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Abstract

We describe the use of the C programming language as
procedural layout language oriented toward development
of portable parameterized generators for CMOS VLSL
Mostly dedicated to libraries design, genlib addresses both
the process and software portability issues. Advantages of
using a superset of C functions for symbolic layout and
netlist description over proprietary vendor languages as L
or Skill are discussed. Seven optimized generators using a
tiler and leaf cell approach and three netlist parameterized
generators have been developed at UPMC MASI using the
procedural language genlib and the graphical debugger
genview.

1 Introduction

In ASIC design, the time-to-market is the critical issue.
In order to reduce the design time, designers use synthesis
tools that accept a behavioral input description. By now, the
output from those synthesis tools is a gate netlist that usesa
specific standard cell library. But standard cell implemen-
tations give poor results when high density or high speed
is required. In order to reach high performances, synthesis
tools must use more complex libraries containing optimized
components like RAM, ROM, datapath operators, efc. Due
to the large range of possible parameters, such complex
blocks must be provided by parameterized generators{1].
We present a language that allows to design process in-
dependent portable parameterized generators. This work
has been done at the University Pierre et Marie Curie, the
MASI laboratory acting as an associated partner of BULL
in the framework of the ESPRIT2 IDPS project. In the IDPS
project, five European silicon suppliers — ST, SIEMENS,
PHILIPS, PLESSEY AND ES2 — joined to develop a com-
mon portable ASIC library for a generic 0.8 ym CMOS
technology.

Developing a module generator is a multi-disciplinary
task that requires knowledge in the following areas:

o definition and evaluation of algorithms for integrated
operators;
e logic design and electrical optimization;

¢ topological partitioning of the layout;
o software development and software verification;

As such generators are complex to design, portability is a
must.

This paper focus on a layout assembling language and
its related layout methodology. Section 2 introduces the
major existing approaches to module generation. Section 3
defines the principles and goals for the definition of a new
module generation language. Process independence is ad-
dressed using the symbolic layout methodology described
Section 4, Section 5 justifies the choice of the general pur-
pose C language as procedural generation language. An
overview of the C library genlib is given Section 6, and
the generator debugger genview is introduced Section 7.
Practical results using these tools for generator design are
given Section 8.

2 Existing approaches to module generation

The choice of a module generation language is much
more than the choice of a syntax, it also implies the choice
of a layout design methodology. Most layout generators
rely on a “tiler and leaf celis” approach. The problem is to
determine a set of basic cells that will be used as tiles in a
macro-cell. The leaf cells are abutted, in a tiling fashion, to
carry out the actual layout. This offers high densities and
good electrical performances. The price to pay is the com-
plexity of the abutment scheme, and the resulting number
of leaf cells needed to satisfy all the generators parameters.
For example, only 10 different logical gates are needed to
design the netlist of a recurrence solver adder generator{2],
but because of the topological constraints of the approach,
55 layout leaf cells had to be drawn.

The design of a generator is complex and time consum-
ing. In order to preserve this investment, process inde-
pendence of module generators is addressed by almost all
existing approaches. The whole problem is to warranty
that pitch matching constraints in both x and y directions
are kept through technological retargetting. Two major
methodologies are currently used.

Some languages, like L[3] or Slic[4], make use of pa-
rameterized leaf cells. The leaf cells are described pro-
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cedurally as functions under a text editor, using the same
language for the leaf cells and the tiler. Each layout prim-
itive is placed using variable coordinates which will be
given'a process dependent value at generation time. This
approach, called dynamic virtual grid compaction[5], pro-
vides a stretchable representation of the layout that is sup-
posed to be usable with several technology files. It has two
defaults. First, it’s not intuitive, as from a designer point
of view a cell is mainly a graphical representation. Leaf
cell are naturally described under a graphical editor, and
the visual aspect of the layout is very helpful in practice to
integrate the complexity of the pitch matching constraints
between neighbors. Second, the actual process portability
is yet to-prove. Integrating all the abutment constraints into
a parameterized program is a very difficult task, that looks
much like a compaction algorithm. The parameterized ex-
pressions using design rules to ensure correct abutment
between two cells for a given technology won’t necessar-
illy give the same result with other technologies. This can
be done only by using the very same expressions for all
objects of the facing edges of abutted cells, but this seems
neither easy to enforce, nor very good for design quality
because of constraint propagations. The verification of the
generated objects must be done for many technologies to
warranty actual process independence.

