
A VHDL-Based Bus Model for Multi-PCB System Design

Jari Toivanen**, Jari Honkola*, Jari Nurmi*, Jyrki Tuominen*

* Tampere University of Technology
Signal Processing Laboratory

P.O. Box 553, FIN-33101 Tampere, Finland
Email: {honkola, nurmi, tuominen}@cs.tut.fi

Abstract

In the development of bus-based systems and individual
PCB boards interfacing to a bus, the simulation usually re-
quires a specific test bench or creation of quite complex
stimuli. This problem can be avoided with a VHDL model
of the bus. In this paper, the bus model concept is discussed.
The concept can be applied to serial and parallel, single
and multiple master bus modeling on various hierarchical
levels. The model includes timing and signaling analysis,
master, slave and arbitration modules. ISA (PC/AT) bus is
used as an example case of the modeling.

1. Introduction

Behavioral simulation plays an important role in the de-
sign verification of digital systems today. Design verifica-
tion is usually partitioned to PCB boards or even smaller
blocks. These PCB boards or blocks will be in many cases
connected together and to external devices, e.g. sensors and
actuators, with different kinds of buses. When we want to
verify the bus interface of a bus unit, we are usually forced
to build a test bench or to create quite a complex stimulus
file. We have also problems if we want to verify a whole
bus-based system by simulation because in many cases the
bus functionality can not be achieved with plain signal lines
between the bus units.

The bus model concept described in this paper is devel-
oped to solve the previously mentioned problems. It can be
used as a test bench to generate bus events and to verify bus
signaling for individual bus units as well as for a complete
bus-based system. With the bus model, the bus cycles that
we want to execute during the simulation are written as
simple commands in a file. Bus traffic and bus protocol vi-
olations are displayed with textual messages.

2. The bus model concept

A bus model may include modules depicted in Figure 1.
All buses do not necessarily need all modules and some

may have also additional modules. On the left side of the
dashed line the modules are described by the user and the
modules on the right are part of the bus model.

The timing and signaling analyzer module observes the
traffic on the bus and reports upon it. This module also rec-
ognizes the timing errors and reports protocol violations.

The master and slave modules facilitate testing the de-
signs that are connected to the bus model. When develop-
ing any unit, its function can be tested by using these
modules. The bus cycles wanted to be performed are given
to the master module in a command file. Also the slave
modules have a configuration file in which it is determined
to which bus cycles the slave module responds to.

When multiprocessor buses are simulated, it may be
necessary to use a separate arbitration module. Then it is
possible to simulate the whole system without arbitration
module implementation.

The design of a unit which is connected to the bus model
can be done as a normal development process where the
simulators are used in the verification of the design. The
unit can be constructed by using components of commer-
cial simulation model libraries [1] or application specific
VHDL descriptions [2].

The verification of the unit under design can be started
as soon as the first unit is ready for simulation, without
building a unit specific test bench. So the bus model can be
used from the very beginning to the verification of the com-
plete system. The bus model consists of many modules
which can be used in the simulation when necessary. When
starting the debugging of the first unit, it is advisable to use
the timing and signaling analyzer module and modules
which generate or respond to events on the bus.

The timing and signaling analyzer module may need
some parameters which are given, for example, in the sche-
matics. Such parameters could be, e.g., the level of report-
ing and the speed of the traffic.

The modules that are used to generate and respond to the
bus events are separated in this paper, but this is not possi-
ble for all buses. The master module is needed if a slave

** Nokia Mobile Phones
Cellular Data

P.O. Box 68, FIN-33721 Tampere, Finland
Email: jt@nmptre.nmp.nokia.com

Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

Fig. 1. The structure of the bus model.

MEMRD
IORD
MEMWR
INT 1
MEMRD

Units described by designer Modules included in the bus model

VHDL

Arbitration
module

Slave
module

Master
module

Bus described in VHDL

schematics

Timing and signaling
analyser

file
Configuration

module is wanted to be tested, because in most buses the
traffic is initiated by the master module. The master module
uses at least one parameter which determines the name of
the command file. This file includes the commands that are
interpreted to bus cycles during the simulation. The com-
mands in the file are bus type dependent. These would be,
for example, write and read cycles if the bus type is paral-
lel, or sending messages on a serial bus. In the bus types
which support interrupts, the names of the command files
executed when interrupts are requested can also be given in
a command file. This command file includes similar com-
mands as the command file of the master module. The slave
modules have their configuration files which are connected
to the module in the same way as the command file is con-
nected to the master module. The information in the config-
uration file depends on the bus type used, but there must be
at least the address of the module and the initial value of the
registers and the memory.

