
Exact Path Sensitization in Timing Analysis

R. Peset Llopis
Centro Nacional de Microelectrónica (CSIC)

Universidad Autónoma de Barcelona
08193 Bellaterra, Spain

Abstract of a direct implementation of this criterion. This paper presents
the first critical path finding tool based on the exact criterion. It
offers therefore better results in comparison with all other
approaches, since these are based on approximations of this
criterion.

Timing verification is an important aspect in chip design.
However, the growing complexity of combinational circuits
increases the total number of false paths, which demands fast
and accurate false path elimination methods. Several
approaches have been presented in literature, but all are based
on approximations of the exact criterion, and offer no exact
results. This paper presents the first implementation of the
exact criterion. Experiments show that this tool is much more
accurate in comparison with other approaches.

The rest of this paper is organized as follows. Section 2
discusses the exact and other criteria. A description of the
proposed algorithm is given in section 3. Then the two steps
responsible for eliminating false paths will be described in
section 4. Section 5 discusses the results obtained by the
proposed tool. Finally we will finish this paper with the
conclusions of section 6.

1. Introduction
The maximum operational frequency of a circuit is determined
by the maximum propagation delay of its combinational parts,
which is defined as the longest delay it takes for a signal to
propagate from a primary input to a primary output. In other
words, the maximum delay of a combinational part is equal to
the length of its critical paths. A straightforward approach to
compute the length of the critical paths is to simulate the
combinational circuit for all possible input vectors (vector
dependent approach). However, since the number of different
input vectors increases exponentially with the number of
inputs, this approach is only feasible for to circuits with only a
few primary inputs. The first approach to compute the length of
the critical paths, without simulating all input vectors (vector
independent approach), was based on the PERT (Program
Evaluation and Review Technique) algorithm [1]. Since this
approach determines the longest path without taking the logical
dependencies into account, it is very likely to find a false path.
The PERT delay was therefore used as an upper bound for the
length of the critical paths. However, the growing complexity
and integration of combinational circuits started to demand
tighter bounds. This has resulted in different timing analysis
(or critical path finding) approaches, each one based on a
different path sensitization criterion. The static criterion [2]
provides a lower bound, while others [3-6] offer an upper
bound. The viability criterion [7] gives the exact delay of the
critical paths.

2. Path sensitization criteria
We assume that the reader is familiar with concepts like
(non)controlling value, (non)controlling input, on-input, side-
input, dominating input, stable time, stable value, sensitizable
(or true) path and nonsensitizable (or false) path [6]. The exact
criterion is based on the following definition:

Definition 1 (Exact Criterion): Let v be an input vector of the
combinational network C, and let P = (G0, ƒ0, G1, ƒ1, .., Gn-1,
ƒn-1, Gn) be a path in this network. Path P is considered to be
an exact sensitizable path under v if for each lead ƒi (0 £ i £
n-1) one of the following two conditions is true:
1) Lead ƒi is the controlling input of gate Gi+1 with the

smallest stable time under v.
2) Lead ƒi is the noncontrolling input of gate Gi+1 with the

largest stable time, and all inputs of gate Gi+1 are
noncontrolling inputs under v.

The sensitization criteria are characterized by three properties:
Delay correctness: A criterion is delay incorrect if it may
underestimate the critical path delay. It is correct otherwise.
Delay correctness is crucial for timing verification.
Path correctness: A criterion is path incorrect if it may claim
an exactly sensitizable path to be false. It is correct otherwise.
Performance optimization is carried out by determining the set
of paths with a delay longer than a given threshold, say t, and
by reducing their delays. If a path incorrect criterion is used, it
is necessary to guarantee that shortening all sensitizable paths
with delays longer than t, implies that all true paths, which are
claimed to be false, are also shortened or become false paths.

