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Abstract — A general framework for synthesis of asynchronous con-
trol circuits at the state graph level is proposed. The framework can
consider both concurrency reduction as well as new state signal in-
sertion during the transformation process. Considering concurrency
reduction in the exploration space is crucial because more area effi-
cient and higher performance circuits may be possible. This is partly
because often fewer new state signals are required and the resulting
logic is typically more highly unspecified, thus leaving more room
for optimizations at the logic level. Considering new state signal
insertion is also crucial as new signals are usually required for dis-
ambiguating state coding conflicts. A larger solution space can be
searched when both classes of transformations are considered. The
new framework has been implemented and verified on a large set of
realistic design examples.

1 Introduction
Automated synthesis procedures for asynchronous control circuits
from formal specifications are becoming essential for system-level
design. In this paper, a general framework for synthesis of asyn-
chronous control circuits at the state graph level is proposed. For-
mulating the problem at the state graph level has several notable
advantages. First, the developed synthesis methods are generally
applicable to different well-formed high-level specification models
since it is possible to translate them to the state graph level. For
example, very general forms of signal transition graphs (STGs) [2, 9]
can be translated to equivalent state graphs. Second, it is possible
to perform important transformations at the state graph level that
are difficult or impossible to formulate on a high-level model (e.g.
STGs).

Consider a simple state graph shown in Figure 1(a). This specifi-
cation cannot be directly implemented because the initial state graph
contains two states with the same code, namely it violates the so-
called complete state coding (CSC) requirement. This means that a
race condition can occur. If each non-input signal is to be imple-
mented with a single complex gate and this complex gate contains
no internal hazards, then it has been shown that the necessary and
sufficient condition for a hazard-free implementation is precisely
characterized by the CSC requirement. A state graph satisfying the
CSC requirement may also be implemented in a hazard-free manner
using only basic gates by employing the methods described in [5, 1].

In [8], a generalized state assignment method was proposed for
transformations at the state graph level. This method has the capa-
bility of adding new state signal transitions in a concurrent way. For
example in Figure 1(a), the CSC violation can be corrected by adding
a new state signal C , as shown in Figure 1(c) and (d). This process
is referred to as state graph expansion. While the transformations
that can be performed by this process are quite powerful, they cannot
arrive at solutions that require the reduction of concurrency.

Referring again to Figure 1(a), the CSC violation can instead be
corrected by forcing A+ to always proceed B+. This effect can be
achieved at the state graph level by removing the first 01 state from
the state graph, as shown in Figure 1(b). The solution shown in Fig-
ure 1(b) reduces to simply an inverter with only 1 literal. On the other
hand, the solution shown in Figure 1(d) requires 8 literals to imple-
ment. The solution here with concurrency reduction is clearly faster
as well. Therefore, the common assertion that maintaining concur-
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Figure 1: (a) Initial state graph with CSC violation. (b) Correc-
tion via concurrency reduction. (c) Correction by generalized state
assignment. (d) Expanded state graph.

rency is crucial for performance is false. Let us examine briefly why
the consideration of concurrency reduction in the exploration space
is important for both area efficiency and performance: (1) In a highly
concurrent specification, the number of unreachable states is limited.
Consequently, the Boolean functions can be highly specified so that
logic optimization is limited. Concurrency reduction can increase
the number of unreachable states in the transformed state graph, thus
providing more don’t care conditions for logic optimization. (2) With
concurrency reduction, fewer state signals may be required to disam-
biguate the states. Thus, fewer next-state functions are required, and
the required Boolean functions may depend on fewer support vari-
ables. In addition, requiring extra state signal transitions may also
delay the output signal transitions, and hence can also increase the
delay of the final circuit.

In general, both concurrency reduction and the insertion of new
state signals are required to search a larger solution space. Consider-
ing only the solution space without concurrency reduction may leave
out many potentially important solutions, solutions that may be more
optimal with respect to area and performance. Although the im-
portance of concurrency reduction has been recognized, the existing
methods have rather severe restrictions. For example, a technique
has been proposed for STGs [7], but it is restricted only to marked
graphs.