Other languages make use of a compactor, like Skill[6]
or Modgen(7]. The cells are drawn under a stick diagram
editor, and then tiled together by program. With com-
paction, cell size and pins’ positions are not predictable.
In order to warranty pitch matching, the tiler must explic-
itly contain “constraints”[8] definitions. Theses constraints
have to be defined for each pin of each instance for proper
abutment. The tiling problem becomes a very complicated
problem, since all the pins of facing instances must be in-
dicated with constraints so to match after the compaction
process. For Skill, five compaction algorithms and three
constraint types can be chosen from for each pin. This
shows that such programs are not anymore “tilers”. More-
over, the use of hierarchical compaction requires a haif de-
sign rule guard distance between abutted cells, as internal
elements cannot be taken into account, leading to potential
area loss already at the leaf cell level.

These methodologies put the burden of layout portability
on the designers, cither making leaf cell design a complex
. software problem and giving a hardly portable result, or
having the tiler describe a constraints graph between in-
stances connectors that the compacter may not be able to
solve for various technologies[9].

3 Principles of the proposed approach

Defining a new language for procedural generation is
useful only if it provides a more portable, more structured

and simpler approach to generator design. Therefore, we
define the following principles:

Process independence: the generated objects must be
portable on a wide set of technologies. Ensuring the
respect of pitch matching constraints in both direc-
tions is obtained by a symbolic layout on fixed grid
approach. It is described in Section 4.

Separation of leaf cell and tiler: leaf cells are graphical
objects, and designers are used to draw them under a
layout editor. A custom cell is shown Figure 1. The

Vé—- Ml -T--;
?7 = ‘3;.3 ‘11’;
Y. =y
[ iy 4
?r . o

i

Figure 1: A typical cell of an optimized generator. (The
abutment box is drawn as a bold rectangle.)

natural way to design them is graphically. Placing
rectanguliar instances side by side is a far more regular
task than leaf cell design, and it can be done efficiently
by the tiling program.

Separation of netlist and layout description: some gen-
eration languages need a netlist to be able to compact
a layout correctly. But algorithms for placement and
interconnections are not alike, and merging both may
introduce many constraints on the designer.

Use of a general purpose portable language: what’s the
point with defining a new language, with specific syn-
tax and flow control statements? Using a general
purpose language enhanced with dedicated functions
seems a reasonable choice. A generator is too much of
an investment to be developed in the restricted frame-
work of a commercial CAD system. Interoperability
with these system is however a need for practical use
of the generated blocks.

Wide range of file formats: in order to be usable within
different design flows and different CAD environ-
nements, several file formats must be available for

. -the differents views produced by a generator.

It is useful to be able to describe two kinds of generators:

¢ some functional blocks have an intrinsic topological
regularity: ROM, RAM, integer multiplier or adder.
For those blocks, optimized layout can be generated
using a “tiler and leaf cells” approach. Each genera-
tor uses a private cell library with the right abutment
properties.




o other functional blocks are more easily described as
parameterized soft macros because they do not have
good topological properties: floating point arithmetic
operators are a good example. What is actuaily gen-
erated is a standard cell netlist.

Both approaches rely on a procedural language providing
either sophisticated placement functions for procedural lay-
out, or connectivity functions for procedural netlist.

4 Portable layout

Process independence is addressed by a symbolic ap-
proach on fixed grid[10]. Our symbolic methodology is
not based on compaction, but keeps the advantages of de-
sign speed. It uses graphical primitives laid out on a thin
fixed grid and a restricted set of symbolic layers. The sym-
bolic to target process is an improved linear shrink. Unlike
the “usual” A[11], what is snapped to the grid are not poly-
gones edges but the center or axis of the basic symbolic
primitives. As a result, the output of a generator is still
portable across technologies, and can be instanciated as it
is in a chip. The translation to the target process may take
place at the chip level if the whole design uses the same
symbeolic approach.

Careful examination of over twenty different processes
ranging from 2 ym to .6 {im have leaded to the definition
of a generic set of symbolic design rules. The important
idea is that while minimum widths and spacings are quite
different through this sample of technologies, the pitches
— axis to axis distances — vary more homogeneously.

