
Compiled-Code-Based Simulation with Timing Verif ication

W. Hahn, A. Hagerer, C. Herrmann

Faculty of Mathematics and Computer Science, University of Passau
Innstr. 33, 94032 Passau, F.R. Germany

Ab stract
Due to the complexity of today's systems, prototyping

by simulation must be based on simulation-engine-like
performance. It is proved by implementations that com-
piler-driven strategy is the best approach for high-perfor-
mance simulation engines. However, proponents of the
table-driven strategy for simulation engines claim that
concerning timing simulation the advantage of the com-
piler-driven strategy only exists for zero-delay and unit-
delay simulation but there would be no competition con-
cerning nominal-, fixed-, and precise-delay simulation. It
is the intention of this paper to contradict this claim by
proving that all types of timing models can be defined in
an algebraic way and compiled into code for the Munich
Simulation Computer, an event-flow computer for high-
performance compiler-driven logic simulation. Experi-
mental results are presented and discussed concerning
code size as well as code execution overhead.

Keywords
Timing Verification, Compiler-Driven Logic Simula-

tion, Update-Dataflow (Event-flow) Computing

Introduction

Simulation engines are the only answer to the simula-
tion bottleneck of system simulation [1]. They can be
classified into systems that accelerate the table-driven
simulation strategy, e.g., ZYCAD´s family of System
Evaluators, and into systems that accelerate the compiler-
driven simulation strategy, e.g., IBM´s Engineering
Verification Engine, the Munich Simulation Computer
MuSiC [2, 3, 4], and others. These two types of simulation
engines strictly differ in their performance potential.
Table-driven simulation [5] can only exploit algorithmic
parallelism and is restricted by a centralized time-wheel
mechanism that handles the progress of simulation time.
Compiler-driven simulation [6], however, can massively
exploit a design's data parallelism. Due to this fact, the
performance potential of compiler-driven simulation is or-
ders of magnitude higher.

Proponents of table-driven simulation engines, how-
ever, claim that concerning timing simulation this advan-
tage of compiler-driven simulation engines only exists for
zero-delay and unit-delay simulation. As an answer, this
paper shows how to define and to code all common types

of timing models at gate-level as well as at functional-
level for compiler-driven simulation without sacrificing
too much of the superior performance potential.

The paper is organized in the following way: A first
section introduces event-flow computation as an efficient
principle for design simulation. The next two sections of-
fer a new way to express timing behavior of design com-
ponents for compiled-code gate-level and higher-level
simulation by boolean equations and an evaluation of the
two approaches concerning code size overhead as well as
code execution overhead.

RS-FF

clkr.1 s.2 s.1

out

AND AND

R S

r.1 s.2

out

s.1

clk

RS-FF

AND AND

r
a
n
k

0

r
a
n
k

n

Events for r.1,
s.1, s.2, and clk
are produced by
other nodes.

Template symbol

Template operator

Input fields
(= unused)

R S

Figure 1: Transformation of a design into a rank-ordered
event-flow graph

1. Event-flow computer architecture

The architecture principle of the event-flow approach
[2, 3, 4] used to accelerate simulation of digital systems is
compiling a system's description written in a common
hardware description language into a directed graph, the
system's program graph. The nodes of the graph represent
system elements. The functionality bound to a node de-
pends on the description level, e.g., transistor-functionality
at switch-level, gate-functionality at gate-level, function-
ality of combinational networks (functional operators) at
register-transfer-level, and so on up to user-specific algo-
rithms at functional-model level. Arcs between nodes re-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

flect interconnecting wires. They specify which nodes
produce results that are used as arguments of a successor
node's function.

In an implementation of the event-flow architecture, a
node and its arcs to succeeding nodes are represented by
an instance called a template. Each consists of an operator,
up to four input fields, and an arbitrary number of refer-
ences to input fields of succeeding templates according to
the graph's connectivity. The number of input fields is re-
stricted since the implementation aims at a simulation en-
gine. Template operators define functions on operands in
four-valued logic, i.e., over the values 0, 1, Z (high-imped-
ance), and ? (unknown). As for any compiled-code simula-
tor and as shown in Figure 1, templates are rank-ordered
due to their data dependencies where storing elements are
placed into rank 0 and primary inputs in rank 1.

