
Testing Redundant Asynchronous Circuits by Variable Phase Splitting

Luciano Lavagno� Michael Kishinevskyy Antonio Lioy

Dip. di Elettronica Dept. of Computer Science Dip. di Informatica
Politecnico di Torino Technical University of Denmark Politecnico di Torino
10129 Torino, Italy DK-2800 Lyngby, Denmark 10129 Torino, Italy

Abstract

An approach for stuck-at-i and delay-fault testing of re-
dundant circuits without modifying the logic is proposed.
The only requirement is the ability to control both phases
of each variable independent of each other. The circuit be-
comes fully testable under very weak assumptions, equiva-
lent to freedom from Single Cube Containment in two-level
form. The main existing methods for asynchronous cir-
cuit synthesis are demonstrated to satisfy the assumptions
and then are testable using the methodology. Heuristics to
improve the approach include partial scan and non-scan
testing.

1 Introduction

A practical application of asynchronous circuits until
now has been almost entirely limited to “niches” such as
asynchronous buses. This is certainly due to the difficulty
of introducing a completely new design methodology. Au-
tomated design aids can help in this respect, but another
major obstacle remained until now. No digital circuit de-
sign methodology can be used in practice unless it also
provides means for testing the circuit after manufacture, to
certify that it functions according to the specification under
a wide range of operating conditions.

Testing asynchronous circuits is definitely a difficult
problem, due to two main reasons: (1) The absence of
a global synchronization signal does not allow a direct
application to asynchronous designs of the testing tech-
niques developed for synchronous sequential circuits; (2)
All known asynchronous design methodologies ensure cor-
rect operation (i.e., avoid spurious pulses on circuit outputs,
known as hazards) using some level of redundancy, i.e., by
sacrificing testability.

This difficulty remains even though at least one class of
asynchronous circuits, speed-independent circuits, is self-
checking with respect to stuck-at-i faults on the outputs of
the gates [15, 1, 11]. This self-checking property is due to
the fact that a stuck-at-i fault can be considered as an infinite
delay, hence a circuit whose operation does not depend on

�This work has been supported by MURST under 40% project “VLSI
Architectures”

yThis work has been supported by The Danish Technical Research Council and
ACID-WG (Esprit Basic Research Working Group 7225).

that delay will halt in the presence of that fault. The class
of faults for which this result holds unfortunately is limited
to stuck-at-i faults on the outputs of logic gates. This can
hardly be considered a satisfactory model of physical faults.
The problem of single stuck-at-i faults on gate inputs was
tackled in [11] by introducing test inputs, that may often be
unacceptable in large circuits.

A design for testability technique for asynchronous cir-
cuits with bounded delays was developed in [9], based on
logic level transformations on the circuit, that could be
proved to: (1) preserve hazard-freeness, if the circuit was
initiallyhazard-free or preserve the ability to eliminate haz-
ards by delay padding and (2) ensure both stuck-at-i test-
ing and path-delay-fault testing using a full-scan approach.
This approach had the severe limitation that testing redun-
dant gates required introducing additional test inputs to the
circuit, with resulting increase in size,delay and complexity
of the test procedure. More recently, Roncken et al. ([13])
developed a methodology for testing delay-insensitive cir-
cuits built from handshake components. The underlying
implementation methodology trades off efficiency for sim-
plicity and correctness, by using basic handshake compo-
nents that are more complex than the “standard” gates used
in logic design.

Our paper, on the other hand, opens a new avenue to
asynchronous circuit testing that does not require a spe-
cific state encoding technique or particular logic transfor-
mations. It is based on the idea that if we partition the
circuit into a set of combinational logic blocks connected
by memory elements (either the native elements, or added
D-latches as in the previous approaches), then full stuck-
at-i and delay-fault testability can be achieved under very
weak conditions by being able to drive both phases of each
combinational logic input independently. This de facto
transforms the circuit into a unate circuit (see Section 2.1)
whose testability properties are excellent ([7]).

