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Abstract

A exible test environment is presented that allows
for di�erent methods of parallelizing discrete event
simulation to be evaluated in a uniform environment.
The testbed is portable and can be easily extended in
order to analyze new parallelization methods. Run-
time measurements performed on the iPSC distributed
memory multiprocessors show e�ciencies of up to 50
percent for both conservative and optimistic synchro-
nization.

1 Introduction

In recent years, simulationhas become an indispensable
tool in VLSI design. As system complexity increases,
simulation is used not only for validation purposes but
also helps to design system hardware and software in
parallel and to evaluate performance of di�erent design
alternatives. Sequential computers no longer can cope
with the increasing demand for computational power
that emerges from the desire for more comprehensive
simulation of increasingly complex systems. Currently,
parallel simulation run on general-purpose multipro-
cessors is the most promising and cost-e�ective way of
providing the necessary compute power.

A great variety of methods for executing discrete
event simulation in parallel have been proposed in the
literature. For most of them, prototype implementa-
tions have been reported with di�erent simulators on
di�erent target architectures. Run-timemeasurements,
ranging from no speedup at all to super-linear speedup,
do not clearly favor any speci�c approach.
Parallel simulation e�ciency depends on more than

just the parallelization method employed. Properties
of the simulation problem and parameters of the target
architecture play an important role, too. For an unbi-
ased comparison of di�erent methods, run-time mea-
surements have to be made under uniform conditions.

The goal of the testbed presented in this paper is to
enable a detailed analysis of a great number of paral-
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lelization methods under uniform conditions.

According to the distribution of functions and data
structures and according to the type of process synchro-
nization the variety of methods for parallelizing discrete
event simulation can be subdivided into a small num-
ber of classes representing fundamentally di�erent ap-
proaches to parallelization. The classi�cation scheme
which has been used to make a representative selection
of parallelizations for implementation in our testbed, is
summarized in Fig. 1 (see [5] for more details).

2 A Testbed for Distributed

Simulation

The main objective in the design of our testbed has
been to provide a platform to implement and analyze a
large number of distributed simulation strategies under
uniform conditions. Besides the parallelization strat-
egy the main factors that contribute to parallel simula-
tion behavior are the target architecture and the �eld
of application where discrete event simulation is used.
Together with our primary topic of interest, paralleliza-
tion strategies, these environment parameters span up
a three-dimensional space as illustrated in Fig. 2. Our
testbed has been designed to cover as large a portion
of it as possible.
In order to eliminate the inuence of the simulation

application, some simulator had to be selected as the
basis for the testbed. Given the importance of gate-
level simulation in VLSI design and its ever increas-
ing demands for computational power, we have cho-
sen a gate-level logic simulator. It implements most
of today's state-of-the-art techniques in the modeling
of digital systems [3]. Thus, properties of the simula-
tion application in our testbed are very close to those
found in commercial CAE systems. Because of its com-
putational complexity, computer-aided VLSI design is
likely to become the �rst production-use application of
distributed simulation.

Portability has been an important requirement in
the design of our test environment. As implementa-
tion platforms we consider the whole class of scalable
MIMD multiprocessors, especially distributed memory
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Figure 1: Classi�cation of methods for distributed discrete event simulation

computers. The nodes of the multiprocessor are as-
sumed to be virtually fully connected, without storing
and forwarding messages on intermediate nodes. Par-
allelization is done explicitly on a medium to coarse
grain level using the message passing model. In the
implementation of parallelization strategies we have re-
stricted ourselves to the basic communication primi-
tives which can be found in nearly all of today's multi-
processor's programming models. Thus, a high degree
of portability has been achieved despite the fact that
until now there is no generally accepted standard for
message passing programming.
Based on the classi�cation scheme introduced in sec-

tion 1, four parallelizations of the logic simulator have
been implemented within the test environment. Each
of them belongs to a di�erent leaf in the tree of Fig. 1.
The parallel simulators have been instrumented to col-
lect detailed run-time statistics including parameters
speci�c to each approach, such as the number of roll-
backs in Time Warp.
On the one hand, implementation of a representative

selection of parallelization strategies allows the main
approaches to distributed simulation to be compared
under uniform conditions. On the other hand, a library
of functions is provided which forms the basis for a ex-
ible test environment. It is summarized in Table 1. Us-
ing the library, a great variety of parallelizations can be
analyzed with minimal implementation e�ort. In the

following sections, the four parallelizations that have
been implemented are presented.

FunctionDecomposition The sequential simulator
is decomposed into six tasks that process the stream
of events in a pipeline: Input: read stimuli for pri-
mary inputs; Output: write result; Event adminis-
tration: event list management, advancing simulation
time; Event generation: events are generated from new
values at output signals, preliminary signal values (see
[3]) are computed for current events; Event execution:
compute new signal values, update signal list, deter-
mine fan-out elements; Element execution.