In this paper, we describe a general framework that considers both
concurrency reduction and new state signal insertion transformations
in a unified solution framework that works purely at the state graph
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level. Specifically, we describe two new methods of concurrency
reduction and show how each method can be combined with the gen-
eralized state assignment method. The first method is based on a
pairwise reduction between a pair of concurrent transitions. This
pairwise reduction method can be combined with generalized state
assignment in an iterative manner. The second method is based on
formulating the concurrency reduction step as a Boolean satisfiabil-
ity problem by defining a reduction function that transforms the state
graph by removal of states. Correctness conditions are formulated as
Boolean constraints. This approach can be combined with the gener-
alized state assignment method in a “compositional” way by solving
both the concurrency reduction and state assignment constraints [8]
together in a satisfiability framework.

2 State Graph Specification
2.1 State graphs

A state graph is a finite automaton given by G = hA;S; T; �; soi,
where the components are defined as follows.

A = I [ O is the set of signals, I is the set of input signals, and
O is the set of non-input signals, such that I \O = ;.

T = A � f+;�g is the set of signal transitions, where a+
denotes the 0 ! 1 transition of signal a and a� denotes the 1 ! 0
transition of signal a. a� is used to depict either a+ transition or a
a� transition.

� : S � T 7! S is a partial function representing the transition
function such that if �(s; t) = s0 is defined then t is said to be enabled
in state s and the firing of t takes the system from s to s0 . This is

denoted as s
t
�! s0 . It can also be denoted as s[tis0. We will use

s[ti to denote that t is enabled in state s. To depict the firing of a
sequence of transitions � = t1t2 : : : tm, the notations s

�
�! s0 and

s[�is0 are used. We will use s[�i to denote that � is a possible firing
sequence in state s.

s0 2 S is the initial state. Each state in the state graph is labeled
with a binary vector hs(1); s(2); : : : ; s(n)i according to the signals
A = fa1; a2; : : : ; ang of the system. The labeling is given by a
state assignment function �A : S � A 7! f0; 1g. For a given state
s 2 S, s(i) denotes the i-th component of s corresponding to the
value of signal ai 2 A. The state assignment function is defined
as follows: (1) if s(i) = 0 ^ t = ai+ then s0(i) = 1; (2) else if
s(i) = 1 ^ t = ai� then s0(i) = 0; (3) otherwise, s0(i) = s(i). If
the states of a state graph can be encoded according to the above rules,
then the state graph is said to have a consistent state assignment.

In a state s 2 S, if a transition t is enabled, the corresponding
signal ai is said to be excited (which can be denoted pictorially with
an asterisk �).

Since a state graph is represented as a directed graph, it is often
useful to refer to its arcs, which we can denote as E � S � S.
(s; s0) 2 E if and only if 9t 2 T : s

t
�! s0 is defined. That can be

denoted by the relation sE(t)s0.
A state in the state graph captures the state of all signals in a

circuit, while a transition between states is a transition of exactly one
signal. There may be many signals enabled in a state, but exactly one
signal transition is fired at a time. This corresponds to the interleaved
concurrency model where enabled transitions can fire in any order,
but only one is fired at a time.

2.2 Objects and properties

In this section, we formally define some basic objects and properties
that we will be using to formulate our framework. We first define
some properties of state graphs.

Definition 2.1 (Semi-modularity) LetG be a state graph. A transi-
tion t is said to be semi-modular with respect to u

t
�! v in G if and

only if t remains enabled in all states w0 where 9t0 6= t : u
t0

�! w0.

A signal a is said to be semi-modular in G if and only if all tran-
sitions a� in G are semi-modular. A state graph G is said to be
semi-modular if and only if all of its signalsa 2 A are semi-modular.
A state graph G is said to be output semi-modular if and only if all
of its non-input signals a 2 O are semi-modular.

In a state graph specification, concurrency is represented indirectly
using interleaving. In order to derive a correspondence between ac-
tual signal transitions and states in the state graphs, different regions
are defined as follows:

Definition 2.2 (Excitation region) An excitation region of signal a
in state graph G is a maximal connected set of states in which a has
the same value and is excited.

The excitation region corresponding to transition ai�will be denoted
as ER(ai�). Note that there can be several excitation regions for a
corresponding to multiple transitions of a.

Definition 2.3 (Switching region) A switching region of transition
ai�, denoted as SR(ai�), is the set of all states that are reachable
fromER(ai�) by a firing of transition ai�.