The significance of this result is two-fold: (1) It allows
to test a circuit using both the most common (stuck-at-i)
and the most stringent (hazard free robust path delay) fault
models. (2) It can be applied to most (probably all) known
asynchronous circuit design methodologies without requir-
ing any change in the logic implementation, because the
class of circuits implemented using those methodologies
automatically satisfies the requirements for being tested by
variable phase splitting. The only modification is the use
of scan memory elements instead of standard memory ele-

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



ments (e.g. S/R or C-elements).
The paper is organized as follows. Section 2 introduces

some notationand previous results that are useful in the rest
of the paper. Section 3 develops the theoretical background
and the practical techniques to achieve the full testability
result. Section 4 demonstrates that most methodologies
for asynchronous circuit synthesis satisfy the assumptions
that are required to guarantee full stuck-at-i and delay-fault
testability. Section 5 describes a preliminary set of ex-
perimental results performed on a set of benchmark asyn-
chronous circuits.

2 Preliminaries

2.1 Logic Functions

An incompletely specified single-output logic functionf
of n input variables is a mapping f : f0; 1gn! f0; 1;�g.
Each element of f0; 1gn is a vertex. The sets of vertices
where f evaluates to 1, 0 and - are called on-set, off-set and
dc-set respectively. The function is completely specified if
the dc-set is empty.

A literal is either a variable,xi, or its complement, xi.
A cube is a Boolean product of literals. A cover F is a
Boolean sum of cubes. A cube c0 covers another cube c00, if
c00 contains all the literals of c0, e.g. ab covers abc. A cube
is an implicant of a logic function f if it does not cover any
off-set vertex of f . A cover F of a logic function f is a
set of implicants of f such that each on-set vertex of f is
covered by at least one cube. Each cover F corresponds
to a unique completely specified logic function, denoted by
B(F ).

An implicant of f is prime if it is not covered by any
other single implicant of f . A cover of a functionf is prime
if all its cubes are prime implicants of f . A cube c of a
cover F of a function f is redundant if F � fcg is a cover
of f . Note that the testing terminology uses redundant in
a more general sense, meaning any connection in a circuit
that can be replaced with a constant without altering the
logic function computed by it. A cover F is minimal with
respect to Single Cube Containment (SCC) if there exists
no pair of cubes c0; c00 2 F such that c0 covers c00.

A function f is monotone increasing (decreasing) in a
variable xi if f(xi = 0; �) = 1 ) f(xi = 1; �) = 1
(f(xi = 1; �) = 0 ) f(xi = 0; �) = 0) for all
� 2 f0; 1gn�1. It is unate in xi if it is either mono-
tone increasing or monotone decreasing in xi. A cover F
is unate in a variable xi if variable xi appears in only one
phase (i.e., either xi or xi) in its cubes.

The following result (Proposition 3.3.7 of [2]) forms the
basis of our testing methodology. Section 3 will generalize
it to allow some optimizations in the implementation of the
scan flip-flops.

Proposition 2.1 Let F be a unate cover and P be the set
of all primes of B(F ), the logic function specified by F .
Then P � F . If, in addition, F is minimal with respect

to Single Cube Containment, then F = P , and F is the
unique minimum cover.

2.2 Testing

In a gate-level combinational circuit any detectable
stuck-at-i fault can always be detected with a single pat-
tern, named a test, which belongs to the test set of the
fault.

Testing for a delay fault cannot be accomplished by a
single pattern, rather a test sequence S of two patterns is
needed, to setup one path from inputs to one output, and
to propagate a change along this path. If S is valid under
arbitrary delays and is not invalidated by hazard or races,
then it is named a robust test sequence. Circuits exist which
are not robustly delay-fault testable ([4]).

When dealing with CMOS circuits a particular fault
model needs attention: the transistor stuck-open, which
affects the circuit by permanently switching one transistor
off. Although this class of faults is static in nature, nonethe-
less it requires a sequence of patterns to be tested because
it generates memory conditions which usually transform a
combinational circuit into a sequential one. All the con-
siderations about robust delay fault test apply nearly un-
changed to the testing of stuck-open faults. An important
relation between delay-fault and stuck-open testing is given
in [7, 4]: a prime and irredundant two-level circuit imple-
menting a unate cover is automatically robustly path-delay
fault testable as well as stuck-open fault testable.

