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Abstract

This paper describes two approaches to the automatic
generation of behavioral VHDL models from descriptions
written in natural language.  Both approaches are based
on  a modeling style in which behavior is represented by
a system of interconnected processes.  The first approach
employs a semantic grammar to directly generate a single
VHDL process from a paragraph written in a restricted
English called ModelSpeak.   The second approach
accepts more general English and generates models
consisting of multiple processes.

Introduction

The VHSIC Hardware Description Language (VHDL)
[9] is rapidly becoming a industry  standard for
simulation and design verification of Hardware systems.
At the same time,  many integrated product specifications
and descriptions are written in English.  Preparing models
from such descriptions is currently a manual process
subject to individual interpretation.  Because VHDL is a
powerful and complex language, modeling styles may
vary among modelers.  A series of research projects have
been undertaken at Virginia Tech to improve this
situation.  First, to limit the modeling style and eliminate
some of the tedious syntax of VHDL, a graphical model
capture tool called the Modeler's Assistant was developed
[1,13].   Using this tool, a system is represented by a
collection of processes (circles) which are interconnected
by signals (lines).  Process ports are denoted by small
circles on the peripheries of the process circles.  Ports
may be shaded for inclusion in the sensitivity list of the
process.  This graphical representation of behavior is
called a Process Model Graph (PMG).  The actual VHDL
code for the behaviors of the processes must be written by
the modeler if it cannot be retrieved from a library of
primitive processes.

The first natural language interface (Approach I) to the
Modeler's Assistant described in this paper accepts a
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series of sentences describing the behavior of a single
process and generated correct VHDL code for it.  This
interface requires the behavior be expressed in a highly
restricted English called ModelSpeak [10].  Conditional
expressions (if statements) may be nested to two levels,
and interaction is invoked by the interface to resolve
scope ambiguity of loops.  This interface is implemented
with a semantic grammar [3] in Prolog.

The second interface (Approach II) to the Modeler's
Assistant for natural language is substantially more
complex, but accepts more general English expressions
and generates multiple-process models.   In this approach,
each sentence is parsed by a bottom-up, parallel chart
parser to generate a set of valid parse trees.  The trees are
examined by a Semantic Analyzer [7] to determine one
which is semantically correct, and a conceptual graph [14]
(semantic network) of its meaning is generated.  Once the
conceptual graph of individual sentences are joined
together [12], a program called the Linker [8] analyzes
the graph to produce a Process Model Graph and VHDL
process code for the Modeler's Assistant.  Nodes in the
conceptual graph representing verbs typically generate
processes or the conditions which govern them.  Nodes
representing objects generate signals.  The modeling style
underlying the Linker produces a sizable collection of
processes, each consisting of a single if_then statement.
To avoid unnecessary bus resolutions, multiple processes
assigning to the same signal are merged.  Since signal
types are generally not expressed in the English
description, they may be added interactively later.

Before describing the approaches in more detail,
related research on natural language interfaces is
reviewed briefly.

Related Research

The PHRAN-SPAN system [6] by Granacki and Parker
accepts digital system specifications in restricted English
but translates it into an internal representation called the
Design Data Structure (DDS).  The PHRAN component
detects the phrasal patterns and extracts corresponding
concepts from its database to construct a conceptual
dependency representation, and the SPAN component
that analyzes the conceptual dependencies to produce a
DDS description.  PHRAN-SPAN is more general than
Approach I here, and is comparable to Approach II, which
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uses a different intermediate knowledge representation,
and generates VHDL rather than DDS.

  Another natural language processor called SOPHIE
[3] was built by Burton.  This system allowed students to
query the machine using a restricted natural language and
get  feedback, aiding them in solving problems easily.
Since this level of interaction pertained only to a limited
domain,  Burton developed the concept of semantic
grammar.  Here, semantic concepts like voltage, current
and measurement formed the non-terminals of the
grammar rules and could in  turn consist of other
constituent concepts.  As the query sentence is parsed the
semantic form or the "meaning" is constructed.  The
"meaning" either would be a call to the procedure that
answers the query or a call to the procedural specialist
that performs the action.  In the Approach I interface
described in  this paper, the parsing technique is also
based on a  semantic grammar but here the semantic
concepts include if_statements, signal_assignments, actor,
condition, action and so on.  There is no intermediate
form to hold the meaning of the input.  This is because
the interface does not depend on any other component to
generate the target output.