The following three rules define the event-flow model
of computation, i.e., the way a rank-ordered program
graph is executed:
- Selection rule: Only templates are selected at which

no further data can arrive at an input field, i.e., all tem-
plates placed on the same rank become selected.

- Event-flow firing rule: A template that passes the se-
lection rule must be evaluated, i.e., the template's op-
eration as defined by its operator is computed using
the input data as arguments, if it received at least one
data value at an input field after its last evaluation.

- Execution and result distribution rule: Template eval-
uation produces data that will be visible to other tem-
plates if and only if the operation's result is different
from the result of the last evaluation. This datum is
stored in the template as "last result". For each refer-
ence to a succeeding template, i.e., for each arc, the re-
sult is transmitted to update the referenced input field.

An evaluation cycle, i.e., a simulation step, starts with
selecting rank 1 for execution, progresses via rank 2, 3,
and so on, up to the rank with the maximum rank number
n and ends after execution of rank 0. Whenever rank 0 be-
comes computed, simulation time is incremented by a
fixed time unit that is independent of the evaluation cycle
number and determined before graph execution starts.

Event-driven simulation by the event-flow model of
computation is highly efficient since the selection scheme
prevents template evaluation as long as new input data can
arrive and the firing rule in combination with the result
distribution rule reduces the set of templates to be evalu-
ated to those templates that may contribute to a new de-
sign state due to a changed input situation.

MuSiC is an implementation of this architecture for
multi-level logic simulation. To speed up rt-level, func-
tional-level, and functional-model-level simulation, input
fields of templates can store vectors of up to eight logic
values and the template's operator is applied either on all
values in parallel or in case of operators like 'increment'
(INC), 'shift&concatenate' (SH&CAT), 'select' (SEL), etc.
by handling all values as single objects.

By an operational rt-model of an 8-processing-unit
version [7], MuSiC performance was evaluated as a func-

tion of event probability pe per signal and different work-
loads concerning zero-delay simulation. Performance ex-
trapolation to a 256-processing-unit version matches ear-
lier given performance predictions [3, 4]: MuSiC can offer
simulation performance of up to some 1010 gate evalua-
tions per second (g/s). All experiments show that MuSiC's
performance potential is better than that of table-driven
simulation engines [e.g., 8]. The question, however, is
how to make this superior performance potential available
for timing verification?

2. Gate-level timing verification

Logic simulation computes the state of each design el-
ement as a function of time using a model of the design.
For doing this correctly, delays within an element and on
wires must be considered. In the event-flow architecture,
templates, i.e., MuSiC instructions, do not model the delay
behavior of the element they represent. Since simulation
time is increased by a fixed time-unit ∆Τ after computa-
tion of rank 0, the following conception holds: design el-
ements that are represented by templates on rank 0 are
modeled considering a delay of ∆Τ while all other ele-
ments are modeled disregarding their timing behavior.
This means that MuSiC directly supports zero-delay simu-
lation where combinational elements, coded by templates
in ranks 1 to n, have no delay and only registers, coded by
templates in rank 0, have a delay of ∆Τ=1.

In reality, each element p shows an element-specific
propagation delay ∆Tp: if an event at an input of the ele-
ment occurs at time t, then the effect of this event will not
occur at the output until t+∆Tp. This can be modeled by
splitting the element into a purely functional component
with output Ofct(t) followed by a separate delay compo-
nent that computes the element's output O(t) from its input
I(t) = Ofct(t) due to the specific timing model.

2.1 Defining functions for delay components

Instead of scheduling events and managing lists of
events, in the event-flow architecture a delay component
is modeled in the same parallel and distributed way that is
applied for computation of the functional behavior. The
output of a delay component is computed by a function
fdelay that transforms a time-based stream of values that
consists of the recent value I(t) and the signal history of
previously computed values I(t-1), …, I(t-∆Tp) into a sin-
gle value O(t). Modeling delay components for execution
by MuSiC now means to define the component's function
fdelay and to represent the function in form of a graph.

