
A New Knowledge-Based Design Manager Assistant for CAD Frameworks

F. Moreno and J. Meneses

Technical University of Madrid
E.T.S.I. Telecomunicación
Ciudad Universitaria s/n
(28040-Madrid) Spain

Abstract

In this paper we introduce a new knowledge-
based method for planning and managing the VLSI
design process, based on prediction and advice, that
minimizes search in a wide design space. It draws
on a newly developed system able "to learn" to
collect detailed information on the physical,
technological and logical properties of the
primitives available for building the design. This
may help reduce time from market and may make
it much easier for people to learn the tool and
issues related to conceptual design. A prototype
knowledge-based design manager, called ViPtool,
that uses this method is presented.

1 Introduction

The necessity of new design methodologies in VLSI
design is nowadays a well-known problem.
Competitiveness in the VLSI design area imposes some
premises that must guarantee good design quality. On the
other hand, in order to achieve maximum success in the
development of a VLSI design, great attention must be
placed at the architectural design level.

As the number and diversity of computer-aided design
tools used by VLSI circuit designers continues to grow,
the need for CAD frameworks increases. In general, CAD
frameworks provide such services as design data
management and CAD tool encapsulation.

Some frameworks provide capabilities at a very high
level, allowing the user to deal with the problem from the
point of view that the design is a set of functions
independent of the tool used [1].

Recently, some tools have arisen with very high

abstraction levels. They allow graphical or texual problem
specifications based upon a set of functional constraints
[2]. The range and complexity of those problems are very
poor. Even tools such as Clio [3] (Conceptual Design
framework) have arisen. They provide the designer
assistance at the quantitative level, which comprises the
prediction of parameters such as "area", "power
consumption", etc.; and at the qualitative level or design
advice level which relates to a specific problem. The final
target is to reduce the search space of possible solutions.
However, there is already, in all of the examples
mentioned above, a very high lack of flexibility, because
all of them are problem-oriented, technology-oriented, and
above all, the "dialogue" framework-designer is limited by
a set of static data bases.

In order to support a decision during conceptual design
together with high design flexibility, it is necessary to
provide frameworks with aConceptual Design Framework
able to adapt itself to different design situations,
technology, etc., to establish a run-time "dialogue"
between the tool and the designer. This will increase the
framework performance, and such a performance has been
achieved byViPtool by means of aKnowledge Based
System(KBS).

ViPtool is, at the present, integrated with VANTAGE
(Vantage Analysis Sys., Inc. 1987-1992) and is currently
being integrated with SYNOPSYS (Syn., Inc. 1988-1992).

2 Previous Related Research

Before beginning the discussion of ViPtool, it is useful
to compare it to Clio [3] and Yoda [4]. Some of the
principles of design managed in Yoda were relatively
general, however their actual implementation was
specifically focused on the conceptual design of DSP
filters. Yoda contained a "domain specific" assistance
subsystem that provided advice and performance

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



predictions to aid the designer with decision making
during conceptual design. Furthermore, Yoda was not
meant to be a general design assistance facility to model
the general hierarchical and modular nature of design, nor
was it meant to generate a general taxonomy of prediction
models for the entire VLSI domain. In addition, Yoda
"hardcoded" a specific hierarchical structure for the
prediction models it contained.

On the other hand, Clio operated as the collective
memory of the entire community of designers utilizing the
framework, providing for the interchange of information
and experience. So, all advice was tagged with information
that aided the designer to determine design validity. In
order to be able to get quantitative prediction of
performance characteristics, such as "area", "power
dissipation", etc. from a set of specifications, the activities
of synthesizing and fabricating designs had been modeled.

Clio used a knowledge base organization to store
prediction models. Whenever a prediction was requested
in the context of a given design problem, Clio searched
for the prediction model to be used. If such a prediction
model was absent, Clio moved up in the hierarchy, until
it found a template containing a prediction model that
evaluated the figure of merit specified ("area", "power",
etc.) by the prediction request. This procedure will be
more accurate as the number of predictors grows. Clio was
not able to accept new predictors at run-time, so it was
necessary to rebuild the knowledge base and to start the
design process over again.