The mask artwork is produced from the symbolic layout
with a fully automated tool that uses a technological file
parameterized for the target process. The translation is
done hierarchically, and its primary steps are:

¢ compute the value of the A for the process. The value
of the A is determined by an expert from the micron
design rules.

o shrink the size of the symbolic grid to the A value
chosen for the process. Since the grid changes ho-
mothetically, the relative position of the center of the
symbols is kept.

¢ adjust the width, 11, of the runs, using the formula:

n"-r'eal = (“'symbolic - “;symbolic min)A+ n-r'eal min

This shows that only non minimal runs depend on the
value of the A, and that each layer is treated separately.
Transistors are runs of a specific layer and are macro
generated with a similar formula.

o adjust the transistor channel widths. Different tech-
nologies produce different transistor current ratio
Ip/I~. Note that changing the channel lengths would
decrease electrical performances.

¢ expand the symbolic primitives defined with a single
point, such as contacts.

This is done with a linear time algorithm. Notches and min-
imum distance between implant areas are corrected with a
O(y/n) post treatment, where n is the number of rectangles
of the layer for the given hierarchical level. The resuit is a
cif or gdslI file suitable for the foundry.

Regarding process independence, this method is close to
the one used in [12]. Its main advantage though is a more
structured approach using symbolic objects for leaf ceil
drawing, that warranties higher productivity. Predictable
area loss ranges from 10% to 20% compared to a process
dedicated custom approach. Approaches using compaction
lead to similar results, but require a much more complicated
tiler.

5 Justification of the C language choice

Software portability is addressed using the C language.
We believe that a tool being dedicated to libraries devel-
opment should be independent of any CAD vendor and
the software environment required to compile and run the
generators should be as simple as possible.

The C language is a good candidate. C in itself allows
computations, flow control and function calls. The tiling
language is actually a library of predefined C functions.
The generation language genlib can be easily extended by
integrating a new function into a dedicated library. Un-
like proprietary languages as L[3], Skill(6] or Modgen([7],
C is universally taught and known. It’s not ‘‘yet an other
language”, is independent of any vendor, and is today the
standard portable language. Type checking of function pa-
rameters was the main reason in the past for the introduction
of languages dedicated to procedural generation, but this is
not anymore applicable with modern compilers with strong
static type checking capabilities. The only interest of ad
loc languages, since they are interpreted, is their debug
capability. We present Section 7 a tool that provide this
functionality.

Other general purpose languages could be used, like lisp,
pascal or fortran. But these, unlike C, are not available on
any UNIX machine.

6 Overview of genlib functionalities
y

Although genlib allows procedural description of leaf
cells, the main purpose of the language is to write tiling
code in order to generate complex parameterized block.
In our tiling approach, using fixed grid symbolic layout,
the two main difficulties are cell placement and reliable
physical interface definition. Powerful symbolic placement



functions avoid any coordinates computation in the genera-
tor: all coordinates are implicitly retrieved from the already
placed cells. With this approach, interconnections are em-
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Figure 2: a small placement example.

bedded in the leaf cell layout. Nevertheless, in somes case
it can be necessary to make explicit routing between distant
cells or between two sub-blocks. The genlib library pro-
vides a channel routing function. Figure 2 shows a simple
block done using relative placement functions and proce-
dural wires and contacts. Wires can be drawn between two
cells, with either an L or S shape under designer control.
The wires’ extremities are given by either connectors or
points inside cells called references. The references may
also be used for procedural contacts placement, as in a RAM
address decoder, so to minimize the number of leaf cells.
When two blocks, such as a register file and its decoders,
have been design without paying much attention to the exact
connector locations on the instances faces, ie not allowing
direct abutment, the channel router function can be called
to materialize the connections.

As for the layout view, genlib provides the basic func-
tions for interface definition and cell instantiation for the
procedural description of a parameterized gate netlist. All
the semantics founded in VHDL structural descriptions can
be described using genlib functions. But VHDL functions
are high level behavioral descriptions, and therefore not eas-
ily applicable to produce netlists of gates. Genlib provides
a procedural approach to parameterized netlist generation
with the full power of C and two advanced functions. The
first one is a flattening utility that suppresses a hierarchical
level in a hierarchical netlist. The other one “unflattens” a
netlist: it creates a new hierarchical level into a hierarchical
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Figure 3: “Unflaten” behavior, the hierarchical level nmod
is created with the instance name new.

netlist without having to rewrite any interface. It is very
useful when floor plan constraints requires to split a big
netlist of gates into several pieces. The Figure 3 shows the
behavior of the function.