More formally, state u 2 SR(ai�) if and only if state v exists in state

graph G, v 2 ER(ai�), and v
ai�
�! u.

Definition 2.4 (Ordered and concurrent set) A signal b is said to
be ordered with respect to transition ai� if no transition of signal
b is excited within ER(ai�). Otherwise b is said to be concurrent
with ai�.

A condition called the Complete State Coding requirement was
proposed and proved as a necessary and sufficient condition by Chu
[2] for a race-free implementation.

Definition 2.5 (Complete State Coding (CSC)) A state graph is
said to satisfy the Complete State Coding requirement if and only
if (1) each pair of states have unique binary codes, or (2) for pairs
of states having identical binary codes, the set of excited non-input
signal transitions must be identical.

If all states in a state graph have unique binary codes, then the state
graph is said to satisfy the Unique State Coding (USC) requirement.

2.3 Conformance and the solution space

In this section, the solution space being considered in this work is
defined. Our first correctness condition is related to Dill’s notion of
conformance [3]. Here, we give a variant definition for conventional
state graphs. Let G = hA;S; T; �; s0i be a state graph. A trace
is any r 2 T � . The set of success traces accepted by G, denoted
by S � T �, is the set fr 2 T � j s0[�ig. For every trace in S ,
including an empty string, S describes the next possible input and
non-input event that is accepted. Since a real circuit cannot control
its environment, it must be receptive to any input event at all times.
When an input event, I = I � f+;�g, is not accepted following a
partial trace r, meaning rI 62 S , then rI and all subsequent traces
rIT � are said to result in a failure. All such failure traces,F � T � ,
are formally defined byF = ((S [ f�g)I � S)T � .

Given a specification state graph G, we wish to define when
a transformed state graph G0 still implements G. Informally, G0

implementsG if the set of possible traces ofG0 over the set of signals
that the environment can observe is a subset of the possible traces of
G, and the possible failures of G0 is a subset of possible failures of
G.

Assuming the set of input and non-input signals for the specifica-
tion state graph G and the transformed state graph G0 are identical,
then conformance can be defined as follows.



Definition 2.6 (Conformance I) Let G0 and G be two state graphs
such that I 0 = I and O0

= O, and let P 0 = S
0
[ F

0 and let
P = S [ F . Then G0 is said to conform to G, denoted by G0

� G,
if and only if P 0 � P andF 0

� F .

With state assignment, it is possible that the transformed state graph
G0 has more signals than the specification state graph G, meaning
O0 � O; however, I 0 = I must remain the same. The set of (state)
signals O0

� O are said to be non-observable.
We can define a hide operation on a state graph G with respect

to a subset of signal AD � A, denoted with hide(AD)(G), as
follows. Replace all transitions TD = AD � f+;�g in G with an
� transition and then determinize the resulting state graph by means
of epsilon closure [4]. The state assignment function �A is modified
accordingly. This is equivalent to the hide operation in [3]. Then the
definition of conformance is modified as follows.

Definition 2.7 (Conformance II) LetG0 andG be two state graphs
such that I 0 = I and O0

� O. Then G0 is said to conform to G,
denoted by G0

� G, if and only if hide(O0
� O)(G0

) � G.

Note that conformance is defined as a property on traces rather than
on state graphs. Any concurrency reduction transformations must
ensure that the conformance property is preserved. This implies all
input concurrency and input choices must be preserved; i.e., if an
input event is possible in the specification state graph, it must remain
possible in the transformed state graph.

In addition to ensuring conformance, the transformed state graph
G0 should also satisfy the following requirements in order for it
to be implementable with respect to a specification state graph G.
(1) Complete state coding: G0 must satisfy the CSC requirement.
(2) Semi-modularity: Every signal transition that is semi-modular
in G should also be semi-modular in G0. Every new state signal
transitions introduced should also be semi-modular inG0 . Preserving
semi-modularity ensures that an output semi-modular state graph
remains output semi-modular. Otherwise, arbitration circuitry must
be synthesized to handle the output non-determinism. Though this is
theoretically possible, we exclude it from our solution space to ensure
existing synthesis methods can be used to build hazard-free circuits.