The first criterion, able to offer the same results as by
simulating the circuit for all input vectors was proposed by [8].
It is called the exact or timing simulation criterion. The exact
criterion requires knowing timing information at all nodes in
the network, which seems to be incompatible with the vector
independent path tracing approach. This is why all timing
verifiers use approximations of the exact criterion [6], instead

Exactness: A criterion is exact if it claims every true path to be
true, and every false path to be false. It gives the same results
as can be obtained by analyzing the circuit for all input vectors.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.  1994 ACM 0-89791-687-5/94/0009 3.50

A timing analysis tool, based on this criterion, determines not
only the critical path, but also the input vector that activates it.
Therefore it is possible to use this input vector, in combination
with a circuit simulator, to compute accurately the critical path
delay. Non-exact criteria can find false paths, which cannot be
simulated to obtain more accurate critical path delays.

of gate Gi-1, and an input to gate Gi. Lead ƒ and gate Gi are
added to the partial path if one of the following two conditions
is true:
1) Lead ƒ is a noncontrolling input to gate Gi, and setting all

side-inputs of lead ƒ to nonlater noncontrolling inputs
produces no conflicts.

2) Lead ƒ is a controlling input to gate Gi, and setting all
side-inputs of lead ƒ to nonearlier controlling inputs or to
noncontrolling inputs produces no conflicts.

The characteristics of the several criteria are shown in table 1,
which is based on [6] (path correctness and delay correctness
are denoted as ´correct for the path sensitization problem´ and
´correct for the critical path problem´ by this author). The
symbol "X" denotes a violation, while the symbol "Ö" means
that the criterion satisfies a property. Furthermore, the symbols
´£´, ³́´ and =́´ stand for an underestimation, an
upperestimation and an exact result of the critical path delay,
respectively.

The only difference with the approach of [2] is that we take the
stable times into account. This is achieved by storing for each
gate output, not the logical value, but intervals for the stable
times of a logical 0 and a logical 1, as explained by the
following definition.

Definition 2 (Stable Times Intervals): Let T0 and T1 be the
stable times of a gate or lead for a stable value equal to logical
0 and 1, respectively. The stable times of a gate or lead are
defined as the stable times at the output of the gate or at the
end of the lead, respectively. The stable time intervals of this
gate or lead are defined as: [Tmin0,Tmax0][Tmin1,Tmax1]
with Tmin0£T0£Tmax0 and Tmin1£T1£Tmax1. If the stable
value of the same gate or lead is equal to logical 1, then the
corresponding stable time interval satisfies the condition
Tmin0>Tmax0. The stable time interval of a gate or lead with a
stable value equal to logical 0, satisfies the condition
Tmin1>Tmax1.

Criterion Delay Correct Path Correct Exact

Static [2] X(£) X X
BI [3] Ö(³) X X

DYG [4] Ö(³) Ö X
PCD [5] Ö(³) Ö X

Approx [6] Ö(³) X X
Viable [7] Ö(=) Ö X
Exact [8] Ö(=) Ö Ö

Table 1. Summary of path sensitization criteria.

This table shows that the exact criterion [8], is the most
accurate one. However, no timing verifier uses this criterion,
due to its complexity, and all verifiers are based on
approximate criteria.

Assume that the stable value and stable time at the end of the
previously defined partial path P (of gate Gi-1) are equal to
logical 0 and TP respectively. Path P is expanded with lead ƒ
(of delay d(ƒ)) and gate Gi if one of the following two
conditions is true:

Consider the circuits shown in figure 1. All gate delays are
shown in the corresponding gates.

1) Lead ƒ is a noncontrolling input of gate Gi, and setting the
stable time intervals of lead ƒ to [TP+d(ƒ),TP+d(ƒ)][¥,0]
and the stable time intervals of the side-inputs of lead ƒ to
[0,TP+d(ƒ)][¥,0] produces no conflicts.

2) Lead ƒ is a controlling input of gate Gi, and setting the
stable time intervals of lead ƒ to [TP+d(ƒ),TP+d(ƒ)][¥,0]
and the stable time intervals of the side-inputs of lead ƒ to
[TP+d(ƒ),¥][0,¥] produces no conflicts.

(a) (b)
Figure 1. Some circuit examples.

