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Abstract

To handle increasingly complex design data, CAD tools
are becoming more specialised and complex and hence,
more difficult to use. This paper describes an interactive
system that helps a designer to use such tools more effec-
tively. A concrete example is provided based on a powerful
and innovative routing tool.

1 Introduction

The research described in this paper is part of a large-
scale project developing a CAD framework (namely, the
Jessi-Common-Frame). CAD frameworks provide a means
of integrating the many tools and data resources that are
typically used in a CAD environment under a single man-
agement system. In this way, a framework helps reduce the
complexity of the environment, for example, by providing
a consistent user interface for the invocationof toolsand ac-
cess of data. However, scope remains for the development
for more sophisticated tools to aid the designer in better
exploiting the facilities at their disposal. In particular, a
system is described in this paper that provides guidance to
a designer in the use of a complex CAD tool.

The layout of the paper is as follows. Section 2 intro-
duces the general concept of a Design Consultancy Support
(DCS) system and explains how such a system can benefit
a designer in the use of complex CAD tools. Section 3
introduces the TRACKER routing tool, an example of a
complex CAD tool. Section 4 gives a worked example of
the type of advice that can enable a user to more effectively
exploit a tool. Finally, section 5 provides a summary of the
paper and describes the future development of this research.

2 User Assistance in Complex Design Envi-
ronments

In this section, the need is explained for automated as-
sistance in complex design environments.

�Part of Esprit Project 7364 (Jessi-Common-Frame).

2.1 Design Consultancy Support

The growing complexity of design environments is gen-
erating a new type of problem for designers. The diversity
of tools and data sources available, as well as the increased
complexity of CAD tools, means that it can no longer be
assumed that a designer is fully aware of the facilities avail-
able to them and how to best exploit these facilities to
complete design tasks [9].

DCS systems have the role of over-coming this prob-
lem by aiding the designer in the over-all management of
the design process. Typically, Knowledge-Based System
(KBS) technology is employed to provide facilities such as;
focussing of the user’s activities [9], support for decision
points in the design process [6, 8], collating diverse infor-
mation sources [6, 2] and automated logging of the design
process [1].

Ordinarily, DCS support takes place at a level upwards
of the invocation CAD tools; assistance is given for the
selection of an appropriate tool for a particular design task
but it is then the user’s responsibility to exploit that tool. In
contrast, it is argued in this paper that DCS technology can
also be profitably employed to guide the use of complex
tools.

2.2 The Role of DCS in Tool Usage

There are several problems associated with tool usage
that may be overcome using a DCS system. Firstly, when
a designer is faced with an unfamiliar tool, they expend
valuable time in learning to use it. The difficulty lies in
mapping the requirements of the designer, in terms of the
task they wish to perform, to the primitive operations of
the chosen tool; a single design task generally requires
a complex combination of many sub-tool operations. A
potential benefit of a DCS system lies in the acceleration
of this learning process.

The problem of learning to use a tool effectively goes
beyond a simple understanding of the tool’s functionality.
It is necessary to understand the circumstances for which
the various facilities offered are most appropriate and what
are the limitations of each individual facilities. This infor-
mation is valuable expertise and making it widely available
through the use of a DCS system has great potential bene-
fit. As will be shown, it can lead to a general reduction in
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the time taken to complete a design task using the tool. In
addition, it may lead to the avoidance of misuse of the tool
(i.e. the failure to satisfactorily complete the design task,
for example due to a failure to optimally set tool control
parameters [5]). Though the principles described in this
paper apply to any CAD tool, DCS assistance offers most
benefit for non-interactive tools with potentially long in-
vocation times, such as simulation and layout tools, where
there is limited scope for rapid recovery from any mistake
on the user’s part.

2.3 An Architecture for a Tool Support System

Supporting the designer in the use of an unfamiliar
and/or complex CAD tool embodies many of the tradi-
tional aspects of DCS. In particular, the behaviour of the
tool can be represented as a design flow using the same type
of formalism (e.g. [8, 11, 6]) used to capture higher-level
design behaviour. In this way, the task of determining the
appropriate tool usage for a particular design becomes the
task of determining the appropriate path through the tool’s
design flow. In particular, a design flow explicitly repre-
sents the optional decision points in a tool’s behaviour that
can be resolved by a user (either through direct interaction
or indirectly through setting control parameters) and hence
explicitly indicates where DCS assistance can be invoked.
Design flows also provides a basis by which the various
information sources required to resolve decision points can
be organised [3]; the representation of each source will be
associated with a particular position in the flow.