The reports of the modules can be directed either to the
command window of the simulator or to a file, where they
can be examined. Of course, the results of the simulation
can be examined also in the waveform display of the simu-
lator. The most important part of the bus model is the mod-
ule which recognizes the errors on the bus. From the report
of this module it is easy to verify whether the design works
correctly or not.

When developing a complete bus-based system, the
modules of the bus model can be left out when the corre-
sponding physical units are completed. When the whole
system is completed, all the bus model modules can be left
out from the simulation, making the simulation faster.

3. Implementation of the bus model

With bus models we mainly do behavioral simulations
and verification of the system specification. We can also do
bus performance analysis and verify individual bus units.

In verifying designed bus units, it is important that they
can be connected to the bus model without any or with mi-
nor changes. This way we can ensure that we are verifying
what we have really designed. Unfortunately this is not al-
ways possible because of a number of limitations. We have
to do changes, e.g., if the bus data communication has been
implemented by modulation or the signal levels are differ-
ent from digital circuit signal levels. Figure 2. depicts a bus
model, which can vary from a simple model which con-
nects units by a set of signals to a complex behavioral de-
scription.

One of the biggest problems with bus modeling is the
lack of bus control circuit models. There are two solutions
for this problem. The first one is a self-made control circuit
simulation model. This choice can be very time consuming
and very difficult to implement. On the other hand, by do-
ing an accurate, reusable (e.g. synthesizable VHDL) mod-
el, we can use this description effectively in future designs,
for example in integrating bus control and bus module
functions on the same chip.

Another possibility to avoid missing simulation models
is to raise the abstraction level of the bus model and con-
nect it to that interface, where the bus controller is normally
connected to. Other reasons for the higher abstraction level
can be the requirements of shorter simulation times or sys-
tem simulation on the message level.

3.1. Signaling and bus arbitration

In most design and simulation cases we use commercial
simulation model libraries. When we are building a bus
model, it must be compatible with these libraries. In prac-
tice all desired technologies and signal values can be imple-
mented with 9- or 12-level signals.

When more than one bus unit can asynchronously ini-
tiate bus operations, we have to consider bus arbitration and
its implementation in the bus model. In traditional multi-
processor buses the arbitration logic can be either distribut-
ed or centralized. In the case of serial buses the arbitration
methods are based on contention arbitration and token
passing (e.g. bitwise arbitration).

In centralized arbitration logic cases the bus model in-
cludes a behavioral description of the arbitration logic
which can be used in simulations. In distributed logic cases
every bus unit has its own bus arbitration request logic [3].
Generally, the implementation of the bus arbitration is quite
straightforward but bus type dependent.

3.2. Bus modules

The bus model must support the simulation and verifica-
tion process from a single bus unit design to a bus-based
system design. For this reason the bus model has to include
modules, which can generate bus events for units under
verification and reply to bus events activated by the units.
In parallel buses and single master serial buses, the mod-
ules can be generally divided into two classes: master mod-
ules which are able to start the transfer events (read/write,

PCBs to be verified

The closest digital
interface to the bus

The bus model

Fig. 2. The interface of the bus model to bus units.

interrupt services etc.) on the bus, and slave modules which
reply to requests of the master and possibly request inter-
rupt type of services (e.g. DMA).

Schematics has been used to connect the bus modules to
the bus model, because module connection and removing is
faster graphically. This model can be used as the system
test bench by configuring the modules. There are two ways
to do the configurations. The configuration files can be
VHDL descriptions connected to the simulation environ-
ment like any behavioral VHDL description. This is not
flexible and convenient, because the configuration files are
modified frequently and VHDL description recompilation
and simulator restart are needed. A much better way is to
write the configuration data in a text file, which is read ev-
ery time the simulation starts and, if needed, during the
simulation. This makes it possible to modify the configura-
tion during the verification process (interactive simulation).
The command format in the text files is bus type specific.