Model Partitioning In the model partitioning ap-
proach a partitioning procedure is needed to assign ele-
ments to simulators. Our testbed currently implements
two algorithms, natural partitioning and min-cut par-
titioning.
E�cient communication is a key factor to parallel

simulation performance. Today's distributed memory
multiprocessors have quite high communication laten-
cies { costs that have to be paid for each message ir-
respective of its length. This is why in our testbed
an event bu�ering mechanism has been implemented
which is controlled by two parameters, lmin and amax.
Instead of sending each event as one message events are
collected in a bu�er which is sent as soon as its length
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Figure 2: parameter space of distributed simulation
covered by the test environment (The methods im-
plemented in the testbed are depicted as dark planes
marked with the abbreviations introduced in Fig. 1)

reaches lmin events.

To prevent events frombeing withheld too long in the
bu�er, a second parameter is used. If sending an event
is deferred for too long a time, synchronization over-
head increases because in the conservative approach
simulators remain in the suspended state unnecessar-
ily while in the optimistic approach, more speculative
computation has to be undone by rollbacks. Therefore,
if an event has been in the bu�er for more than amax

units of simulated time, the bu�er is sent regardless of
its length.

The partitioning procedure and the event bu�ering
mechanism described above have been used in all of the
parallelizations based on model partitioning that have
been implemented within the test environment. They
will be described below.

Deadlock Avoidance with Time Requests

Based on an algorithm proposed by Bain and Scott
[1], a conservative protocol has been implemented that
avoids deadlocks by means of time requests. A time re-
quest (Ti; Si) is issued by a simulator Si to all Sj with
li[j] < Ti, i.e. all predecessors Sj that prevent Si from
advancing its simulation time to Ti which is the time
stamp of the next event in its event list.

A time request (Ti; Si) asks the the receiving process
Sj whether its simulation time has already reached time

approach function

function decomposition into six processes
decompo-
sition

element evaluation: one- and two-phase
approach
communication mechanism: number of
items per message adjustable as a
parameter
instrumentation for run-time statistics

model interface to circuit partitioning
partitioning static partitioning: natural partitioning

and min-cut (generalization of Fiduc-
cia/Mattheyses' algorithm by Vijan [8])

conser-
vative

modi�ed control structure for conserva-
tive synchronization

approach deadlock avoidance by time requests
deadlock recovery with the vector
method: circulating control vector, par-
allel vector method
two options for the de�nition of external
events
instrumentation for run-time statistics

Time rollback mechanism
Warp optimized incremental state saving

aggressive and lazy cancellation
optimized re-simulation after rollback
dynamic re-partitioning
instrumentation for run-time statistics

Table 1: library of functions provided by the test envi-
ronment

Ti. If so, a YES reply is sent back. As an optimiza-
tion, a YES reply carries the local simulation time of
the replying process to keep the sender's channel time
up to date. Otherwise, the request is queued and the
requesting process is left waiting for the reply. If there
are any predecessors Sk of Sj with lj [k] < Ti, Sj sends
a request (Ti; Si) to these Sk. Note that the simula-
tor Si originating the request is entered as the second
component, not the sender Sj. Note, that the request
has Si as its second component { the simulator that
has generated the request for Ti. Its identity is needed
for cycle detection as explained below.
A cycle is detected if a simulator Sl receives a request

(Ti; Si) from some process Sj while it has an identical
request in its queue. Then an RYES (\reected yes")
reply is sent to Sj irrespective of the current local simu-
lation time Tl. Sl has, however, to keep in mind that an
RYES reply has been given to Sj . If later on an event e1
with time stamp t1 < Ti is sent to Sj , the queued copy
of request (Ti; Si) which had been received, say, from
Sm, must be answered by a NO reply, because event
e1 might cause an event e2 with time stamp t2 < Ti to
be generated and sent to Si. This is the only situation
where NO replies are generated.



A request by Si is completed if all predecessors to
which the request has been sent have sent their replies.
If the request has been originated by Si, the replies de-
cide whether simulation time can be advanced: If all
replies are either YES or RYES, simulation will pro-
ceed. If any NO replies have been received, simulation
must remain suspended. Having updated its channel
times li[j] according to the replies, Si generates a new
time request.

If a request (Tk; Sk) has been completed which had
been originated by another process, Sk, a reply is sent
to the process Sj from which the request had been re-
ceived: If there is at least one NO reply, a NO reply
is sent. Otherwise, if all replies are YES, a YES reply
is sent as soon as Ti � Tk. Otherwise, i.e. if there are
no NO replies but at least one RYES reply, an RYES
reply is sent. If Ti � Tk, the RYES can be converted
to YES.