One type of information required is meta-level knowl-
edge, such as the amount of time allotted for a designer to
complete a given task. A DCS system may also have ac-
cess to “deep” semantics associated with, but not explicitly
represented within, the design data [12]. Another infor-
mation type is pragmatic knowledge about the tool itself,
such as estimates of the execution time for each operation
and documented problems. Many other types of relevant
information can be identified and the example of section 4
gives an illustration of how a diversity information can be
used in the generation of sensible DCS advice.

A minimum requirements can now be established for
a DCS system to support tool usage. The DCS system
should; provide the user with a transparent design flow
model of the tool’s behaviour, allow the user to generate
paths through this design flow (for example by parameter
selection) and provide a generic framework by which a
user can gain access to appropriate information by which
to resolve decision points in the design flow. This leads to
a general system architecture as shown in figure 1.

3 A Complex CAD Tool

In this section, TRACKER (an innovative and powerful
pcb routing tool) is described. TRACKER is the basis for
the concrete example of the application of DCS techniques
at the level of tool usage.
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Figure 1: The General Role of DCS in Tool Support

3.1 Novel Approaches to Routing

Lee’s algorithm [10] is the most popular and general
purpose routing technique. Nets are routed in a predeter-
mined order and cost parameters can be used to govern the
general nature of the connections.

A fundamental problem with Lee’s algorithm is its fixed
routing order. This frequently causes earlier routed nets
to unnecessarily block later nets [13]. To overcome this
problem, TRACKER embodies a novel “rip-up and re-
route” strategy [14, 13] whereby nets are permitted to cross
each other during routing and intersecting nets are con-
tinuously redirected, such that the process tends towards
a state of zero intersections and minimum failed nets. In
order to force this dynamic strategy to converge to a solu-
tion, the simulated annealing [7] optimisation technique is
employed. Initially, to avoid local optima, this technique
allows routing to generate worse states. The acceptability
of worse states is controlled non-deterministically and de-
creases as the algorithm ‘cools’; in this way the algorithm
converges towards a solution (at the ‘freezing point’).

The simulated annealing approach has been shown [14,
13] to significantly reduce the number of routing failures
(with respect to a conventional Lee’s algorithm approach)
for a wide range of real design boards. The practical result
of the research is a powerful tool (i.e. TRACKER) which
supports a number of possible routing techniques includ-
ing traditional serial implementations of Lee’s algorithm
and the simulated annealing approach. Never-the-less, the
behaviour of the tool is difficult to understand and often
unpredictable to control [14] which detracts from its us-
ability. Enabling the potential power of TRACKER to be
better harnessed is the goal for the exemplar DCS applica-
tion described in this paper.

3.2 An Overview of the TRACKER Tool

In this section, the hierarchy of design flows that repre-
sents the TRACKER routing tool (as modelled by the DCS
prototype) will be outlined. A top-level design flow for the
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Figure 2: A Top-Level view of TRACKER

tool is given in figure 2. The various data resources asso-
ciated with the tool are illustrated in conjunction with the
temporal ordering of activities. Figure 2 is an instantiation
of a generally applicable design flow for tool invocation. In
this design flow, the task of preprocessing always precedes
the actual running of a tool and the task of result evaluation
(with the potential to loop back and re-run the tool) always
follows the completion of the tool.
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Figure 3: TRACKER Preprocessing

Preprocessing generally involves a collection of rela-
tively independent tasks that are used to configure various
aspects of a tool so as to influence its behaviour. This
influence is usually manifest through the editing of con-
trol record files or through the setting of command line
parameters. The preprocessing tasks that are applicable to
TRACKER are shown in the design flow of figure 3.
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should explicitly represent the major operations carried
out by that tool. The design flow of figure 4 details
TRACKER’s internal behaviour. The various available
techniques for performing routing are shown. This de-
sign flow also shows precisely which parts of TRACKER’s
operation are selected by its control parameters, which con-
trol records are relevant to each component and the use of
design data resources.

The existing DCS prototype [2] uses an interactive
window-based interface to present design flows to the user.
In this way, the behaviour of an otherwise opaque and
non-interactive tool is made transparent. This in itself is
a useful aid for a user who is unfamiliar with TRACKER.
However, additional supporting information is required so
as to enable a designer to use TRACKER effectively. Such
information is used during the preprocessing activity in or-
der to configure TRACKER to best suit a particular board.
The next section gives a sample of the types of information
that are relevant.