3 Heuristic Pairwise Reduction
3.1 Reduction operator

In this section,we formulate how concurrency reduction can be solved
at the state graph level. Intuitively, concurrency reduction involves
removing some possible traces. Recall that state graphs use an in-
terleaved concurrency model. This means that in a given state there
may be many concurrent transitions enabled (cf. Definition 2.4), but
exactly one may fire at a time. The state graph represents different fir-
ing orders of concurrent transitions. We can reduce the concurrency
with respect to a pair of concurrent transitions ht0; t1i in a state graph
G by imposing that the transition t0 must first fire before t1 (or vice
versa). This essentially corresponds to the removal all traces r 2 S
where t1 is the first to appear.

Consider the example shown in Figure 2. Transition a+ is con-
current with b+, c+, and d+. We can reduce the concurrency of this
state graph with respect to hc+; a+i by transforming it so that c+
always proceed a+. At the state graph level, removing traces where
a+ fires first can be achieved by removing states where a+ has fired
before c+. However, the removal of states cannot be performed ar-
bitrarily since we must ensure that the transformed state graph still
conforms to the specification state graph and that semi-modularity is
preserved.

Definition 3.1 (Pairwise reduction) Let G = hA;S; T; �; s0i be a
finite connected state graph with a consistent state assignment. Let
ht0; t1i be two concurrent transitions by Definition 2.4, such that t1

00000

10000

01000

01100

0111011000

11100

11110

10001

11001

11101

11111

a+

e+
a+

a+

a+
e+

e+

e+

b+

b+

b+

c+

c+

c+

d+

d+

d+

unconnected

ER(a+)

ER(a+)

SR(a+)
00000

01000

01100

01110

11100

11110

11101

11111

a+

a+
e+

e+

b+

c+

d+

d+

d+

(a) (b)

Figure 2: (a) In this state graph, transitions a+ and c+ are concur-
rent. We can reduce the concurrency by forcing c+ to proceed a+,
resulting in the state graph shown in (b).

is not an input transition. (i.e. t1 62 I �f+;�g.) Then the pairwise
reduction of G with respect to ht0; t1i, denoted by Gjt0 7!t1 , is a new
state graph hA;Sjt0 7!t1 ; T; �jt0 7!t1 ; s0i derived as follows: (1) Let
ER(t1) be the excitation region t1, and SR(t1) be its corresponding

switching region. (2) Let dER(t1) � ER(t1) be the maximally con-
nected subset of states in ER(t1) before encounting a t0 transition,

and dSR(t1) be the corresponding switching region. (3) Remove all

states in dSR(t1) and all associated fanin and fanout arcs. (4) Remove
unreachable (dead) states. Sjt0 7!t1 � S is the set of remaining states
and �jt0 7!t1 is � restricted to Sjt0 7!t1 .

Note that the operator is only defined when t1 is not an input
transition. We illustrate the reduction operator on the example shown
in Figure 2 by reducing the state graph with respect to the concurrent
transition pair hc+; a+i, meaning we wish to impose that c+ is
ordered before a+. By definition of concurrent transitions, c+ can

fire inside ER(a+). We first identify dER(a+) � ER(a+) where
a+ is enabled to fire, but c+ has not yet fired – namely the states
00000 and 01000. To prevent a+ from firing first, we remove all

states in dSR(a+) – namely 10000 and 11000. This is according to
rule (3). We also remove states 10001 and 11001 because they are
now no longer reachable, according to rule (4).

Theorem 3.1 (Conformance preservation) Let G be a finite con-
nected state graph with a consistent state assignment, ht0; t1i be two
concurrent transitions, andGjt0 7!t1 be a reducedstate graph derived
according to Definition 3.1. ThenGjt0 7!t1 � G.

Theorem 3.2 (Semi-modularity preservation) Let G be a finite
connected state graph with a consistent state assignment, ht0; t1i

be two concurrent transitions, andGjt0 7!t1 be a reduced state graph
derived according to Definition 3.1. Then every transition t semi-
modular in G remains semi-modular in Gjt0 7!t1 .

3.2 Combining with state assignment

Let G be an initial state graph. The reduction operator described
in the previous section can be combined with the generalized state
assignment method [8] to iteratively search the solution space. G
can be first reduced to minimize the number of CSC violations. The
remaining CSC violations can be solved by applying the generalized
state assignment method to insert new state signals and transitions.
By iterating these two types of transformations, a very large solution
space can be explored.