Approach I

ModelSpeak : The Input Language

The ModelSpeak Language [10] is  based on the
semantics of VHDL so that expressions are easily mapped
into VHDL code.  Its vocabulary is a set of words
generally used in  behavioral description of processes and
includes many  keywords from VHDL.  Additional
vocabulary words have been derived from  published
descriptions of digital components found in
manufacturer's data sheets, books on modeling and
computer  systems.  ModelSpeak descriptions of
processes may consist of a series of sentences.  The
sentences may describe simple signal assignments and
if_then statements with conditions consisting of Boolean
expressions of relations.  If_statements may be nested to
two levels.  The language also supports statements
indicating for_loops, such as "This is repeated 4 times."
Interaction initiated by the parser is used to resolve scope
ambiguities of loops.

  Since this approach presumes a Process Model Graph
has been constructed and port names have been specified
in it, these port names should be used in ModelSpeak
expressions to permit linking the process code segments.
Sample ModelSpeak expressions appear later in an
example.

The Semantic Grammar

Some of the primary semantic constructs (non-
terminals) of the language are listed in the table below.

Table 1: Selected Non-Terminals of ModelSpeak

Non-terminal Description
proc_stat process description
sig_assign signal assignment construct
if_stat if statement construct
action action
cond condition
rel relation
target destination signal

The ModelSpeak system may be viewed as a set of rule
pairs.  Each pair consists of a recognition rule for
semantic analysis (parsing) of a description, and
associated with it is a generation rule for VHDL.  A
generation rule may sometimes be empty or nil when the
non-terminal symbol in the recognition grammar has no
corresponding non-terminal symbol in the generation
grammar.  The semantic  grammar includes rules for both
isolated sentences and multi-sentence process
descriptions.

The recognition and generation rules for simple signal
assignment sentences are given below.  Non-terminal
symbols appear in italics.  Non-terminals in recognition
rules have _a suffices, whereas corresponding generation
non-terminals have _g  suffices.  Note that only
recognition rules 1, 5, 6 and 7 have corresponding
generation rules which produce VHDL code.

sig_assgn_a  ::= [determiner_a] actor_a 
action_a [determiner_a]  target_a (1)

determiner_a ::= {the | a} (2)
actor_a ::= id (3)
action_a ::= {action0_a | action1_a} (4)
action0_a ::= {resets | deasserts | clears} (5)
action1_a ::= {sets | activates | asserts} (6)
target_a ::= [type_a ] id [class_a] (7)
type_a ::= {input | output} (8)
class_a ::= {signal | port | line | bus} (9)

sig_assgn_g ::= id_g =  value_g ; (1)
value_g ::= '0' (5)
value_g ::= '1' (6)
id_g ::= id  (7)

Figure 1: Signal_Assignment Statement Rules

The top-level analysis rule pair for if_statements is
shown in   Figure 2.

if_stat_a::={when | if } cond_a sig_assgns_a
[elsif_a][else_a] (10)

if_stat_g ::=  if cond_g   then sig_assgns_g
[elsif_g][else_g] end if; (10)

Figure 2.  If_Statement Rules



A Modeling Example

This textbook example [11] is a Direct Memory Access
(DMA) interface module. The DMA interface module can
be functionally partitioned into three processes [2] as
shown  in Figure 3.
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Figure 3: PMG for the  DMA Interface Model.

Process_1: The response of the DMA controller  to the
bus request  sent from the peripheral

The PMG shows a process named PROC_1 having an
input port DMAREQ and an output port BR.  The process
has DMAREQ in the sensitivity list, indicated by a solid
circle.  The ModelSpeak description of the process is
Sentence 1.  The rules of Figures 1 and 2 are applied to
this sentence to produce the VHDL code in Figure 4
below.