A new level of flexibility is needed, in order to really
offer a general purpose design framework able "to learn"
at run-time, as is the case of ViPtool. Most of the tools
reported are focused on particular problems and the
specifics of these problems are "hardcoded" [5][6]. This
type of systems may not lead to better design from expert
designers, but it may help reduce time from market and
may make it much easier for people to learn the tool and
issues related to conceptual design. This is a big issue in
the EDA industry.

On the other hand, ViPtool is able to build a VHDL
specification by means of a set of generic and
parametrizable libraries. The user may then do a functional
simulation in order to achieve a "fast" prototype. The
methodology that implements ViPtool is, therefore, top-
down because the VHDL libraries are sinthesys oriented
and bottom-up, because it evaluates technological
parameters such as "area", "number of gates", etc at a very
early stage of the design (to be explained in next sections),
all together with a fast prototyping capability.

3 Defining the Knowledge-Based Design
Manager Problem

Conceptual design is the process of decision making
that is required before a detailed design is undertaken. A
conceptual design is completed when somedesign issues
have been identified by the designer, for instance:
"fabrication technology" (1.0, 1.2, 1.5 microns, etc.) and
the design optionssuch as "core limited", "high core
limited", "package type", "pin-out", etc. The knowledge-
based design manager is used during conceptual design to
aid the designer in making decisions by giving guidance
on the most promising design alternatives. A "dialogue" is
set up between the knowledge-based design manager and
the designer. Thus, ViPtool guarantees very early and
accurate prediction models, facilitating the definition and
introduction of new prediction models at run-time.

In general, as is mentioned above, there are two
different categories of assistance, that can be provided
and/or modified during conceptual design: qualitative
design advice (consisting of pieces of information about
technology and physical data) and prediction (in order to
obtain quantitative prediction of performance
characteristics, such as "area", "power dissipation",
"frequency", "number of gates", etc.).

4 ViPtool: A Prototype Design Manager

A typical prediction process starts with the definition
of the target design domain. ViPtool has been tested in the
domain of VLSI architectures for speech recognition.
Speech recognition for vocabularies larger than 100 words
requires, usually, a very high computational load. For
speaker-independent speech recognition (isolated
utterances) with vocabularies up to 1000 words, it is
necessary to use up to 1000MIPS [7]. The Viterbi
algorithm is one of the most frequently used in speech
recognition. It uses Hidden Markov Models (HMM) to
represent phonemes (in a phoneme model) or words (in a
word model) [8]. Due to the specific nature of these VLSI
architectures, it has been necessary to build a particular
software module that implements heuristics depending on
the speech recognition algorithm, in order to obtain
accurate information about architectural parameters
(memory, buses, etc.).

ViPtool is based upon a KBS able "to learn"
[9][10][11]. The KBS retrieves information from a table,
an Examples Table (ET) built by the designer. This table
is formed by a set of attributes also defined by the user
(See Figure 1, next page). The designer introduces values
for each attribute and matches them with a generic



architecture. This information must be complete and

Figure 1. Examples Table

consistent (without uncertainty) and can be retrieved
during run-time to be updated and/or modified.

The KBS, then, will modify its own behavior, building
a decision tree(ID3 Algorithm [10][11]).

Each node tree is an attribute and each branch between
nodes is an attribute value. The decision tree finishes with
the generic architectures ("tree leaves"). The tree is built
calculating the maximal enthropy reduction [10][11].

The ID3 Algorithm is based upon the basic algorithm
CLS (Concept Learning System)[10] and works over the
whole ET. At the beginning, the KBS has a maximal
enthropy:

Where Pi is:

(1)

(2)

(3)

N0: root
And k the number of different architectures defined in the
ET.

Then, the probabilities may be calculated for each
generic architecture and H(N0) as follows:

(4)

(5)

(6)

So, which is the "best" attribute?. Or, in other words,



which is the attribute that gives the most information to

Figure 2. ViPtool Decision Tree

the KBS?. The KBS will take into account the first
attribute (Nº STATES). There are (see Figure 1) 8
examples with NºSTATES=3 and 1 with NºSTATES=5
(there are not any more values for this attribute), then:

Then, the information gain is:

(7)

(8)

(9)

(10)

(11)

This procedure will be performed by the KBS

recursively for all the attributes, in order to get the "best"
one (Maximal Gain), and all the examples belonging to
the ET will be tested. If some of them are not yet well
classified (without uncertainty) then, the procedure, will be
repeated again (recursively) until that. As a result of that,
a Decision Tree is built (See Figure 2). At run-time, the
designer, can add (delete or modificate) the ET and the
KBS will make a new Decision Tree.