The static criterion of [2] requires that all side-inputs of the
paths are set to noncontrolling values. This can lead to an
underestimation of the critical path delay. The circuit of
figure 1a has a critical path delay of three time units; the static
criterion claims it to be two. The approximate criterion [6] is a
relaxation of the exact criterion, and can lead to an
overestimation of the critical path delay. This is demonstrated
by the circuit of figure 1b. The critical path delay is four time
units, while the approximate criterion claims it to be five.

The following two definitions are used to determine how to
deal with new conditions for the stable time intervals.

Definition 3 (Intersection Rule): Let [min0, max0][min1,

max1] be the current stable time intervals of gate G or lead ƒ,
and let [Tmin0,Tmax0][Tmin1,Tmax1] be the stable time
intervals which must be applied to the same gate or lead. The
resulting intervals will be: [max(min0,Tmin0),min(max0,
Tmax0)][max(min1,Tmin1),min(max1,Tmax1)]. If after
applying the intersection rule we obtain TminX>TminX, then
we set TminX and TmaxX equal to ¥ and 0, respectively (X
equal to logical 0 or 1).

3. Algorithm
The algorithm is based on tracing the paths from a primary
input towards a primary output, using a depth-first-search
(DFS) [2]. Let P be a partial path to be expanded, starting at a
primary input, and ending at gate Gi-1. Let lead ƒ be an output

Definition 4 (Conflict): Let [min0, max0][min1, max1] be
the stable time intervals of a gate or lead, obtained after
applying the intersection rule. If min0> max0 and

min1> max1 then a conflict arises.

It is clear that the stable value can be derived from the stable
time intervals, [Tmin0,Tmax0][Tmin1,Tmax1], using the
following four rules: Figure 3. Before tracing the critical path.

1) Tmin0£Tmax0 and Tmin1>Tmax1 → logical 0. The longest exact sensitizable path in this network is c-e-f-h-i,
for parity 0 or 1 at input c. Suppose we are tracing this path for
parity 0. First we applying [0,0][¥,0] at input c, leading to the
intervals [0,0][¥,0] at input c (will be written as c[0,0][¥,0]).
Forward and backward implication of this interval results in:
e[1,1][¥,0], f[¥,0][1,2], g[5,5][5,5], h[¥,0][3,4] and i[¥,0][4,5].
Now we arrive at the input of the NAND gate of delay 1.
Setting [1,1][¥,0] at lead e changes nothing. Lead e is a
controlling input of this gate. Therefore we set lead b to a
noncontrolling or nonearlier controlling input ([1,¥][0,¥]),
leading to b[¥,0][0,0]. Forward and backward implication: f[¥

,0][2,2], h[¥,0][4,4] and i[¥,0][5,5]. We are now at the input of
the buffer of delay 2. Setting [¥,0][2,2] at lead f changes
nothing. Now we apply [¥,0][4,4] at lead h, which again
modifies no intervals. Lead h is a controlling input of the OR
gate; lead g must be a noncontrolling or nonearlier controlling
input ([0,¥][4,¥]), which is already the case. This completes
the path search, since the output is reached. The following
figure shows the resulting stable time intervals.

2) Tmin0>Tmax0 and Tmin1£Tmax1 → logical 1.
3) Tmin0>Tmax0 and Tmin1>Tmax1 → conflict.
4) Tmin0£Tmax0 and Tmin1£Tmax1 → unknown.

In practice, we store only the stable time intervals of the gates,
since the intervals of a lead can be derived from those of its
driving gate, by adding the delay of this lead. Adding a new
interval condition to a lead, is carried out by applying it to its
driving gate, after subtraction the lead delay.

The conditions are propagated recursively in backward and
forward direction through the network by the implication step,
described in the following section. If no conflict is detected,
then the extended path can be a exactly sensitizable path. A
conflict means that the extended path is an exactly
nonsensitizable path.