00000

10000

01000

01100

0111011000

11100

11110

10001

11001

11101

11111

a+

e+
a+

a+

a+
e+

e+

e+

b+

b+

b+

c+

c+

c+

d+

d+

d+

00000

01000

01100

01110

11100

11110

11101

11111

a+

a+
e+

e+

b+

c+

d+

d+

d+

(a) (b)
= 0

= 1

Figure 3: (a) Initial state graph. (b) Transformed state graph.

4 Global Satisfiability Approach
4.1 Formulation

In Section 3, it was shown that concurrency reduction essentially
corresponds to the removal of traces, and that the removal traces
can be achieved at the state graph level by the removal of states.
The reduction operator described in Section 3 reduces one pair of
concurrent transitions at a time.

In this section, we describe an alternative approach that builds a
set of Boolean constraints to characterize all possible sets of states
that can be removed without violating the conformance condition
and the semi-modularity condition. These Boolean constraints can
be solved using any Boolean satisfiability solver. Formulating the
problem in this way has two advantages: first, the approach can si-
multaneously consider the reduction of concurrency between several
sets of concurrent transitions rather than just a single pair; second,
since the problem is formulated using a Boolean satisfiability ap-
proach, it can naturally be combined with the Boolean satisfiability
approach used for generalized state assignment [8]. In [8], a set of
Boolean constraints was prescribed for solving the state assignment
problem. The set of Boolean constraints for concurrency reduction
can be combined with those for the state assignment problem to solve
both concurrency reduction and state assignment simultaneously us-
ing a Boolean satisfiability framework.

The basic idea is to transform a state graph G into a new state
graph G0 by encoding each state by either a “0” or a “1”. This
is formalized by defining the notion of a reduction function. Let
G = hA;S; T; �; s0i be the initial state graph. A reduction function
is a function ! : S 7! f0; 1g on G that maps each state in G to either
0 or 1. The assignment !(u) = 1 means that the state u is kept,
and the assignment !(u) = 0 means that u is removed. Given this
intuition, we can define the global reduction operator as follows:

Definition 4.1 (Global reduction) Let G = hA;S; T; �; s0i be a fi-
nite connected state graph with a consistent state assignment. Let
! : S 7! f0; 1g be a reduction function defined on G. Then the
global reduction of G with respect to !, written !(G), is a new
state graph G! = hA;S! ; T; �!; s0i, where A, T , and s0 remain
unchanged. S! is defined as

S! = fs 2 S j !(s) = 1g;

and the transformed next state function �! is defined as

�!(s; t) =

(
undefined if �(s; t) is undefined
undefined if !(s) = 0
�(s; t) otherwise

u

v x

y

t1

t1

t0

t0

t0 t1

Q = (u, v, x, y)

=

Figure 4: A quadrant configuration.

This essentially defines the meaning of ! : S 7! f0; 1g and how the
new state graph can be derived. For example, in Figure 3, the states
in “black” are assigned! = 0, and the states in “white” are assigned
! = 1. The transformed state graph is shown in Figure 3(b). How-
ever, as with the pairwise reduction operation described in Section 3,
concurrency reduction cannot be performed arbitrarily. Therefore,
conditions must be imposed on the assignment function. That is,
conditions must be imposed such that the transformed state graph
G! remains a “valid” implementation of the initial state graphG.

Specifically, we need to formulate constraints to capture the fol-
lowing requirements: (1) Conformance, which corresponds to the
preservation of input concurrency, input choices, and the initial state;
and (2) semi-modularity. (3) In addition to these two types of con-
straints, constraints should also be imposed to ensure that the trans-
formed state graph does not contain any unreachable (dead) states.
These constraints are called connectivity constraints. (4) Finally, con-
straints are imposed to see if the transformed state graph satisfies the
complete state coding property.

As in [8], we will formulate this as a Boolean satisfiability problem
and express the constraints directly as Boolean constraints. We will
use the notation !u to denote !(u) = 1, and the notations !u or
: !u to denote !(u) = 0. In fact, this directly corresponds to a
Boolean variable !u and the corresponding two Boolean literals.
The constraints are described next.

Conformance constraints: The first set of constraints are related
to conformance.

