synthesis view.

� Status words are not taken into account. E.g. an adders
carry output or a comparators output should be con-
catenated to a status word.

� The classifying algorithms are weak in some cases and
often require a certain VHDL style.

The next step will be the transformation of this descrip-
tion to a machine description suitable for a compiler gener-
ator. Some more informations will be necessary including
informations concerning the controller.
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: 0 0 enreg1
: 1 1 enreg2
: 2 2 enreg3
: 3 4 selmu1
: 5 6 selmu2
: 7 8 selmu3
: 9 9 alumode
> I inbus
> IO outbus
> I enreg1
> I enreg2
> I enreg3
> I selmu1
> I selmu2
> I selmu3
> I alumode
(sub,(rreg-behav_7_2,taddout),toutbus,(alu-behav_14,mux4-behav_11),011XXXXXXX)
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(add,(tinbus,rreg-behav_4_2),taddout,(addfu-behav_12,mux4-behav_10,mux4-behav_8),XXX0001XXX)
(add,(tinbus,tinbus),taddout,(addfu-behav_12,mux4-behav_10,mux4-behav_8),XXX0000XXX)

Figure 7: Result
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