Deadlock Recovery with the Vector Method In
the conservative approach, the alternative to deadlock
avoidance is to allow for deadlock to occur, detect it
an recover from it. Our implementation of deadlock
recovery is based on Mattern's vector method [6]. Two
variants of this deadlock detection algorithm have been
implemented: a circulating control vector and a parallel
version of the vector method. During deadlock detec-
tion the next event time is collected from each simu-
lator. Deadlock is recovered from by computing the
minimumof these times. All simulators with minimum
next event times are restarted.

The circulating control vector The vector
method detects deadlock by having each process count
the number of messages that are sent to and received
from other processes. Each simulator Si has a (local)

vector ~Li. If Si sends a message to Si, Li[j] is incre-
mented by one; if Si receives a message, Li[i] is decre-

mented by one. A circulating control vector ~C collects
this information on its way through the simulators.

A simulator Si that has received the control vector
keeps it until it has to suspend its simulation because

li[j] < Ti for some j. Then it updates ~C by adding its

local vector to it which then is reset, i.e. ~C := ~C + ~Li;
~Li = ~0. The control vector is passed to a process Sj

with C[j] > 0. If ~C = ~0 upon update, deadlock has
been detected: all processes have suspended simulation
and there is no event message in transit.

The parallel vector method In this variant of the

vector method, the control vector ~C is kept by a des-
ignated control process, PC, to which the simulators
send their local vectors if they have to suspend their

simulation. PC updates ~C in the same way as with the

circulation control vector. Also, a simulator resets its
local vector after sending it to PC. Again, if PC �nds
~C = 0, parallel simulation is deadlocked.

Time Warp In the Time Warp parallel simulator,
state information is saved incrementally instead of pe-
riodically saving the state as a whole (checkpointing).
Upon execution, events are not removed form the event
list. Instead, the signal value prior to event execution
is stored in the event data structure. If a rollback to
time tr occurs, a forward search is started in the event
list beginning at time tr . The value of a signal s is
restored from the �rst event a�ecting s that is found
in this search.
Incremental state saving is preferred to checkpoint-

ing in logic simulation because checkpointing would re-
sult in very ine�cient memory usage since each event
changes only a small part of the system state.

Both methods for undoing external events have been
implemented: aggressive and lazy cancellation. With
aggressive cancellation, an anti-message m� is sent for
each event message m

+ generated in the rolled back
period immediately upon rollback. With lazy cancella-
tion, an anti-message m� is not sent before local simu-
lation time (LVT) reaches the time stamp of m+. Only
if m+ is not generated once again in the re-simulation,
m
� will be sent.1 The idea behind lazy cancellation is

that re-simulation will re-generate most of the events
undone in the rollback.2

Global virtual time (GVT) is approximated using
Samadi's GVT2 algorithm [7]. Despite being one of
the earliest GVT algorithms, run-time measurements
have shown a su�ciently close approximation of GVT.
GVT2 outperformed a newer algorithm proposed by
Lin/Lazowska [4] which does not require simulators to
stop computation temporally but requires more mes-
sages to be sent. In our implementation of GVT2,
however, the requirement of stopping simulation could
be relaxed so that simulators may continue computa-
tion but must refrain from sending messages. Anyway,
investigating newer GVT algorithms such as the one
proposed in [2] will be an interesting application of the
test environment.

Two extensions to the basic Time Warp mechanism
have been implemented within our testbed:
Being motivated by the same assumption as lazy can-
cellation optimized re-simulation aims at reducing the
number of element evaluations during re-simulation,
which is especially useful for circuits containing com-
plex elements.

1By re-simulation, we mean the renewed simulation of the
rolled-back period of simulated time.

2Strictly speaking, this assumption doubts Time Warp's e�-
ciency. However, several studies have shown that lazy cancella-
tion can be more e�cient than aggressive cancellation.



Dynamic re-partitioning attempts to compensate un-
even load distribution by moving elements from a heav-
ily loaded processor to a lightly loaded one. Even if
static partitioning has generated equally sized parti-
tions, the load may be distributed unevenly if elements
have di�erent rates of activity or if activity distribution
in the circuit changes over time.
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Figure 3: Time Warp: experimental results

3 Experimental Results

The testbed has been implemented based on the
machine-independent parallel programming library
MMK which has been developed in our research group
and currently is available for the iPSC/2, iPSC/860
and networks of Sun Sparc workstations. Run-time
measurements have been performed on the iPSC dis-
tributed memory multiprocessors using the ISCAS-89
benchmark circuits as workloads.