3.3 The Use of Semantic Information to Control
TRACKER

In general, a prerequisite to enable the correct configu-
ration of a tool is to have knowledge of the characteristics
of the various components/operations offered by that tool.
An informal description of the four main components of
TRACKER is given below:

� Layer-pair serial router. This routes by only consid-
ering pairs of routing layers with opposing directional
biases. Additional pairs of layers are used (if avail-
able) when routing failures are encountered. Gener-
ally, this component has a short execution time but is
of low power (i.e. will produced many failed nets for
difficult input data).



� Multi-layer serial router. This is the default router.
It routes on all available layers simultaneously. It
generally distributes tracks more evenly than the layer-
pair router. Again this component is fast but of low
power.

� Annealing router. This employs the technique of
simulated annealing described in section 3.1. The
performance of this router is critically determined by
the setting of various control variables, such as the
temperature decrement factor and the start tempera-
ture [14]. The speed of performance is also governed
by the initial state of the board. For complex boards, it
is generally beneficial to generate this state by preceed-
ing the annealing router with one of the other routing
techniques, typically the multi-layer serial router. The
annealing router produces significantly fewer errors
on hard to route boards than the serial routers, but
at the expense of time (typically having an execution
time 10-100 times longer).

� “Greedy” annealing router. This is a version of
the annealing router that converges to a solution more
rapidly, though with less chance of reaching an optimal
solution.

As well as knowledge that matches semantic features
of the design data to tool option characteristics (hence en-
abling the selection of the appropriate option), meta-level
strategic knowledge for use of a tool is generally required.
For example, in some circumstances it is beneficial to use
TRACKER iteratively, for instance when it is advantageous
to route a board by stages. As an example of this, on boards
where “hot-spots” can be predetermined, an effective rout-
ing strategy is to first route those nets that lie within these
densely inter-connected areas then, as a second stage, to
route the rest of the board. Similarly, sometimes certain
predetermined signals, such as clock signals, may require
special treatment during routing so should be routed sepa-
rately (see section 4).

This section has given little more than a taste of the types
of knowledge required in order to control CAD tools gen-
erally and TRACKER specifically. Evaluating the strategy
for using the tool on a given board is a complex task and
an automated system for achieving this may have to rely
on a heterogeneous set of data resources [3]. As is true for
DCS in general [15], it is likely that a variety of reasoning
agents and a variety of representation formalisms will be
required to provide full, automated support for tool usage.
Because of the complexity of the task, the emphasis for the
current DCS prototype is on allowing the designer to bring
their own expertise and intuition to bear on the problem
through the storage and presentation of appropriate infor-
mation types [2].

4 A Worked Example

As an illustration of the potential intricacy of using a
CAD tool, a worked example, based on TRACKER, is

described in this section.

4.1 Problem Description

The example is based on a real memory board that was
custom designed at the University of Manchester. The
board involves four tracking layers and is problematic to
route for a number of reasons [4]:

� There is a high inter-connectivity between the compo-
nents on the board.

� The density of nets is spread unevenly such that several
areas exist which have disproportionately high number
of nets within them.

� The board’s nets include sensitive clock signals that
must be routed so as to minimise signal impedance
(i.e. short, straight connections).

For arguments sake, its is also assumed that the time for
completing the routing task is limited, as might typically
be the case in a commercial design situation. Hence the
goal for the DCS system is to suggest a customisation of
the TRACKER tool that will allow for the generation of the
least number of routing failures in the time avaliable (i.e.
maximise goal satisfaction).

4.2 DCS Support for TRACKER
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Figure 5: Elaborating a Design Flow Component

The first task for the DCS system is to establish a gen-
eral strategy for use of the tool. This can be done using
rule-based diagnosis, where the “symptoms” are character-
istics of the design data and the “prognoses” are design flow
selection. For example, assuming the presence of clock sig-
nals can be detected in the design data, strategic knowledge
for routing dictates that the corresponding nets should be



routed first. The DCS system can present this information
to the user by highlighting the appropriate preprocessing
tasks that need to be carried out to realise this goal, as well
as making transparent its reasoning (i.e. the appropriate
production rules). The presentation of this information to
the user is shown in figure 5.

Similarly, diagnostic rules can be used to configure a tool
(i.e. select the appropriate parts of its behavioural design
flow) to best suit the input data. For example, once the
clock signals have been routed, the DCS system may aid the
designer in configuring TRACKER to route the remaining
nets. Based on semantic information indicating the high
complexity of the board, a sensible DCS proposal (based
on the characteristics of each TRACKER component) for
is to use the annealing or greedy router preceeded by the
multi-layer router. Again this information can be conveyed
by highlighting the chosen design flow and allowing the
designer to inspect the underlying reasoning.
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There are other types of information other than that
which can be formalised in a symbolic representation (e.g.
diagnostic rules) that can be of benefit when using a tool.
In particular, statistical information can be useful for fine-
tuning a tools performance [5]. For this research, a partic-
ularly important class of statistical relationship is the effect
of changing a control input of a tool on a measure of tool
performance with respect to specific goal criteria. This is
illustrated below.