The configuration text file of the master module contains
an introduction part for simulation setup process and a
command part where events which will be executed have
been written sequentially. A new command (event) is read
and interpreted from the configuration file when the previ-
ous one has been executed. In the introduction part there
can be information of master priorities, serial data commu-
nication rate, response time etc. Typical operations in the
command part are, e.g., read, write, and block transfer. In
the buses where interrupts are possible, there must be sep-
arate command parts for interrupt services (analogous to in-
terrupt service programs). They can be separate files or
included in a shared configuration file (Figure 3.).

The configuration text file of the slave module is read in

Fetch com-
mand from
config file

Fetch command from
the file of interrupt

service 1.

Interrupt

Execute
fetched

command

Interrupt 1.
NO

YES

NO

YES

Interrupts 2... n

Command executed

Interrupts 2 ... n

Fig. 3. Execution of commands in the master
module.

the setup process of the simulation. It contains parameter
settings and memory or register content initialization for
the module. The size of the memory or register space is
good to be defined as a parameter, making the use of the
module much more flexible. The base address of the slave
module is the most obvious parameter setting. Other pa-
rameters for the slave module can be the word length, op-
eration response time, interrupt invocation data (interrupt
number, invocation moment, R/W acknowledgment ad-
dress) etc. In the setup process there must be commands for
setting the defined data into the memory of the module. Un-
defined memory location contents are set to a specified val-
ue, typically 00H or FFH.

3.3. Reporting bus events

When the designer is simulating a system with the bus
model he must know, e.g., bus events, operation addresses
and data contents within a certain time interval. The bus
model includes a reporting module, which is a separate
component in the model and reports of the different bus
events into a comment window of the simulator or into a
file. The reporting module also prints the start time of a cer-
tain command or event.

In parallel bus models, the interpretation of the bus
events can be divided into three phases. In the first phase
the unit initiating the event, the address of the unit and the
type of the bus cycle are clarified. In the second phase the
unit can affect the length of a bus cycle by delaying or by
choosing one alternative of different reply modes. In the fi-
nal phase the bus event terminates and, e.g., read data can
be printed out. The reporting module must be divided into
several processes like one process for each bus cycle type,
interrupt and DMA request processes.

3.4. Timing and signaling errors

The role of the timing and signaling analyzer module is
remarkable because timing and signaling errors are the
most important verified items in the designed units. Analy-
sis of the errors must be done on the basis of the signal val-
ues and timing. The printed error messages should be
categorized into several classes by the error severity for
easier interpretation.

In Figure 4. there is one example of signal timings on a
parallel bus. For each time shown in the figure, minimum
and/or maximum time values have been specified. The tim-
ing analysis must be divided into several processes, be-
cause in parallel buses there are several timings which do
not have dependencies with each other and the order of the
signal events cannot always be predicted. In most cases it
is necessary to include the interpretation of the bus events
as a part of the timing analysis, because the timings are de-
pendent on the types of the bus cycles.

4. Modeling example (ISA)

A model of the ISA bus, known also as the PC/AT bus,
was implemented as an example [4]. ISA is a typical exam-
ple of an asynchronous parallel bus. The ISA bus model
was implemented according to the ISA Bus Specification
and Application Notes released by Intel Corporation [5].

4.1. Bus signal implementation

The ISA bus model was implemented on low hierarchi-
cal level to support ISA bus add-on card design, especially
when the bus interface logic is integrated into an ASIC. In
this implementation the behavioral model of the bus was
not actually needed. All what is needed is behavioral mod-
els of bus modules and a bus interaction analyzer that can
be connected together with signal lines in a structural
VHDL description or with wires in a schematic.
Std_logic_1164 multi-value logic system can be used to
implement TTL, tristate, and open collector drivers and re-
ceivers (Table 1.)[6]. Signal type std_logic is utilized be-
cause resolution function is built in that signal type.
Standard component simulation models from the most
widely used commercial simulation model libraries can be
directly connected to the bus model signal lines.

4.2. Bus modules

To make the bus model support add-on card design ver-
ification as well as bus-based system simulation both mas-
ter and slave modules have to be implemented. The names

Table 1: Driver types and signal states.