The definitions of fdelay use the following notations:
Delay specifications:

∆T propagation delay,
∆R propagation delay of a rising edge,
∆F propagation delay of a falling edge,
∆m minimum propagation delay,
∆M maximum propagation delay,

∆Rm minimum propagation delay of a rising edge,
∆RM maximum propagation delay of a rising edge,
∆Fm minimum propagation delay of a falling edge,
∆FM maximum propagation delay of a falling edge,

Operator symbols:
NOT the not-operator in four-valued logic,
AND the and-operator in four-valued logic,
OR the or-operator in four-valued logic,
<> a comparison operator, c = a <> b, defined by:

c = a = O a = 1 a = Z a = ?
b = O O ? ? ?
b = 1 ? 1 ? ?
b = Z ? ? Z ?
b = ? ? ? ? ?

Furthermore, let the repeated application of an operator OP, i.e.,
AND, OR, <>, on a history of logic values from time t - a to time t - b be
written as:

OP OP OP OP
i a

b

I t i I t a I t a I t b
=

− = − − + −() () (()) ()1 K .

Then, the behavior of delay components can be ex-
pressed by the following boolean functions:
1. Zero-delay model

∆T = 0: O(t) := I(t)
2. Unit-delay model

∆T = 1: O(t) := I(t-1)
3. Nominal-delay model

∆R = ∆F = ∆T: O(t) := I(t -∆T)
4. Fixed-delay model

Since it may hold ∆R<∆F as well as ∆R>∆F, two
different equations are necessary:

∆R < ∆F: ∆R > ∆F:

O t I t iOR
i R

F
() : ()= −

=∆

∆
O t I t iAND

i F

R
() : ()= −

=∆

∆

5. Precise-delay model I
The less accurate version of the precise-delay model
assigns the same (minimum/maximum) propagation
delay to the rising edge and to the falling edge:
I. ∆Fm = ∆Rm = ∆m < ∆FM = ∆RM = ∆M:

O t I t i
i m

M
() : ()= −<>

=∆

∆

6. Precise-delay model II
The accurate version of the precise-delay model dis-
tinguishes the (minimum/maximum) propagation de-
lay of a rising edge from the propagation delay of a
falling edge. Where only the relation of two propaga-
tion delays had to be considered for the fixed-delay
model, now all relations of two intervals ∆Rm ≤ ∆RM
and ∆Fm ≤ ∆FM are important. Sixteen different situa-
tions may occur but they can be mapped on just seven
relations where the first relation is that of the precise-
delay model I. Therefore, additional equations are
only necessary for the six remaining relations. This
leads to the following equations:
II. ∆Rm ≤ ∆RM ≤ ∆Fm≤ ∆FM:

O t OR OR OR OR
i Rm

Fm

i Rm

FM

i RM

Fm

i RM

FM

I t i I t i I t i I t i() : () () () ()= <> <> <>
= = = =

− − − −
∆

∆

∆

∆

∆

∆

∆

∆

III. ∆Rm ≤ ∆Fm < ∆RM ≤ ∆FM:

O t OR OR AND OR
i Rm

Fm

i Rm

FM

i Fm

RM

i RM

FM

I t i I t i I t i I t i() : () () () ()= <> <> <>
= = = =

− − − −
∆

∆

∆

∆

∆

∆

∆

∆

IV. ∆Rm < ∆Fm < ∆FM < ∆RM:

O t OR OR AND AND
i Rm

Fm

i Rm

FM

i Fm

RM

i FM

RM

I t i I t i I t i I t i() : () () () ()= <> <> <>
= = = =

− − − −
∆

∆

∆

∆

∆

∆

∆

∆

V. ∆Fm < ∆Rm < ∆RM < ∆FM:

O t AND AND OR OR
i Fm

Rm

i Fm

RM

i Rm

FM

i RM

FM

I t i I t i I t i I t i() : () () () ()= <> <> <>
= = = =

− − − −
∆

∆

∆

∆

∆

∆

∆

∆

VI. ∆Fm ≤ ∆Rm < ∆FM ≤ ∆RM:

O t AND AND OR AND
i Fm

Rm

i Fm

RM

i Rm

FM

i FM

RM
I t i I t i I t i I t i() : () () () ()= <> <> <>

= = = =
− − − −

∆

∆

∆

∆

∆

∆

∆

∆

VII. ∆Fm ≤ ∆FM ≤ ∆Rm ≤ ∆RM:

O t AND AND AND AND
i Fm

Rm

i Fm

RM

i FM

Rm

i FM

RM
I t i I t i I t i I t i() : () () () ()= <> <> <>

= = = =
− − − −

∆

∆

∆

∆

∆

∆

∆

∆

COPY

SH&CAT

SELECT

O(t)

past

I(t)