This KBS has been tested up to 200 examples tables
and up to 20 attributes per example, yielding a very good
performance. For bigger tables it is necessary to work
with subsets of the ET (working set)[8].

The CLS algorithm may be summarized as follows:
procedure CLS (ET)

if all the examples belong to Cj then
finish Cj;

else
new node=the "best" attribute;
make subtables for each attribute value;

foreach subtable
CLS(subtable);

end;



Design assistance begins with the designer specifying
some attributes values. The KBS searches through the
decision tree until a generic architecture is reached (See
Figure 2). Then, the designer must introduce a collection
of discrimination factors (i.e., fabrication technology)
and/or design options ("core limited", "pad limited", etc.)
(See Figure 3).

Figure 3. ViPtool Discrimination Factors

The designer is free to select some design issues, so, if
some problem and/or inconsistency arises, ViPtool informs
the designer about possible solutions maintaining a run-
time "dialogue". After this job is successfully
accomplished, the designer is informed about prediction
information (quantitative), such as, "core area", "number
of gates", "package suggested", etc.) (See Figure 4).

ViPtool is, at the present, integrated with VANTAGE.
Therefore, if everything is right, the designer can select
the VANTAGE interface window. ViPtool sends
VANTAGE all the information necessary to parametrize
VHDL libraries and to simulate the final specification in
VHDL, showing the results in a VANTAGE window.

5 Conclusions

In this paper we have discussed and extended a general
design assistance facility and the basic methodology that
should underlay its implementation. ViPtool, a knowledge-
based design manager based on prediction and advice that
has successfully achieved our proposed methodology, was
described. ViPtool is currently integrated with VANTAGE
and in the near future, will also be fully integrated with
SYNOPSYS.

Figure 4. ViPtool Quantitative Information



Acknowledgments

The authors are grateful to S. Keller for suggesting
improvements to this paper.

6 Bibliography

[1] J.B. Brokman and S.W. Director, "The Hercules
CAD Task Management System". InProceedings
of the IEEE International Conference on
Computer-Aided Design, IEEE, 1991.

[2] M.F. Jacome and S.W. Director, "Design Process
Management for CAD Frameworks". In
Proceedings of the 29th ACM/IEEE Design
Automation Conference, IEEE Press, 1992.

[3] J.C. López, M.F. Jacome and S.W. Director,
"Design Assistance for CAD Frameworks". In
Proceedings of the EURO-DAC’92, IEEE Press,
1992.

[4] A.M. Dewey and S.W. Director, "Yoda: A
Framework for the Conceptual Design VLSI
Systems". In Proceedings of the IEEE
International Conference on Computer-Aided
Design, IEEE, 1989.

[5] R.D. Müller-Glaser, K. Kirsch and K. Neusinger,
"Estimating Essential Design Characteristics to
Support Project Planning for ASIC Design
Management". In Proceedings of the IEEE
International Conference on Computer-Aided
Design, IEEE, 1991.

[6] F.J. Kurdahi and A.C. Parker, "Techniques for
Area Estimation of VLSI Circuits". IEEE
Transactions on Computer-Aided Design, 8(1),
January 1989.

[7] L. Rabiner, "Speech Recognition".DSP Review,
Vol. 2, No. 3, ATT, October 1989.

[8] S.J. Cox, "Hidden Markov Models for Automatic
Speech Recognition: Theory and Application".
British Telecom. Technology Journal, Vol. 6, No.
2, April 1988, pp. 105-114.

[9] R.S. Michalski et. al., "Machine Learning: An
Artificial Intelligence". Vols. 1-2, Eds. Morgan
Kauffmann, 1983-86, Springer-Verlag.

[10] J.R. Quinlan et. al., "Interactive Dichotomizer,
ID3". Eds. Morgan Kauffmann, Springer-Verlag,
1979.

[11] J.R. Quinlan, "Introduction of Decision Trees". In
Readings in Machine Learning. Eds. Morgan
Kauffmann, San Mateo, Calif., 1990, pp. 57-69.










	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