Because of the tight deadline for the example routing
scenario, a designer may need to know how the simulated
annealing router can be configured so as to produce a faster
convergence than default without an excessive increase in
failure rate. To help in this way the DCS system can present
to the user statistical relationships between various anneal-
ing control parameters and the execution time and relative
failure rate for that router (see figure 6). This informa-
tion is unlikely to be known by even expert designers.
Never-the-less, it is require if a successful customisation of
TRACKER is to be performed. This requires adjustment
of the control parameters from their default values so as to
generate a reduction in routing time without significantly

Description Failures Time
(CPU Secs)

Multi-Layer Alone
(Default Tracker) 135 168

Multi-Layer +
Greedy Router 27 11871
Multi-Layer +

Default Annealing 16 19582
Router

Multi-Layer +
Customised Annealing 17 7944

Router

Table 1: Routing Results

increasing the failure rate. The graphs of figure 6 can be
used by a designer to intuitively make this compromise.
The next section demonstrates the improved results that
can be achieved in this way.

4.3 The Effect on Performance

Table 1 represents results achieved using various set-
ups of TRACKER to complete the routing of the memory
board. Row 1 shows the results achieved using the default
mode for TRACKER (i.e. no information input). Though
very rapid, the high failure rate produced (135 un-routed
nets) is unacceptable which justifies the need for the user
to perform some preprocessing for the TRACKER tool.

Rows 2 and 3 represent two sensible alternatives based
on the guidance of a DCS system for component selection
alone. In both cases, a relatively low error rate is achieved
(27 and 16 respectively) but the time to complete routing
is high. Note, as is expected, the greedy router performs
faster than the annealing router but produces a slightly
higher failure rate.

Row 4 represents the results achieved if, in addition to
component selection, the DCS system also provides the
user with statistical information on how to customise the
control parameters of a particular component. In this case,
the start temperature and temperature decrement factor for
the simulated annealing router are set in accordance with
figure 6. The number of failures produced (17) is compara-
ble to that of rows 3 but the execution time is less than half
that of the default annealer (a saving of over 3 hours). It can
be concluded that the DCS advice detailed in the previous
section does indeed lead to a use of TRACKER that best
suits the example problem description.

5 Conclusions

In this paper, it has been argued that complex CAD
tools can be made more usable by a wide range of de-
signers if accompanied by a DCS system that presents a
variety of support information types to a user as well as
performing some automated diagnosis with respect to the
circumstances of a particular tool invocation. This prin-
ciple has been demonstrated by showing how a prototype
DCS system can provide sensible advice concerning the



use of a novel routing tool, leading to an improvement in
tool performance as well as improved user understanding
of the tool’s behaviour.

One of the key requirements for this type of DCS system
is to formally represent the behaviour and data requirements
of the tool as a design flow. This provides a framework
for organised representation of the various other types of
information required for controlling tool usage as it makes
explicit at what point in the operation of the tool a particular
data item has an effect.

A potential area for future investigation is the symbi-
otic relationship that may exist between the proposed type
of DCS application and development of the tool itself. It
should be possible to adapt tool development methodolo-
gies so as to generate, as a by-product, an explicit represen-
tation of the tool’s behaviour in a design flow formalism.
From the opposite perspective, using a DCS system to mon-
itor the use of a tool could provide a means for generating
useful information to feed back into the tool development
cycle. As an example, a DCS system could automatically
collate statistics as to what operational components of a
tool are used with greatest frequency and/or success.

The current state of this research is that an extensive
period of knowledge acquisition based on the TRACKER
tool has been completed and an initial prototype DCS sys-
tem has been constructed [3, 2]. This system allows a user
to interactively navigate the tool’s design flows and to then
automatically invoke the tool. Conversion of the elicited
knowledge into a production rule system and a detailed
evaluation of the results of automated execution of the
TRACKER tool is one aspect of the current research effort.
In addition, a component is being developed for the auto-
mated extraction and presentation of the types of statistical
information described in section 4.2. The long term goal
is the development of a generic methodology for providing
knowledge-based assistance for effective tool usage.
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