Subgraph for storing and
updating a signal history

Delay-specifi-
cation-depen-
dent subgraph

recent

every
instruction
pair forms a
shift-register
section

rank 0

rank 1

0 1

COPY

SH&CAT
1 0

Figure 2: Coding scheme for fixed- and precise-delay
models (demonstrated is nominal-delay)

2.2 Transforming delay equations into program
graphs

For timing verification a gate is modeled concerning its
functional behavior by a single MuSiC instruction and
concerning its timing behavior by a program graph by
which one of the previous delay equations is coded ac-
cording to the required timing-verification accuracy.

MuSiC's program graph execution scheme supports
coding of zero-delay models directly and coding of unit-
delay models straightforwardly by placing all instructions
into rank 0 that represent elements with unit delay (for
zero-delay simulation only register instructions, for unit-
delay simulation additionally all gate instructions). How-
ever, copy instructions are necessary to keep instructions
of rank 0 data-independent.

Coding the other delay equations requires storing and
updating of signal histories beyond one time increment.
This is done by SH&CAT-instructions (they shift the data
vector of input field 2 one position to the left and concate-
nate the left-most position of the data vector of the right-
most input field 1). Since SH&CAT-instructions have to
be considered as storing elements and are therefore placed
into rank 0, input histories are updated whenever simula-
tion time progresses.

As indicated by Figure 2, coding of the remaining de-
lay equations is done by combining two subgraphs. The
first subgraph stores and updates the particular signal his-
tory based on SH&CAT-instructions and the other sub-
graph evaluates the recent output value. The latter sub-
graph results from transforming fdelay into a graph by us-
ing MuSiC instructions. In Figure 2, however, this sub-
graph simply consists of a “select”-instruction since the
delay specification to be implemented is nominal-delay
with ∆R = ∆F = ∆T. In this case, the value that corre-
sponds to I(t–∆T) has to be se lected out of the past-most
section of the signal history as the signal at position
mod(∆T/v), where v = 8 is the vector length of input
fields. Obviously, the complexity of delay-specification-
dependent subgraphs increases with the accuracy of the
timing model.

2.3 Efficiency of gate-level delay models

There are two different criteria concerning code over-
head: on the one hand, static code overhead due to the
number of instructions additional to zero-delay code, and
on the other hand, dynamic code overhead due to the
number of instructions to be executed additionally to zero-
delay code.

Since subgraph construction for delay equations fol-
lows a strict scheme for every timing model, the mean
number of additionally necessary instructions can closely
be precalculated [10] as shown in Table 1. The accuracy
of this calculation was verified by analyzing generated
code of example designs and comparing the results with
calculated results.

∆F
(time units)

∆R
(time units)

Instruc-
tions

Executed instructions
event-flow data-flow

1 ≤ ∆F ≤ 8 1 ≤ ∆R ≤ 8 4 25 32
9 ≤ ∆F ≤ 16 9 ≤ ∆R ≤ 16 6 49 96

1 ≤ ∆R ≤ 8 8 59 128
17 ≤ ∆F ≤ 24 17 ≤ ∆R ≤ 24 8 73 192

9 ≤ ∆R ≤ 16 10 83 240
1 ≤ ∆R ≤ 8 12 93 288

Table 1: Number of delay-specification-dependent instruc-
tions for coding a fixed-delay model of a single gate

According to the event-flow execution scheme, the dy-
namic code overhead depends on event probability pe per
signal. An example is also given in Table 1, that, by the
way, proves the advantage of event-flow computation over
data-flow computation for logic simulation.