The stable time intervals can be initialized to [0,¥][0,¥] before
starting the expansion of the paths from the primary inputs
towards the primary outputs. However, the computation time
can be reduced considerably by computing tighter starting
intervals. This, because tighter bounds will give the search
algorithm more often the possibility to prune a search direction.
The minimum and maximum PERT [1] delays between all
primary inputs and the output of each gate Gi are computed,
and propagated through the network by the implication steps of
the next section. The following figure shows how the PERT
bounds at the output of a 2 input AND (with unit gate delay)
can be improved by forward implication.

Figure 4. After tracing the critical path.

This example also demonstrates that forward and backward
implication may not find the stable values and stable times of
all nodes in the network. These can be computed during the
justification step.

4. Implication and justification
The logical incompatibilities of the path being traced can be
detected by the D-algorithm [9]. Since a complete D-algorithm
check on a single path is very time consuming, it is better to
split the D-algorithm into an implication and a justification
step. The first step detects most false paths, but is not able to
detect them all. Therefore some approaches [2] use the time-
consuming justification step each time an expanded path
reaches a primary output, to remove the remaining false paths.
Other approaches [4,6] do not use the justification step to
improve the CPU-times, since they propose a conservative
timing analysis tool. In fact, a timing verifier without the
justification step may claim a false path to be true and can
overestimate the critical path delay. Exact results can therefore

Figure 2. Computing tight initial stable time intervals.

The path search is guided by the esperance value of the partial
paths. The esperance value of a partial path is the sum of the
path delay and the largest PERT delay from the end of this path
to a primary output. It is an upper bound for the delay of the
longest sensitizable path containing the partial path.

The following figure shows an example of a path search using
the exact criterion. The gate delays are shown in the
corresponding gates (leads have no delay). The initial stable
time intervals can also be found in this figure.

only be obtained by using an exact criterion in combination
with the justification step. Therefore we present both modified
implication and justification steps, which take the stable time
intervals into account.

if gate G is AND gate
if the output is 1

if there is only one input with Timax1 ³ Tmin1-d(G)
apply [¥,0][Tmin1-d(G),Tmax1-d(G)] at that input

4.1. Implication apply [¥,0][0,Tmax1-d(G)] at all inputs
else if the output is 0

There are two different types of implication: forward and
backward implication. Both are more complex in comparison
with those proposed by [2], since they take the stable time
intervals into account.

if there is only one input with stable value equal to ? or 0
apply [Tmin0-d(G),Tmax0-d(G)][¥,0] at that input

else if there is only one input with Ti
min0 £ Tmax0-d(G)

apply [Tmin0-d(G),Tmax0-d(G)][¥,0] at that input
else

Let G be a gate with input leads ƒi (1 £ i £ n). Let the stable
time intervals of lead ƒi be [Ti

min0,Ti
max0][T

i
min1,Ti

max1],
and the stable time interval of gate G be
[Tmin0,Tmax0][Tmin1,Tmax1].

apply [Tmin0-d(G),¥][0,¥] at all inputs
else /* the output is unknown */

apply [Tmin0-d(G),¥][0,¥] at all inputs
Figure 6. The rules of backward implication.

Forward implication computes the stable time intervals of gate
G. The functions max(Ti,x) and min(Ti,x) determine the
maximum and minimum values of Ti, for the inputs of gate G
with a stable value equal to logical x (= 0, 1, or ?). Variable i
goes over all inputs of G (1 £ i £ n). The functions MIN and
MAX return the minimum and maximum values of its
arguments, respectively.

Similar expressions can be derived for the backward and
forward implication of NOT, NAND, OR and NOR gates.
The stable time intervals are propagated recursively through the
network in forward and backward direction to detect any
conflicts.