Driver type logical 1 logical 0 unknown tristate

TTL 1 0 X not
specified

open collector H 0 X not
specified

Tristate 1 0 X Z

tHOLDtCLOCK-DATA

tOFFtON

VALID
SIGNAL

BCLK*

Fig. 4. An example of signal timings.

WAIT

INITIALIZE

ACCESS

TRANSFER

TRANSFER OR
BUS OWNERSHIP

BUS
OWNERSHIP

REFRESH

REFRESH

DRQn
and

DACKn
BALE

and
REFRESH*
and

DRQ*

RSTDEV

REFRESH

RSTDEV*

DACKn*

IORC
and

MRDC

SECMAST

SECMAST*

REFRESH*
and

SECMAST

(1)

(1)

REFRESH*
and

SECMAST*

(2)

(2)
MRDC* and
MWTC* and
IORC* and
IOWC*

Fig. 5. Main state machine.

masterand slave are not exact but the risk of misunder-
standing is minimal. In an usual ISA bus configuration,
platform resources act as a master and add-on cards as
slaves. Text files are used to configure the master and the
slave modules.

The master module is able to execute memory and I/O
access cycles. Access cycles are generated from interpreted
configuration file commands in a sequential order during
simulation. If interrupts are not requested, access cycles are
executed from the main configuration file. In the case of in-
terrupt request, all the access cycles from the interrupt ser-
vice file are executed once. The following line is an
example of the master module command format.
MRD(“ADDR”, "SBHE","LADDR");

With this command a memory read access cycle can be
executed. The following example is from an actual master
command file.
-- This is comment
MRD("00000","0","00");--Memory read
MWR("00000","0","00","AA","BB");--Memory write
IOR("08000","1"); -- I/O read
IOW("08000","1","BB"); -- I/O write
-- The end

The master module also generates the 8 MHz system
clock for the bus, enables MEMR and MEMW when need-
ed, and enables Reset Device signal of the bus in the begin-
ning of the simulation.

The configurable slave module that can act as an add-on
card is also included in the bus model. Multiple slave mod-
ules can be included in the simulation. Every module must
have its own configuration file. The slave module is able to
respond to the memory and I/O access cycles generated by
the master module. One interrupt activation is also possible
for one slave. The current slave module has 128 16 bit read-
able and writable locations that can be preset. The slave

module configurations are read in the beginning of the sim-
ulation. Here is an example of a slave module configuration
file.
-- This is comment
BASE(000826","00");--Set base addr of add-oncard
MODE("0");--Add-on card type selection mem or I/O
BITN("0");--Add-on card bit count selection 8/16
ACTY("1");--Access type selection.
SETB("00", "FF");--Byte value presetting
SETW("10", "01", "01");--Word value presetting
INTR("3 ","6000 ns ","02")--Interrupt generation
-- The end

4.3. Bus cycle reporting

There are four distinct bus cycles on ISA bus: access,
transfer, refresh, and bus ownership. It is reasonable to in-
clude the bus initialization to the same state machine as the
previously mentioned cycles. In Figure 5. there is the main
state machine that is used to select the cycle type on a bus
transaction. A transition in the diagram occurs when a
named signal is enabled or a signal with * character is dis-
abled. The same main state machine is used in bus cycle re-
porting and in timing and signal analyzing. Most states in
the main state machine must be divided in substates during
reporting or analyzing process.

The reporting module of the bus model displays infor-
mation about the current bus activities during simulation.
TEXTIO standard package is used to display information.
In some simulators information can be displayed on the
screen but in all simulators information can be saved in a
file. An example of reporting module displayed informa-
tion is below. BMI stands for Bus Model Information.
BMI:Executing 16-bit memory read cycle at time
BMI:1764.000000ns
BMI:ADDR: 00000 SBHE: 0 LADDR: 00
BMI:Cycle type 0-wait
BMI:High data byte: AB Low data byte: CD
BMI:Cycle completed

4.4. Timing and signal analyzer

This is the most important module of the bus model
from the user‘s point of view. This module can be called the
analyzer module. It displays information about timing and
protocol errors during the simulation. This module ap-
peared to be the most time consuming in bus model imple-
mentation. The main reason for that is the nearly unlimited
number of different error combinations and a great number
of signal timing variations. More than half of the VHDL
description lines of the whole bus model are in this module.
Some compromises had to be made. We gave up the inten-
tion to built an analyzer that can give a precise information
message of all signal errors and concentrated to timing er-
rors because they are more difficult to notice in visual
check of the simulation results.