When DMAREQ is set, the controller activates the BR
line. (1)

if( DMAREQ = '1') then
BR <= '1';

end if;

Figure 4.  Sentence and VHDL for Process 1.

Process_2:  Initialization by the microprocessor for the
transfer.

The ModelSpeak description for this process consists
of the single if_then_else expression shown in Figure 5.

While CS is low and WR is high, if RS is set the controller
transfers the data from the DATA bus to the DAR register
otherwise the controller transfers the data from the DATA
bus to the WCR register. (2)

if(CS = '0' and WR = '1') then
if (RS = '1') then

DAR <= DATA;
else

WCR <= DATA;
end if;

end if;

Figure 5.  Sentence and VHDL for Process 2.

Process_3:  The transfer carried out by the controller
when the bus  grant signal is made high.

This process involves a loop and is described by a
paragraph of six sentences of Figure 6..

The process waits on BG until BG equals 1.  While BG
remains high, if CON equals 1 the controller initiates the
RD signal otherwise the controller initiates the WR
signal.  Also, when BG is high the controller asserts the
DMAA signal, puts the value of the DAR register on the
ADDR bus and waits for 5 ns.  Then, the controller
increments the  DAR register and decrements the WCR
register.  This is repeated continuously until WCR
reaches "0000".  After this  the controller activates the
INT line. (3-8)

Figure 6.  Sentences Describing Process 3.

Since the WCR is of width 4-bits the end condition for
the  while_loop has to be specified as "WCR2 reaches
"0000" and not as "WCR2 reaches zero".  Note that the
description specifies the condition "BG is high" twice,
once to specify the nested if_statement and the second
time to specify that the rest of the sequential statements
are to be executed while the same condition, "BG is high"
, holds true.  It is obvious that  the second check is
redundant but is necessary because the parser adopts the
strategy of associating the sequential statements with the
immediately  preceding if_statement.  But, if the user
intends a different association he or she must explicitly
specify the outer if condition again.  This is done so that
the other actions performed when BG is high can be
executed.

The for_loop indicated by the last sentence of the
description causes the parser to enter an interactive mode.
Here, the increment of DAR and  decrement of WCR are
to be repeated for each transfer, along with the wait for
the transfer, and the transferring of DAR  value to the
ADDR bus. Based on this, the interaction should proceed
as shown below.  The user responses are the bold y and n
entries.



Type 'y' if DAR is integer, if not type 'n'.
|: n.
Type 'y' if WCR is integer, if not type 'n'.
|: n.
Which of the following statements are to be repeated.
Answer with a 'y' or a 'n'.
WCR <= decr(WCR);
|: y.
DAR <= incr(DAR);
|: y.
wait for 5 ns;
|: y.
ADDR <= DAR;
|: y.
DMAA <= '1';
|: n.

Figure 7.  Interaction to Resolve Loop Scope
Ambiguity.

The interaction terminates with the first n entry by the
user and the VHDL code below  is generated.

wait on BG until BG = '1';
if (BG = '1') then

if (CON = '1') then
RD <= '1';

else
WR <= '1';

end if;
end if;
if( BG = '1') then

DMAA <= '1';
while not WCR = "0000" loop

ADDR <= dar;
wait for 5 ns;
DAR <= incr(DAR)3;
WCR <= decr(WCR);

end loop;
INT <= '1';

end if;

Figure 8.  VHDL for Process 3.