Requirement CR1a. All input transitions must remain enabled. Let
E be the set of state transition pairs (u; v) in G. Let I � E be the

subset of state pairs (u; v), u
t
�! v, such that t 2 I�f+;�g. Then

the requirement CR1a is simply expressed asY
(u;v)2I

(!u ) !v) (1)

Requirement CR1b. All input choices must remain possible. Let
CH be the set of triplets (u; v; x) such that each has the configuration
v  � u �! x, and u corresponds to an input choice node. Then
CR1b can be simply expressed asY

(u;v;x)2CH

�
!u ) (!v ^ !x)

�
(2)

Requirement CR1c. Preservation of initial state. This is simply
!s0 = 1.

Semi-modularity constraints: We next need to guarantee that ev-
ery transition that was semi-modular in G remains semi-modular in
G! . Informally, an excited transition t is semi-modular with respect
to a state u if and only if in every reachable state from u, t can be-
come stable only through firing it. To guarantee that the transformed
state graph is consistent and satisfies semi-modularity, the following
requirements must be satisfied.



Requirement CR2a. Semi-modularity must be preserved. To explain
the semi-modularity requirement, consider a 4-state configuration
Q = (u; v; x; y), as shown in Figure 4, such that (1) u; v; x; y 2 S,

and (2)9t0; t1 2 T : (u
t0
�! v)^(u

t1
�! x)^(x

t0
�! y)^(v

t1
�! y).

This is called a semi-modular quadrant. If state u is kept, but state y
is removed, then we require that at least one of v or x must also be
removed. If only one of v or x, or both are removed, then we assume
some serialization of t0 and t1 has occurred and we leave to the other
rules to ensure correctness. However, if both v and x are kept, this
means that both t0 and t1 remain concurrent and can fire from state
u. If state y is not kept, then this quadrant is no longer semi-modular.
Hence, semi-modularity has not been preserved. To prevent this
problem from occurring, the following constraint is applied. Let
QSET be the set of all quadrants. Then the requirement can be
expressed as follows:Y

Qi2QSET

(!u ^ !y)) (!v _ !x) (3)

Requirement CR2b. The transformed state graph must remain con-
sistent. Give a concurrent transition pair ht0; t1i, there can be several
quadrants in their excitation regions where t0 and t1 can concurrently
fire. The transformed state graph is inconsistent if concurrency is
removed in some of these quadrants but not others. This corresponds
to a kind of metastability problem. To prevent this, we require that
every quadrantwhere the head state is kept must be modified the same
way. For example, consider two quadrantsQ1 = (u1; v1; x1; y1) and
Q2 = (u2; v2; x2; y2). Suppose both u1 and u2 are kept. Then if v1 is
kept, v2 must also be kept; if x1 is removed,x2 must also be removed,
and so forth. To express this requirement, we define the following.

Let CCR be the set of all transition pairs ht0; t1i such that t0kt1.
Consider a concurrent transition pair ht0; t1i, let Q1;Q2; : : : ;Qn,
where Qi = (ui; vi; xi; yi), be the different quadrants in the state
graph where t0 and t1 can fire. LetQSET(t0; t1) � QSET be the
set of all suchQ’s. For all quadrants, the following must be satisfied:

Y
ht0;t1i2CCR

0
@
�Q

Qi2QSET(t0;t1)
!ui ) !vi

�
_�Q

Qi2QSET(t0;t1)
!ui ) : !vi

�
1
A (4)

Y
ht0;t1i2CCR

0
@
�Q

Qi2QSET(t0;t1)
!ui ) !xi

�
_�Q

Qi2QSET(t0;t1)
!ui ) : !xi

�
1
A (5)

Connectivity constraints: Next we describe constraints that ensure
that the transformed state graph is connected (meaning there are no
dead or unreachable states). This can be expressed as two sets of
constraints: fanout connectivity and fanin connectivity.

Requirement CR3a. Fanout connectivity. For a state u, let

FO(u) = fv 2 S j 9t 2 T : u
t
�! vg be the set of fanout

states. If state u is kept, we must ensure that at least one fanout state
is also kept. This is expressed as follows.

Y
u2S

0
@!u )

0
@ X
v2FO(u)

!v

1
A
1
A (6)

What this means is that at least one enabled event must be able to
fire. Note that requirement CR1a is a stronger requirement since it
requires all input events to remain enabled. Rule CR3a is applicable
when some enabled transitions are output events.