Due to the subgraph construction scheme and to a regu-
lar flow of events within a subgraph, for every time in-
crement a lower bound and an upper bound for the number
of event-activated instructions can be calculated [10].
First, calculation is based on the assumption that all in-
structions representing a logic element's function, produce
an event only once per design's clock period. In a signal
history of width ∆Τ, this single event causes exactly ∆T

updates till the signal history reaches a steady state. The
corresponding number of executed instructions activated
by these updates are used to calculate the lower overhead
bound. On the other hand, timing models serve in logic
simulation to make spikes and hazards visible. Due to this,
instructions that represent a logic element's function can
produce an event more often than once per clock period.
Therefore, the second assumption is that a logic element
receives an event at each input at each simulation step and
that each input event results in an output event. Calculat-
ing the execution overhead based on this assumption gives
an upper overhead bound.

These calculations were applied to a set of example de-
signs and the results are shown in Figure 3. It holds that
the dynamic code overhead for fixed-delay and precise-de-
lay simulation is in the extreme range from 2 for very
small pe-values to 90 for pe-values close to one. Usual
values for pe, however, are less than 15 %. As marked in
Figure 3, for these pe-values, dynamic code overhead is
less than 12, i.e., performance degradation is even for the
most complex timing models not more than one order of
magnitude.

10-2
1

10

p

Fixed-delay

Unit-delay

Precise-delay

10010-1
e

100
E

xe
cu

tio
n

ov
er

he
ad

Figure 3: Dynamic code overhead (executed instructions
of the timing model code / executed instructions of zero-
delay code) for different timing models as a function of

event probability pe per signal

3. High-level timing verification

Unfortunately it holds that timing simulation of gate-
level representations of rt-level elements and of functional
level elements, e.g., flipflop, adders, etc., often yields too
pessimistic results [9]. For some simulation steps the sim-
ulator computes a value "uncertain" for the element's state,
although the real system's state is certain as shown by
continuous simulation of the whole functional element. In
logic simulation each gate's behavior is simulated inde-
pendently of the interactions between the full set of gates
that build an element of higher functionality [11].
Therefore, new algorithms for compiled-code simulation
of complex timing behavior are necessary.

3.1 Defining the delay model

Generally, due to their transformation function ζ, func-
tional elements transform a vector I of n logic values into
a vector O of w logic values. Like gates, functional ele-
ments can be modeled by separating timing and functional
behavior. Concerning timing behavior, modeling consists
of generation of a modified input situation, classification
of conditions fulfilled by this modification concerning the
element's input and output signals, and synthesis of the de-
lay behavior of output signals according to fulfilled condi-
tions [12]. Therefore, as depicted in Figure 4, the model of
a functional element's transformation function ζ is based
on a modification function µ, on a function ϕ describing
the pure functional behavior of the element, on an analysis
function α and on a set of synthesis functions σ0, …, σw-
1, one for each component of the element's output. Each
transforms vectors of logic values into one vector.

The modification function µ has to change the vector I
of input signals to model inertial delays or to react to vio-
lated time constraints. E.g., if a timing condition of a func-
tional element d-latch is not fulfilled, a change to the state
'?' can be enforced by modifying the input signal clock to
'1' and the input signal data to '?'. Therefore, µ computes a
vector Imod of modified input signals and a vector C of in-
put condition signals. These signals indicate if specific in-
put situations, i.e., specific combinations of input and out-
put signals, occur. By using Imod the function ϕ mimics
the behavior of the functional element by computing a
signal vector Ofct without considering delays.

The function α analyzes the input vector I, the modi-
fied input vector Imod, the input condition signals C, and
the signal vector Ofct. The result is a vector Q of q condi-
tion signals. A condition signal Q[k](t), 0≤k<q, indicates
if a specific delay situation k that is described by the de-
signer occurs at time t. For a component O[i] of the output
vector Ο a delay situation k specifies a minimum delay
∆mi k, and a maximum delay ∆M i k, according to the data
sheets.