4.2. Justification
The justification step is used to eliminate the remaining false
paths. Justification of the exact criterion is more complex than
that of the static criterion [2], which will be described first.

if gate G is BUFF gate
if the input is 0

apply [T1
min0+d(G),T1

max0+d(G)][¥,0] at output
The static criterion deals only with stable values. All inputs of
noncontrolling gates (gates requiring noncontrolling inputs)
must be justified. However, only one input of each controlling
gate (gates requiring at least one controlling input) needs to be
justified, which implies that a decision must be made for each
controlling gate. In this case, one of the inputs is selected and
set to the controlling value, followed by backward and forward
implications. If no conflict is detected, then the gate driving the
selected input is justified. Otherwise, the next unexplored input
is tried. If all inputs have been explored, then a backtrack is
carried out. A path is sensitizable if all necessary gates have
been justified without conflicts. On the other hand, if a conflict
is detected and no more backtracks can be carried out, then the
path is nonsensitizable.

else if the input is 1
apply [¥,0][T1

min1+d(G),T1
max1+d(G)] at output

else /* the input is unknown */
apply [T1

min0+d(G),T1
max0+d(G)][T1

min1+d(G),
T1

max1+d(G)] at output
if gate G is AND gate

if all inputs are 1
apply [¥,0][max(Ti

min1,1)+d(G),max(Timax1,1)+d(G)] at
output

else if any input is 0
apply [MIN{min(Ti

min0,0),min(Ti
min0,?)}+d(G),

min(Ti
max0,0)+d(G)][¥,0] at output

else /* no input is 0 and any input is unknown */
apply [min(Timin0,?)+d(G),max(Timax0,?)+d(G)][MAX

{max(Ti
min1,1),max(Timin1,?)}+d(G), MAX

The exact criterion requires justifying also the stable time
intervals. Decisions must be made for controlling and
noncontrolling gates. For each noncontrolling gate a dominating
input must be selected and its side-inputs must be set to
nonlater noncontrolling inputs. On the other hand, for each
controlling gate a dominating input must be selected and its
side-inputs must be set to noncontrolling or nonearlier
controlling inputs. Both for controlling as for noncontrolling
gates all its inputs must be justified. Justification is carried out
in two steps.

{max(Ti
max1,1),max(Timax1,?)}+d(G)] at output

Figure 5. The rules of forward implication.

Backward implication determines the stable time intervals of
(some of) the inputs of gate G as follows:

if gate G is BUFF gate
if the output is 0

apply [Tmin0-d(G),Tmax0-d(G)][¥,0] at input
else if the output is 1

apply [¥,0][Tmin1-d(G),Tmax1-d(G)] at input The first step selects for each gate a dominating input. All
inputs, except the side-inputs of the dominating controlling
inputs, are justified during this step. The strategy for not
justifying these side-inputs is that their stable values are not

else /* the output is unknown */
apply [Tmin0-d(G),Tmax0-d(G)][Tmin1-d(G),Tmax1-d(G)]

at input

important, as long as they are noncontrolling or nonearlier
controlling inputs. The final stable values are very often
determined by propagating the stable time intervals of other
justified leads. This results in a considerable reduction of the
justification search space.

input, [Tmin-d(G),¥][¥,0] or [¥,0][0,¥], and justifies it. This
is illustrated in figure 8.

The justification step uses forward and backward implications
of the decisions made, to detect any conflicts. However, during
these implications we must guarantee that a dominating input
of a gate will be always dominating. This is achieved by adding
another implication rule, called vertical implication. Let G be a
gate with input leads ƒi (1 £ i £ n). Let the stable time intervals
of lead ƒi be [Ti

min0,Ti
max0][T

i
min1,Ti

max1]. Assume that
lead ƒk is the dominating input of gate G.

During the second step we justify all the remaining leads. Most
of the side-inputs of dominating controlling inputs have already
known logical values, which simplifies the justification task
considerably. Furthermore, some of these side-inputs have been
justified indirectly during the first step. Both steps will be
explained on a AND gate.

Vertical implication computes the stable time intervals of all
side-inputs of ƒk as follows:

if gate G is AND gate
if the output is 1

apply [¥,0][0,Tk
max1] at all side-inputs of ƒk

else if the output is 0
apply [Tk

min0,¥][0,¥] at all side-inputs of ƒkFigure 7. Justifying a AND2 with noncontrolling inputs.
Figure 9. First part of the rules of vertical implication.