Requirement CR3b. Fanin connectivity. For a state v, let FI(v) =

fu 2 S j 9t 2 T : u
t
�! vg be the set of fanin states. If all the

fanin states of v have been removed, then v must also be removed.
This is expressed as follows.
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A (7)

In addition to the connectivity rules, we must make sure that every
transition in the initial state graph G must be able to fire in the
transformed state graph G! . This means that a transition cannot
disappear. We call this the deadlock condition.
Requirement CR3c. Every transition in G must exist in the trans-
formed state graph G! . Let ai� be a transition of signal a and
ER(ai�) its excitation region. Then we can impose the following to
ensure that a transition does not disappear.Y

a2A

Y
ER(a�

i
)

X
u2ER(ai�)

!u (8)

These rules, together with the preservation of the initial state, guaran-
tee the existence of a consistent state assignmentafter transformation.

Theorem 4.1 (Conformance and semi-modularity) Let G be a fi-
nite connected state graph with a consistent state assignment, and
! : S 7! f0; 1g be a reduction function that satisfies the rules ex-
pressed in rules CRf1abc,2ab,3abcg. Then G! � G and every
transition t semi-modular in G remains semi-modular in G! .

This mainly states the conditions imposed ensure that the trans-
formed state graph still “implements” the initial state graph. How-
ever, we still need to ensure thatG! satisfies the CSC requirement. In
general, concurrencyreduction alone is usually insufficient to remove
all CSC violations. Additional state signals must be added. This will
be touched upon in the next section. Nonetheless, we can formu-
late constraints to impose CSC only in the context of concurrency
reduction.
Requirement CR4. Checking for CSC property. Let CSC be the
set of state pairs (u; v) such that there exists a CSC violation between
u and v. For a state u and a subset of transitions T 0 � T , let
FO(u)jT 0 = fu0 2 FO(u) j 9t 2 T 0 : u

t
�! u0g. For a state

u, and let TO(u) = ft 2 TO j 9u
0 2 FO(u) : u

t
�! u0g. Also,

letFU = FO(u)jTO(u)�TO(v) and letFV = FO(v)jTO(v)�TO(u) .
Then for any (u; v) 2 CSC the auxiliary function csc(u; v) is
defined as follows:

csc(u; v) = !u _ !v _

 Y
u02FU

!u0
Y

v02FV

!v0

!
(9)

csc(u; v) expresses that either u or v is removed or both FO(u)

and FO(v) are reduced so that the CSC violation between u and v
disappears in G! . Let USC be the set of state pairs (u; v) such
that there exists an USC violation between u and v. Then TO(u) =
TO(v). For a state u and a transition t, let ut denote the state if
any satisfying u[tiut. Then for any (u; v) 2 USC � CSC the
auxiliary function usc(u; v) is defined as follows:

usc(u; v) =
Y

t2TO(u)

(!ut � !vt ) !u _ !v) (10)

usc(u; v) expresses that the removal of some fanout states of u and
v can introduce a new CSC violation between u and v. In that case
either u or v must be removed. Then checking if G! still contains
CSC violations, we simply need to checkY

(u;v)2CSC

csc(u; v)
Y

(u;v)2USC�CSC

usc(u; v) (11)

As we are formulating the problem as a Boolean satisfiability prob-
lem, including these constraints with the rest will guarantee that if a
solution exists without the addition of new signals, then the solution
is in the search space of the satisfiability solver.