On ISA bus there are two typical signal timing specifi-
cations. First, the interactive action where a signal value
change triggers a response signal on another bus module.
Another typical situation is where two signals from the
same unit have a specified time difference. In both cases
maximum, minimum or both time constraints can be de-
fined. The signal propagation delay between two units can
be 0-11 ns on ISA bus. The signal propagation delay is not
implemented in our bus model. However, it is not a prob-
lem because worst case can be used in all timing analysis.
Following there is an example of the analyzer information
messages. BMW stands for Bus Model Warning.
BMW:Unlatched addr stable state is not long enough
BMW: before read or write command falling edge.
BMW:Unlatched addr have to stay stable at least
for 109ns
BMW: before read or write command falling edge.

4.5. Portability and simulations

This simulation model was tested in Intergraph [7] and
Mentor VHDL simulators. Portability of our model was not
complete, and some changes were needed in signal line im-
plementation and in TEXTIO package function usage. The
problem with signal lines was that simulator dependent sig-
nal types had been used. Another portability problem was
the use of a TEXTIO package function to test end of line
type variable. With careful model design, portability be-
tween these simulators can be achieved in this kind of cas-
es. Simulation times are highly dependent on the user
described units that are connected to the bus model. Simu-
lations that we have done with the bus model master, two
slaves and reporter and analyzer are able to give some
rough estimates of simulation times. In that configuration,
one bus cycle took about one and a half second of elapsed
time in simulation in Intergraph VHDL simulator. The
computer hardware we used was a Sun SparcStation IPC
with 24 Mbyte main memory.

5. Conclusions and future work

In this paper a VHDL-based bus model concept has
been described. The modeling of the example case took
three man months of which the signal and timing analyzer
implementation took about two thirds of the effort. VHDL
as a description language was suitable for this kind of mod-
eling.

As it is shown in the modeling example, a bus model
helps designers to verify effectively their bus units in the
system under development. By configuring master and
slave modules the designer can flexibly generate the de-
sired stimuli to the bus unit under design. The reporting
module and the signal analyzer of the model give valuable
information of the bus communication and errors. If the se-
lected bus is planned to be used for a long time, a lot of
work in the creation of complex stimulus files can be avoid-
ed by designing a bus model for future product develop-
ment.

The bus modeling work has been continued with two
buses: the CAN bus and a telecom serial bus. The CAN bus
model implementation will support the system design veri-
fication on the message level. The telecom serial bus model
will be designed to work as a configurable ASIC test bench
for large telecom system development.

6. Acknowledgments

This work has been a part of Finnish technology pro-
gram ESV (Electronics design and manufacturing technol-
ogies) and is supported by the Technology Development
Center (TEKES), ABB Corporate Research Finland, Kone
Elevators, Mariachi Oy, Nokia Research Center and Nokia
Cellular Systems.

7. References

[1] SmartModel Library User´s Guide, Logic Modeling
Corp., 1992. 122 pages.

[2] Douglas L. Perry. VHDL. McGraw-Hill Inc., 1991. 458
pages.

[3] Joseph Di Giacomo. Digital Bus Handbook. New York:
Mc Graw-Hill Publishing Company, 1990. 560 pages.

[4] Jari Toivanen. VHDL-Based Modeling of Buses (in
Finnish). MSc Thesis. Tampere University of Tech.,
1993. 77 pages.

[5] ISA Bus Specification and Application Notes. Intel
Corporation OCPD Technical Marketing, September
12, 1989. 73 pages.

[6] Jean-Michel Berge, Alain Fonkoua, Serge Maginot,
Jacques Rouillard, VHDL Designer´s Reference, Klu-
wer Academic Publishers, 1992. 455 pages.

[7] AdvanSIM-1076: Digital Lab User Guide Version 7.0.
Intergraph Corporation, July 1992.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