Let gate G be a 2 input AND gate with input leads ƒ1 and ƒ2.
Suppose we want to justify the stable time intervals [¥

,0][Tmin,Tmax] at its output, as shown in figure 7. Since the
stable value at the output of gate G is equal to logical 1, all its
inputs must be noncontrolling inputs. However, there are two
possibilities in choosing the dominating input. Suppose we
choose lead ƒ1 as the dominating input of gate G. Its stable
time interval must satisfy [¥,0][Tmin-d(G),Tmax-d(G)]. Lead
ƒ2 is set to an earlier noncontrolling input by the constraint [¥
,0][0,Tmax-d(G)].

Vertical implication is also used to compute the stable time
interval of the dominating input ƒk. The functions max(Ti, x)
and min(Ti, x) determine the maximum and minimum values of
Ti for the side-inputs of ƒk with a stable value equal to logical
x (= 0, 1 or ?). Variable i is 1 £ i £ n and i ¹ k.

if gate G is AND gate
if the output is 1

apply [¥,0][max(Ti
min1,1),0] at ƒk

else if the output is 0
apply [0,min(Timax0,0)][¥,0] at ƒk

Figure 10. Second part of the rules of vertical implication.

Similar expressions can be derived for the vertical implication
of the inputs of NAND, OR and NOR gates. Vertical
implication is used, together with forward and backward
implication, recursively during justification to detect any
conflicts.

5. Results
The approximate [6], static [2] and the proposed exact criterion
have been implemented in C-programs. The ISCAS85
benchmarks with random gate delays have been used as test
cases. Surprisingly, all criteria find the same critical path delay
for these circuits. In table 2 we show the CPU-time for these
benchmarks on a Sun Sparc10 workstation. In this table, PERT
and Critical stand for the maximum PERT and critical path
delay. Furthermore, the static and exact criteria are a DFS
search, while the approximate criterion is a best-first-search
(BFS). The latter is not able to compute the c6288 circuit, since
it requires too much memory. The exact criterion requires more
CPU-time, since it takes not only the stable values, but also the
stable time intervals into account.

Figure 8. Justifying a AND2 with controlling inputs.

On the other hand, if we want to justify the stable time
intervals [Tmin,Tmax][¥,0], at the output of gate G, its
dominating input must be a controlling input. Again there are
two possibilities for the dominating input. Suppose we choose
again lead ƒ1 as the dominating input, and apply [Tmin-
d(G),Tmax-d(G)][¥,0] to its stable time intervals. The
difference between the first and second steps of the justification
phase is how they deal with the side-inputs of the controlling
dominating inputs. During the first step we set lead ƒ2 to a
noncontrolling or a later controlling input: [Tmin-d(G),¥][0,¥],
without carrying out a justification of this lead. The second step
sets lead ƒ2 to either a noncontrolling or a later controlling

Delay CPU-seconds criterion is more complicated in comparison with the others,
since we justify also the side-inputs of dominating controlling
inputs. However, this does not lead to larger justification
problems, since the percentage of non justified paths (breaks)
of the exact criterion is approximately equal to that of the other
criteria.

Circuit PERT Critical Approx Static Exact

c17 145 145 0 0 0
c880 1414 1414 0 0 0
c1355 1596 1578 1 1 1
c1908 2392 2230 5 4 22
c2670 1943 1818 4 5 8

Static Criterion Approx Criterion Exact Criterion
c3540 2703 2578 7 7 52

Circuit True False Break True False Break True False Break
c5315 2674 2553 6 7 9

c17 8 0 0 8 0 0 6 0 0c6288 7532 7182 - 4008 2475
c880 392 0 0 409 0 0 242 0 0c7552 2575 2472 11 13 16
c1355 1648 0 0 1656 0 0 664 4 0

Table 2. The CPU-times for tracing the critical path.
c1908 1562 0 4 1562 0 4 1355 7 0