Testing of sequential circuits is an even harder problem,
due to the added complexity of time dependence. While
various attempts have been made to directly generate tests
for synchronous sequential circuits, industrial practice re-
lies on scan techniques.

2.3 Asynchronous Circuits

An asynchronous circuit is an arbitrary interconnection
of logic gates Z = fz1; : : : ; zmg and input nodes X =
fx1; : : : ; xkg, with each gate input connected to strictly
one gate output or one input node and with no two gate
outputs tied together. A logic gate can be considered as
an interconnection of a Boolean function evaluator and
delay elements. Types of function evaluators available,
delay models and input-output disciplines are major factors
which influence both a design technique and properties of
the designed asynchronous circuits.

Asynchronous circuits are by definition sensitive to all
signal transitions, whether they are intentional (part of the
specification) or not (then they are called hazards). In the
framework of speed-independent design a hazard-free be-
havior is captured by the notion of semi-modularity. A
circuit is semi-modular if no gate whose output is sched-
uled to change can be disabled during circuit operation
(otherwise a spurious pulse may appear on the output of
the gate).



3 Testing by variable phase splitting

This section explains the main theoretical foundations
of our testing approach for asynchronous circuits. The
basic idea is that implementations of unate functions are
easily testable for most fault models. For example, any
two-level circuit implementing a unate function is auto-
matically prime and irredundant if it is free from Single
Cube Containment. Hence it is testable for all stuck-at-i
faults and robustly testable for all path-delay faults [7].

So, rather than modifying the circuit to make it testable,
thus risking to introduce hazards during its normal opera-
tion, we will modify its inputs to make it unate. This can
be done for two-level circuits by treating the positive and
negative phase of each input variable as separate entities.
That is, instead of interpreting variable x as the comple-
ment of x (i.e., driving it with a not gate with input x), we
can consider it as another primary input to the circuit. This
input is normally driven to be the complement of x but can,
for test purposes, also assume the same value as x. The
resulting circuit depends only on the positive phase of each
variable, and hence is unate.

The following result is a simple corollary of Proposi-
tion 3.3.7 of [2]:

Theorem 3.1 Let C be any cover free from Single Cube
Containment. Let X be the set of Boolean variables on
which C is defined. Let � : fx; x : x 2 Xg ! X � f0;00 g,
such that�(x) = x0 and �(x) = x00. Let �(C) be the cover
obtained from C by applying � to every literal in it.

Then �(C) is a prime and irredundant cover for the cor-
responding completely specified logic function B(�(C)).

We can show that in order to test the circuit, we will only
need three of the possible four configurations of the pair of
variablesx0 andx00. So we will be able to use a modification
of S/R flip-flops to “split the phase” of the circuit input
variables, even though such flip-flops can never produce
both outputs at 1 (or at 0, depending on whether they are
implemented with cross-coupled nor or nand gates).

Given a two-level cover C as above, let us define an in-
completely specified logic functionB1;1(�(C)) as follows:
(1) The dc-set of B1;1(�(C)) is the set of all vertices such
that there exists at least one pair of literals x0; x00 both with
value 1; (2) The on-set of B1;1(�(C)) is the same as the
on-set of B(�(C)) minus the vertices that already belong
to the dc-set of B1;1(�(C)); (3) The off-set of B1;1(�(C))
is the same as the off-set of B(�(C)) minus the vertices
that already belong to the dc-set of B1;1(�(C)).

Then, the following theorem holds:

Theorem 3.2 Let C be any cover free from Single Cube
Containment. Let X be the set of Boolean variables on
which C is defined. Let �(C) be the cover obtained from
C by applying � (as in Theorem 3.1) to every literal in it.

Then �(C) is a prime and irredundant cover for the
incompletely specified logic function B1;1(�(C)).

The proof of this theorem is given in [10].

Q

S

R

Q

Q

S

R

Q
z

x

y

z

b

c

S Q

R Q

D Q

Combinational

Logic

a

Figure 1: Testing architecture

A dual theorem can also be proved valid for the incom-
pletely specified logic functionB0;0(�(C)) for nand-based
S/R flip-flops, which is defined dually to B1;1(�(C)).