Function decomposition has a theoretical speedup
of 3{4. Parallelization overhead (without communi-
cation cost) has been measured to be less than 50%.
Nevertheless, no speedup has been observed in our
run-time measurements because of the implementation
platform's high communication latency which is about
600 �s for MMK on the iPSC/860 and 2 ms on the
iPSC/2. For function decomposition to be e�cient
communication latency must be low or circuits must
be very large so that data exchanged between pipeline
stages can be packed in long messages while keeping
the pipeline busy.

In our measurements, performance of the paralleliza-
tions based on model partitioning showed to depend
strongly on the circuit being simulated an the stimuli
being applied to its primary inputs as depicted in Fig-
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Figure 4: Deadlock recovery: experimental results

ures 3 and 4 for some examples. Maximum speedups
are about half the number of simulators involved in
the simulation. However, in many cases no clear re-
lationship can be established between the number of
simulators and the achieved speedup.
As the function of the ISCAS benchmarks is not

known, random sequences of input vectors have been
applied to the circuits at di�erent frequencies. The
parameter s in Figures 3 and 4 denotes the number
of simulation time units between two successive input
vectors.

The examples shown suggest that Time Warp out-
performs conservative synchronization with deadlock
recovery. However, our measurements do not clearly
favor any of the three approaches that have been ana-
lyzed. Circuit topology and stimuli have impacted per-
formance much more than the method of synchroniza-
tion did for both of our static partitioning procedures.
Run-time statistic revealed the reason for this rather
unexpected behavior: Load has been distributed very
unevenly among the simulators. This is illustrated in
the lower diagram of Fig. 3 which shows the minimum
an maximum reduction in the number of element eval-
uations per partition with respect to sequential sim-
ulation for a min-cut partitioned circuit with almost



equally sized partitions. Further analysis has shown
that activity rates vary by several orders of magnitude
from element to element. Also the \center of activity"
within a circuit tends to move during simulation.

In Time Warp, uneven load distribution has resulted
in an extreme divergence of LVT's. GVT approxima-
tion is su�ciently close. One simulator increases its
LVT without rollbacks, another one proceeds at nearly
the same rate but with frequent and short rollbacks.
The other simulators periodically run far ahead of GVT
and then rollback over long periods of simulated time.
As a result of being far ahead of GVT, the latter pro-
cesses use up all their memory for state saving if large
circuits are simulated. In order to get such simula-
tions �nished, Time Warp's optimism had to be lim-
ited by suspending simulators which are running short
of memory if they are more than a prede�ned amount
of simulated time ahead of GVT.

4 Conclusion and Future Work

A test environment has been designed which allows
easy implementation of a great number of paralleliza-
tion strategies by providing a comprehensive library of
functions and enables an unbiased evaluation of di�er-
ent parallelization strategies. Four parallelization have
been implemented and analyzed. However, the num-
ber of run-time measurements has been limited by the
instability of both the iPSC multiprocessors and the
programming environment. Since some of the results
obtained have been quite unexpected, further run-time
measurements should be carried out in the future in-
cluding larger circuits and circuits of known function
for which input stimuli can be provided that \make
sense".

From our measurements performed so far, the follow-
ing conclusions can be drawn:
� Given its limited potential for speedup and its sen-
sitivity to communication latency, the function decom-
position approach can be applied sucessfully only in
combination with the model partitioning approach. In
future multiprocessors where each node has several
CPU's sharing a common memory, a simulator run-
ning on one node may be parallelized using function
decomposition while simulation is distributed among
the nodes using the model partitioning approach.
� Di�erent activity rates must be accounted for in
the static partitioning procedure. Most heuristic al-
gorithms can be modi�ed to have individual weighting
factors for elements and signals. Since in the design
phase of a circuit typically a number of nearly identi-
cal simulations is run in a sequence (e.g. for debugging
the design), these weight factors can be easily obtained
from statistics collected in a previous run at no ex-
tra cost. Dynamic re-partitioning has proven to reduce

the LVT divergence in Time Warp. However, further
measurements will be necessary in order to evaluate its
e�ects comprehensively.
Topics for future research using the testbed as a ba-

sis are:
� Implementing and analyzing optimizations of the
existing parallelizations as well as new parallelization
strategies.
� Porting the testbed to a widespread programming
model, e.g. PVM or P4. Enlarging the set of hardware
platforms where the testbed is available will allow us to
evaluate di�erent multiprocessors with respect to their
appropriateness for distributed discrete event simula-
tion.
� Considering other application areas of discrete event
simulation will show to what extent results obtained
from logic simulation can be generalized to other types
of simulation problems. Parallelization of a commercial
simulator designed for modeling production processes
in factories just has begun.
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