Approach II

Conceptual Graphs

The second approach employs four procedures to
generate VHDL code from natural language sentences.
This approach employs conceptual graphs as an
intermediate representation of the meanings of sentences
and to support integration of sentence meanings.
Conceptual graphs [14] are bipartite, directed, labeled
graphs consisting of concept nodes and relation nodes.  In
the following, a conceptual graph is represented by listing
its concept nodes.  Each concept node is immediately

followed by all its incident-out relations with pointers to
their target concepts.  Concept nodes are denoted by two
labels enclosed in  square brackets.  The first labels is a
unique identifier and the second is a concept type label.
The labels are separated by colons, as in [1: load ] and
[7:"STRB"].  Concept types of interest here include
actions (load, reset), events (rise) devices (memory,
register, bus), and values (data, '0').  The concept types
form a lattice with respect to a generalization partial
ordering.   For example register is a memory  is a device
is a object.  The type load is a action.  Action and event
types are subtypes of behavior.  Device and value types
are subtypes of object.  Literals (enclosed in quotes) are
identifiers, a subtype of object.  Relation nodes may have
two labels enclosed in rounded parentheses, a type label
and a marker label (if present) which is typically the
preposition or function word which indicates the relation.
Relations may have any -arty, but only unary and binary
relations are used here.

For example, Figure 9 shows the conceptual graph for
Sentence 9 below.

The 8-bit data is loaded into the ACC  register when
STRB rises. (9)

[  1 : load ]
         ->( object)  -> [ 2 ]
         ->( destination : into )  -> [ 3 ]
         ->( condition : when )  -> [ 4 ]
[  2 : data ]
         ->( size : adj )  -> [ 5 ]
         ->( det : the )
[  5 : 8-bit ]
[  3 :  register  ]
         ->( name )  -> [ 6 ]
         ->( det : the )
[  6 : "ACC" ]
[  4 : rise ]
         ->( agnt )  -> [ 7 ]
[  7 : "STRB" ]

Figure 9.  Conceptual Graph of Sentence 9.

Sentence Analysis

In the first procedure applied to an input sentence, it is
parsed by a bottom-up, parallel chart parser [17] to
determine all its valid parse trees.  The syntactic grammar
for this parser consists of about 120 rules.  Because
English is ambiguous, some sentences have several trees.

The second procedure, the Semantic Analyzer [7,15],
identifies a "meaningful" parse tree and generates a
conceptual graph (semantic network) representing its
meaning.  (In a separate procedure, a graphical
representation of the interpretation of the sentence is fed
back to the user for validating and editing the
interpretation [16].)  The Semantic Analyzer  largely
operates by retrieving the meaning of each significant



sentence word.  These meanings are represented by
"basis" conceptual graphs.  Because English is
ambiguous, a given word may have multiple basis graphs.
These basis graphs are assembled by rules associated with
the parsing rules such that a concept of one basis graph is
joined (merged) with a concept of another basis graph
only if they are identical or if one is a specialization
(subtype) of another.

The third procedure integrates the conceptual graphs of
the sentences of a description into a single conceptual
graph [12] by detecting concepts which refer to the same
action or thing (are coreferences).  Research is currently
in progress to also integrate conceptual graphs which are
automatically generated from other source language
notations such as block diagrams, flow charts and timing
diagrams [4,5]

Generating VHDL

The final procedure, which is implemented by the
Linker, generates VHDL in a form acceptable to the
Modeler's Assistant from a conceptual graph.  The Linker
employs a database which associates appropriate VHDL
code segments with basis graphs for behavior concept
types.

Interpreting a conceptual graph as VHDL Process
Model Graphs is accomplished in two steps.  First, the
conceptual graph is analyzed to identify all behavior and
object concept types.  The object concepts become VHDL
signals variables or values, and the behavior types
generate the behavioral code.  In addition, all subgraphs
consisting of an action and either an agent or condition
relation with a behavior are identified.  These subgraphs
are called condition_action links.  In the graph of Figure
9, the behaviors are [1: load] and [4: rise].  The subgraph
[1:load]->(condition:when)->[4:rise] is the only
condition_action link.  The graph also contains the three
objects

[2:data]->(size)->[5:8-bit],
[3:register]–>(name)->[6:"ACC"]   and
[7:"STRB"]

which are mapped to the VHDL signals:

data {type=BIT, size =8},
ACC {type=unknown, size=unknown},   and
STRB {type=unknown, size=unknown},  respectively.

The unknown types and sizes of these signals will have to
be specified interactively later by the modeler.