A synthesis function σi for the output's component i
determines the minimum and the maximum delay that has
to be applied to the value of Ofct[i] to compute ζ(I). The
minimum delay δ i

m is the minimum of the minumum de-
lays of those delay situations k that possibly (Q[k]='?') or
certainly (Q[k]='1') occur. The maximum delay δ i

M is de-
termined analogously. Based on the delays δ i

m and δ i
M , on

the value Ofct[i](t) of the signal Ofct at time t and, on a
prediction of the future values of signal O[i] that was de-
termined in the previous simulation step and therefore be-
ginning at time t-1, the synthesis function σi predicts all
future values of O[i] beginning at time t. Assuming that
the delay situation will not change after time t the signal
O[i] will be stable at least after δ i

max := max({ ∆mi k, ,
∆M i k,

| 0≤k<q}) time units. Therefore, it is sufficient to
predict δ i

max+1 values: For a time t+j between t+ δ i
m and

t+ δ i
M -1 the value '?' is predicted. In this case, no certain

information exists about the signal's value after δ i
m time

units and before δ i
M time units. For a time after t+ δ i

M the

value Ofct[i](t) is scheduled. Therefore, at time t it is as-
sumed that the signal will be stable with the value d after
the maximum delay. For time t+j, j< δ i

m , the value is cho-
sen from the prediction that was calculated at the simula-
tion time t-1. The signal does not change it's value before
the minimum delay. However, considering the case that
the element's delay situation does not change, the compu-
tation can be seen as a shift register since the value of the
component j at time t is shifted through components with
indices lower than j, until it is placed at time t+j in com-
ponent 0, i.e., until it forms the value of the element's out-
put signal O[i].

µ ϕ

α

σ0

σw-1

I
Imod

C

Ofct

Q

O0

Ow-1

O

z

Figure 4: Representation of the functional and timing be-
havior of a functional elements by a set of functions

3.2 Transforming delay models of functional ele-
ments into program graphs

All functions of a model describing the timing behavior
of a functional element are specified by the designer, e.g.,
by using a specification language based on functions. Co-
ding of timing specifications is not only a problem of
mapping them on MuSiC's instruction set but also a prob-
lem of placing instructions into specific ranks: if a specifi-
cation function's result at time t depends on the result at
time t-1, e.g., functions like EVENT, RISE, etc., the result
has to be offered by an instruction that is placed into rank
0. Other instructions necessary for computation of the
function are placed into higher ranks in order to have ac-
cess to a value computed in the previous simulation cycle.

Transformation of a functional element's timing behav-
ior is performed in two steps. First, subgraphs that code
boolean functions are generated according to the specifica-
tions of the modification function µ and the analysis func-
tion α. Second, the graphs for computing the synthesis
functions are created. As depicted in Figure 5, the graph of
every σi consists of a subgraph to compute the prediction
of the future values and two subgraphs to compute the
minimum delay and the maximum delay according to the
delay situation that is determined by the result of the anal-
ysis function. Due to the limitation of the operand's vec-
torization, the graph computing the future values consists
of y = (δ i

max+1)/8 slices. Each slice Sj, 0≤j<y, internally
computes the future values O(t+8·j)-O(t+8·j+7) and offers
the component O(t+8·j) as a result to other slices. The
slice Sj uses the signal Ofct[i], two control signal vectors
indicating if t+8·j < δ i

m resp. t+8·j > δ i
M , and the result of

slice Sj+1 as arguments. Since no result can be offered to

the slice Sy-1 a feedback loop is used to realize the repli-
cation of O[i](t+ δ i

max).

Ofct[i]

Q[0: q-1]

O[i]

S1Sy-1 S0

Graph for
determination of the

minimum delay

Graph for
determination of the

maximum delay

…

Figure 5: Structure of the program graph for a synthesis
function

Design and experiment characteristics D-register
(8 bit)

CLA-adder
(8 bit)

No. of inputs / No. of outputs 9 / 8 16 / 8
No. of time constraints 9 32
No. of delay cases 8 48
Maximum delay (U time units) 6 8
Gate complexity (G) 40 84
Static no. of instructions (sI) 240 401
Static no. of instructions per gate (= sI/G) 6.0 4.8
Average dynamic no. of instr. (dI) 648 840
Event rate (=dI/(sI·U)) in % per time unit 45 26
∅−no. of instr. exec. per gate (= dI/G) 16.2 10.0

Table 2: Overhead characterization for high-level delay
models of two functional elements

3.3 Efficiency of high-level delay models

The size of a program graph generated according to the
timing specification, the static code overhead, depends on
the size of the input and output vectors of the functional
element. Furthermore, it depends on the complexity of the
functions µ and α. It is also influenced by the range of the
delay values (size for the graph of the synthesis functions).
As indicated by Table 2, the static code overhead slightly
increases with increasing complexity of the functional el-
ement and its timing model since common subexpressions
in the delay specification are represented by only one
subgraph.