Circuit Specification Implementation
primary initial

in out states I II III

hp-alloc-outbound 4 3 17 2 2 2
hp-mp-forward-pkt 3 4 20 0 0 0
hp-nak-pa 4 5 34 1 1 1
hp-ram-read-sbuf 5 5 36 1 0 0
hp-rcv-setup 3 2 14 0 0 0
hp-sbuf-read-ctl 3 3 15 1 1 1
hp-sbuf-ram-write 5 5 38 2 1 0
scsi-tsend-bm 5 4 41 1 1 1
scsi-trcv-bm 5 4 44 2 1 1
scsi-isend-bm 5 4 44 1 1 1
scsi-trcv-csm 5 4 38 1 1 1
scsi-isend-csm 5 4 38 1 1 1
pscsi-isend 4 3 40 2 2 2
pscsi-ircv 4 3 25 1 1 1
pscsi-tsend 4 3 37 2 2 2
pscsi-trcv 4 3 24 1 1 1
pscsi-tsend-bm 4 4 45 2 1 1
pscsi-trcv-bm 4 4 43 2 1 1
chu-ad-opt 3 3 16 0 0 0
vanbek-ad-opt 3 3 22 0 0 0
dme-fast 3 3 26 1 1 1
dme 3 3 18 1 1 1
dram-controller 7 6 101 0 0 0
adfast 3 3 44 2 0 0
combuf 2 1 18 3 1 1
count 4 2 29 1 1 1
duplicator 2 2 20 2 1 1
mmu 4 4 174 3 0 0
sout 4 1 16 0 0 0
master-read 6 7 8932 t.o. 1 t.o.
t.o.: timeout limit reached.

Table 1: Experimental results.

4.2 Combining with state assignment

In [8], the Boolean constraints for the generalized state assignment
approach were given. To combine generalized state assignment with
the concurrencyreduction approachdescribed in the previous section,
the Boolean constraints can be combined and solved simultaneously
using any Boolean satisfiability solver. Due to space limitation, we
refer the interested reader to [6] for a more extensive discussion.

5 Experimental Results
All synthesis procedures described in this paper have been fully im-
plemented in the C language. To verify these automated procedures,
we have thoroughly tested them on a set of 30 realistic design ex-
amples. The results are reported in Table 1. The largest example in
terms of the size of the initial state graph is master-read. The initial
state graph for this example has nearly 9000 states. The large initial
state graph is due to the high-degree of concurrency in the initial
specification.

All the benchmarks reported were specified initially either as a
signal transition graph specification or as a burst-mode (multiple-
input-change) asynchronous finite state machine specification. They
were automatically translated to equivalent state graph specifications
for synthesis. The number of input signals, output signals, and initial
states for each example are indicated under the columns labeled “in”,
“out”, and “initial states”, respectively.

For each benchmark, we try to satisfy the CSC requirement with
three ways. The first way is to apply the generalized state assignment
framework method in [8], which does not perform concurrency re-
duction. The number of extra state signals required using this method
for each benchmark is indicated under the column labeled “I”. The
second way is to apply our framework with the “heuristic iteration
strategy” described in Section 3. The results for this method are
indicated under the column labeled “II”. The third way is to apply

our framework with the “global composition strategy” described in
Section 4. The results for this method are indicated under the column
labeled “III”.

In both concurrency reduction strategies, input concurrency is
always maintained. This means that extra state signals may still be
required to disambiguate some states. As expected, in all cases, the
solutions obtained with concurrency reduction methods require often
less state signals, but always no more, than state assignment without
concurrency reduction. This is due to the fact that a larger solution
space is explored. For example, in the benchmark “mmu”, the state
assignmentonly approachrequired 3 signals whereas the concurrency
reduction methods did not require any extra signals. In the benchmark
“master-read”, which has nearly 9000 states, a solution with only
one extra state signal was found when concurrency reduction was
considered. The concurrency reduction process produced a final
result with only 41 states.

6 Conclusions
The principle aim of this paperwas to develop a formal framework for
synthesizing asynchronous control specifications purely at the state
graph level that combines both concurrency reduction and introduc-
tion of new state signals in the search space. Working purely at the
state graph level has two important advantages. First, it is possible
to synthesize a wide variety of high-level models, thus making the
synthesis framework very general. Second, it is possible perform
complex transformations at the state graph level that are difficult or
impossible to achieve in other frameworks. In this paper, we have
presented a general framework that can explore this search space in
a global way. We have shown by means of examples that faster and
smaller are possible when reduction of concurrency is explored. This
is partly because often less new state signals are required and the re-
sulting logic is typically more highly unspecified, thus leaving more
room for optimizations at the logic level. Thus, contrary to the com-
mon beliefs, maintaining concurrency does not always lead to higher
performance realizations. By combining both concurrency reduc-
tion and insertion of new state signals, a significantly larger solution
space is searched. Within the proposed theoretical framework, we
have thus far developed search procedures that are targeted towards
minimizing the number of introduced state signals. Currently, we
are investigating alternative search procedures within the framework
that are targeted towards performance.
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