In the second step of the Linker procedure, code
fragments retrieved from the database for the object and
behavior concept types are assembled into processes.  The
appropriate basis graphs and corresponding VHDL
fragments are shown below in Figure 10.  The VHDL in
parentheses contributes to port declarations.  A symbol

marked by an asterisk is added to the sensitivity list of the
process being generated.

Basis Graphs VHDL
[1: data] type=signal,

-> (size) -> [2] name="data", value="data"
[2: attribute ] stype=BIT; size=size

[1 : load ] (object:in, destination:out)
->(object) -> [2] destination <= object
->(destination) -> [3]

[2: value ]
[3: memory ]

[1 : rise ] (*agent:in:BIT)
->(agent) -> [2] (agent='1')and

[2: value ]              not(agent'stable)

Figure 10.  Basis Graphs and VHDL
Fragments

The second step uses the condition_action links to
construct if_then statements for process bodies.  The final
result is a list of processes with associated  VHDL code
and a list of the signals connecting them, in essence a
Process Model Graph.  The lists generated for the
Register example Sentence 9 are shown in Figure 11.
Note that  the names of signals STRB and ACC were
derived from the  conceptual graph. "data" is an
anonymous name given to a  signal that the conceptual
graph implies but does not  specifically name. The types
of all signals were also  automatically determined.

process LOAD_1  (STRB)
begin

if ((STRB=1)and not(STRB'stable)) then
ACC <=  data;

end if;
end process;

--signal list
-- sig 0  STRB (BIT[0])
-- sig 1 data (BIT[8])
-- sig 2 ACC(BIT[8])

Figure 11: VHDL Process Code and Signal List

Post Processing

The linker also has a post processing mode to address
the following problems. 1) If the conceptual graph
translation process yields more than one process which
drive the same signal, and the user desires merging, these
processes are merged automatically into a single process.
This eliminates the need to consider resolution functions
in the linking process.  2) Sometimes the description of a
signal in the resultant  model will be incomplete in that
the conceptual graph will not indicate its type or size.



(This was not the case in  example given in this paper)
Some assumptions are made in  these cases, but these
may or may not be correct, so in post processing one has
the ability to change a signal's type  and/or size.

Experimental Results

The Linker has been applied to conceptual graphs of
many  individual sentences and produced correct VHDL
code. In  addition it was applied to seven test cases which
were picked from verbal descriptions of computer  logic.
Shown  in Table 2 are the model names, number of
English  sentences, total number of English words,
number of concepts  in the conceptual graph, number of
resultant VHDL processes,  and number of lines of
resultant VHDL code.

Table 2.  Linker Generated Model Results

Model Sent Words Con Proc Lines
FSM 5 98 38 7 30
RAM 4 44 22 2 25
Register 1 3 34 26 3 29
Register 2 3 43 20 1 25
Register 3 4 64 31 5 46
Register 4 5 62 30 6 44
Latch 10 106 50 8 60

In all cases studied, correct VHDL code was derived
automatically.  In some cases, type ambiguity of a VHDL
signal had to be resolved by using the post automatic link
editor.  Details of the Linker operation are presented in
[8].

Conclusions

The ModelSpeak language allows modelers to generate
correct process models to instantiate a Process Model
Graph using a restricted English.  This relieves the
modeler from VHDL syntax and permits students and
modelers who do not know VHDL to produce VHDL
models.  ModelSpeak supports signal_assignment
statements, Boolean expressions of conditions, nested
if_then statements, and loops.  The complex systems may
be modeled provided they are decomposed into an
interacting collection of relatively simple processes.

The operation of the linker is based on relationships
between concept types and VHDL fragments. The
concepts in a conceptual graph can be partitioned into two
subsets: behavior concepts and object concepts. The
behavior concepts result in VHDL code that drives a
VHDL signal or in code that is a condition expression of
an if_statement. This if_statement will then control the
execution of other code which drives a VHDL signal. The
object concepts map to VHDL signals or the
characteristics of signals.
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