Dynamic code overhead is again the number of instruc-
tions to be executed additionally. It is here also reduced
by the event-flow principle. It holds that the amount of
these instructions is far less than the amount necessary for
coding the timing behavior of a gate-level representation
gate by gate. Additionally, when simulating the delays of
a whole functional element, coarser simulation steps can
be chosen without loosing precision compared with simu-
lating every gate separately.

Experimental results show that for complex functional
elements the static as well as the dynamic overhead tends
to be better than the overhead when simulating a gate-

level representation of the functional element for timing-
verification purposes [12]. Again, compared with simula-
tion at gate-level in zero-delay mode the performance is
reduced by only one order of magnitude.

Conclusion

For timing verification of digital systems, a new ap-
proach for compiler-driven simulation was presented. All
types of timing models could be included into program
graphs to be executed by the Munich Simulation Com-
puter or by any other compiler-driven (programmed) sim-
ulator which functionality is recently restricted to zero-
delay and unit-delay mode. Although for the most accu-
rate precise-delay simulation execution overhead may de-
crease MuSiC's performance more than that of table-
driven simulation engines, simulation speed remains supe-
rior to these engines and, in case of MuSiC, in the range of
billions of gate evaluations per second.

References

[1] Blank, T.; 1984: "A Survey of Hardware Accelerators
Used in Computer-Aided Design", IEEE Design & Test of
Computers 1, (3), 21-39.

[2] Hahn, W., Fischer, K.; 1985: "An Event-Flow Computer
for Fast Simulation of Digital Systems", Proc. 22nd
ACM/IEEE Design Automation Conference, 338-344.

[3] Hahn, W.; 1986: "Event-Flow Computation as Key to Fast
Digital Design Simulation", Microprocessing and Micro-
programming - The Euromicro Journal 18, 27-38.

[4] Hahn, W.; 1987: "The Munich Simulation Computer:
Design Principles and Performance Prediction", In Hard-
ware Accelerators for Electrical CAD. Ambler, T.,
Agrawal, P., Moore, W. (Eds.). Adam Hilger, Bristol, U.K.

[5] Szygenda, S.A., Thompson, E.W.; 1975: "Digital Logic
Simulation In a Time-Based, Table-Driven Environment -
Part 1. Design Verification", IEEE Computer, (3), 34-37.

[6] d'Abreu, M.A.; 1985: "Gate-Level Simulation", IEEE
Design & Test of Computers 2, (6), 63-71.

[7] Hahn, W. Anger, H. Hagerer, A., Schuster, B.; 1988: "A
Multi-Transputer-Net as a Hardware Simulation Environ-
ment", Microprocessing and Microprogramming - The
Euromicro Journal 25, 291-298.

[8] ZYCAD; 1993: See most recent System Evaluator Speci-
fications.

[9] Breuer, M.A., Friedman, A.D.; 1976: “Diagnosis and
Reliable Design of Digital Systems", Computer Science
Press.

[10] Eisenhut, M.; 1990: “Realisierung und Bewertung ver-
schiedener Zeitmodelle der Simulation digitaler Systeme
in Ereignisflußgraphen”, Diploma Thesis, University of
Passau, Fac. of Math. & Comp. Sci.

[11] Benkoski, J., Strojwas, A.J.; 1989: "Timing Verification
by Formal Signal, Interaction Modeling in a Multi-Level
Timing Simulator", Proc. 26th ACM/IEEE Design
Automation Conference, 668-673.

[12] Herrmann, C.; 1993: "Simulation von Signalverzögerun-
gen und Zeitbedingungen funktionaler Elemente auf
MuSiCII", Diploma Thesis , University of Passau, Fac. of
Math. & Comp. Sci.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