However, the accuracy of these criteria can be compared by
computing the number of paths with delays between 90% and
100% of the critical path delay. Table 3 shows these results for
all benchmarks, but the c6288 circuit, which takes too long to
complete. These results demonstrate that the exact criterion
reduces considerably the set of paths that are claimed to be
true. However, since no justification has been applied on these
paths, it is only correct to state that the number of paths found
by the exact criterion is only an upper bound for the total
number of exact sensitizable paths between 90 % and 100 % of
the critical path delay. This is because exact results can only be
obtained by using the exact criterion, in combination with the
justification step.

c2670 446 157 976 473 215 1110 191 204 487
c3540 475 15 64 1187 475 625 404 109 22
c5315 627 10 0 641 10 0 434 4 0
c7552 223 5 0 293 14 0 206 0 0

Table 4. The number of paths after justification.

6. Conclusions
We have presented the first critical path finding tool based on
the exact criterion. This tool is delay and path correct, which
means that it will never claim a true path to be false.
Furthermore, it is exact when used in combination with the
justification step, which means that it will not claim a false
path to be true. In the latter case it gives the same results as by
simulating a circuit for all possible input vectors.

Number of paths CPU-seconds
Circuit Static Approx Exact Static Approx Exact The results obtained with our approach demonstrate that the

approaches proposed in literature are not very accurate. The
number of false paths claimed to be true by these approaches is
very large. Finally, we have also shown that the justification
step is the bottleneck for obtaining exact results for complex
circuits. This should be now the topic for further research.

c17 8 8 6 0 0 0
c880 392 409 242 3 3 8
c1355 1648 1656 668 12 12 31
c1908 1566 1566 1362 82 81 234
c2670 1579 1798 882 45 49 76

7. Referencesc3540 554 2287 535 90 116 430
c5315 637 651 438 27 28 58 [1] R.B. Hitchcock et. al., "Timing analysis of computer

hardware", IBM J. Res. Develop., vol 26, no. 1, pp. 100-
105, Jan. 1982.

c7552 228 307 206 18 21 35

Table 3. The number of paths for different criteria.
[2] J. Benkoski et. al., "Timing verification using statically

sensitizable paths", IEEE Trans. on CAD, vol. 9, no. 10,
Oct. 1990, pp. 1073-1084.

All the paths between 90 % and 100 % of the critical path
delay have been justified to determine the number of false
paths that are not detected during the path tracing phase.
Table 4 shows the number of true and false paths after
justification, for the three different criteria. However,
justification is very time consuming, since the search space
increases exponentially with the number of gates to justify.
Therefore we used an upper bound on the number of backtracks
to justify a single path. The total number of paths that could not
be justified within this bound is shown as "Break". These
results show that the number of false paths not detected during
the path tracing phase can be important, as demonstrated by
circuit c2670. However, the majority of paths are true after
justification. Furthermore it is clear that justification is the
bottleneck of critical path finding. The justification of the exact

[3] D. Brand and V. Iyengar, "Timing analysis using functional
analysis", IBM Th. J. Watson Res. Ctr., Tech. Rep., 1986.

[4] D. Du et. al., "On the general false path problem in timing
analysis", Proc. DAC 1989, pp. 555-560.

[5] S. Perremans et. al., "Static timing analysis of dynamically
sensitizable paths", Proc. DAC 19, pp. 568-573.

[6] H.C. Chen and D.H.C. Du, "Path sensitization in critical
path problem", IEEE Trans. on CAD, vol. 12, no. 2, Feb.
1993, pp. 196-207.

[7] P. McGeer and R. Brayton, "Efficient algorithms for
computing the longest viable path in a combinational
network", Proc. DAC 1989, pp. 561-567.

[8] H.C. Chen and D.H.C. Du, "Path sensitization in critical
path problem", ICCAD 1991, pp. 208-211.

[9] J.P. Roth, "Diagnosis of automata failures: A calculus and a
new method", IBM J. Res. Develop., pp. 278-281, Oct.
1966.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