7 Graphical C debugger genview

As any complex piece of software, a generator must be
debugged[13]. Given the large number of possibly gener-
ated blocks, this requires a powerful dedicated debugger.
Genview[14] is a graphical C interpreter that allows step by
step visualization of the tiling process, with many possible
debug functionalities, like break points, variable trace, erc.

The heart of the C interpreter is based upon the Gnu
gee[15] compiler. Writing such a interpreter for a dedi-
cated language would have required much more work with
probably less efficiency. A typical view of the tools is given

Figure 4. _

8 Practical results

The genlib C library contains about 70 functions, with
UNIX on line documentation. The genlib functions have
been successfully used for both education and industrial
projects. '




Figure 4: The three main windows of genview.

Seven layout generators have been developed in two
years using genlib and the graphical interactive symbolic
debugging environment genview. The estimated design
time for each of them ranges from one half to one man

year, depending upon designer experience, complexity of

the layout and software, efc. Four of them have been de-
signed to fit in a datapath structure with over the cell routing
capabilities(16]. The remaining three are RAM, ROM and
FIFO generators. The tables below give run times — mea-
sured on a Sparc 2 —, densities, and delays — simulation
of the extracted critical path for worst case parameters at
70°C — for a 1 um technology. Entry delay in the tables
is the read access time for the sequential blocks.

e A fast adder generator[2], with propagation time in
log NV and size in N log N, where .\ is the number
of bit. This adder has been used a test vehicle and
fabricated on a large set of technologies: 1.2 um, 1.0
um, 0.8 um, 0.7 ymand 0.5 pm.

o A static register file generator. It may be operated
as a set of level-sensitive latches or edge triggered
flip-flops.

¢ A barrel shifter generator.

¢ Aninteger modified booth algorithm array multiplier.

block run | trans- | Ktrs/ | delay
time | istors | mm? | (ns)

32 bit, 2 inputs adder 3s | 1513 | 47 10.5

32x32 multiplier 10s | 23875 | 54 | 52.0
32 bit shifter 5s | 2828 | 25 9.5
32x32 register file 14s | 11656 | 5.3 8.0

Use of these operators in datapath structures leads to
density up to 5Kt/mnr using a dedicated over the cell
router[17].

¢ A high speed ROM generator, with three state outputs.

¢ A static RAM generator. with selectable aspect ratio.

e An asynchronous F/FO generator.

block run | trans- | Ktrs/ | delay
time ; istors | mm* | (ns)

64 Kb ROM 47s | 75048 | 143 | 8.5
1Kx32b RAM 11s | 201686 | 11.0 | i1.5
32x32 FIFO 7s | 12176 | 6.1 8.0

This table gives quantitative values on the generators.

generator lines | number of | options
of code | leaf cells
adder 1000 53 10
multiplier 1400 78 5
shifter 600 56 2
register file 2600 81 10
ROM 1100 100 7
RAM 1000 69 5
FIFO 300 66 2

Most of those generators have been used in several aca-
demic and industrial circuits.
«. The parameterized netlist generators have been essen-
tially dedicated to floating point arithmetic, for an adder, a
multiplier and floating point format converters{18].

An other possible use of the genlib language is one shot
procedural layout for custom blocs:
The cache of a BULL DPS7 chip has been assembled with
genlib. This block contains about 800.000 transistors, and
the code to generate it, written by a non-programmer, is
2000 lines.
The StaCS[19] circuit, high complexity demonstrator of
the IDPS project containing about 875.000 transistors, has
been implemented using several generators and dedicated
one-shot custom blocks written in genlib. The target pro-
cessis 0.8 um CMOS.

9 Conclusion

A procedural generation language is required for fast de-
velopment of libraries. Compared with existing languages,
genlib main advantage is to ensure a portable and sim-
ple approach to the tiling problem. The layout portability
is granted thanks to the fixed grid symbolic methodology.
Portability from the software point of view is provided by
the standard C compiler. Fast design cycle is obtained
with the graphical debugger genview. Silicon compilation
evolution depends on the availability of powerful param-
eterized module generators. Genlib actually provides an
efficient development environment for those portable gen-
erator libraries.



Figure 5: StaCS floor-plan.
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