The importance of these theorems is that the two-level
prime and irredundant unate circuit obtained by variable
phase splitting is fully testable even when restricting the
input space available for choosing a test.

3.1 Practical considerations and optimizations

A practical application of the basic theory requires the
development of asynchronous scan flip-flops and of heuris-
tics that can reduce the need for such flip-flops.

The overall circuit architecture assumed by our design
for testability methodology is described schematically in
Figure 1. In the figure, a, b and c are primary inputs, x and
y are primary outputs (of which y is also used as a feedback
variable for the combinational logic), and z is an internal
signal used only for feedback. Note that: (1) Primary inputs
used in both phases (e.g., a) may need to pass throughphase
splitters. Those splitters are not necessary, for example:
if the input comes from another sub-circuit that produces
split-phase outputs on the same chip or if the input comes
from outside the chip and hence is controllable for test
purposes. In this case it may suffice to transform the not
used to invert the input into a transparent inverting D-latch
that can store the negative phase value while the positive
phase is driven by the test machine. (2) Primary outputs
that are not directly observable (i.e., going only to other
sub-circuits on the same chip) may require a standard scan
D-latch, held in transparent mode during normal operation.

We will assume that the selected scan flip-flops are fully
testable for the selected class of faults. In [10] a simple
example is given to demonstrate the feasibility of such a
scan flip-flop. The latches never need to produce the invalid
state (Theorem 3.2). Therefore, all their other states can be
regarded as combinational outputs (because can be directly
obtained by setting the appropriate values on the S and R
inputs). It follows that the latch becomes a combinational
element for testing purposes and we can thus limit ourselves
to scan only a minimum number of latches, namely those



a

RS flip flop

a~
S(a)n

R(a)n

e
R(a)1

b
S(a)1

c~

d~

Figure 2: Standard S/R-implementation structure

breaking the global feedback paths. This is conceptually
similar to perform a partial scan, as it has already been
proposed to test synchronous sequential circuits.

4 Applications

This section describes how the testing methodology de-
scribed above can be applied to the main known asyn-
chronous circuit synthesis algorithms. We basically need to
show, for each case, that the logic implementation produced
by the algorithm automatically satisfies the conditions of
Theorem 3.1.

4.1 Unbounded Gate-delay Circuits

In [6] a standard S/R-implementation was suggested,
based on two-level combinational logic and an S/R flip-flop
(Figure 2), where each and gate implements a region func-
tion consisting of a single cube. Each region functionSa(i)
and Ra(i) corresponds to one rising or falling transition of
signal a in the initial specification of the circuit.

It was proved in [6] that if each region function Sa(i)
and Ra(i) obeys the monotonous cover requirement, then
the standard S/R-implementation is semi-modular.

For any semi-modular circuit C1 we can always derive
an equivalent semi-modular standard S/R-implementation
C2 [6]. Here by equivalence we mean equivalence of ex-
ternally observable signal transition sequences.

The last statement provides a basis for a proof of the
following result on testabilityof semi-modular circuits [10].

Theorem 4.1 For any semi-modular circuit an equivalent
semi-modular circuit can be constructed, which is fully
testable for stuck-at-i faults, and fully hazard-free-robustly
testable for path-delay faults and transistor stuck-open
faults.

4.2 Bounded Wire-delay Circuits

In this section we will examine three main classes of
asynchronous circuits, together with the associated syn-
thesis algorithms: (1) Huffman circuits, where a block

primary
inputs primary

outputs

feedback wires

Figure 3: Example of a Huffman circuit

of combinational logic implements the next state and out-
put functions derived from a Flow Table specification, and
feedback wires implement the state (see, e.g., Figure 3 and
[5], [14]). (2) Burst Mode Finite State Machine (FSM) cir-
cuits [12, 16]. (3) Bounded-delay circuits synthesized from
a Signal Transition Graph specification, where a block of
combinational logic implements the next state function of
each state and output function, and feedback wires imple-
ment the state (see, e.g., Figure 5 and [8]).

Huffman circuits. The synthesis algorithm described by
Unger ([14]) implements each next state and output func-
tion using all its prime implicants. Prime implicants by
definition do not contain each other, so a two-level im-
plementation satisfies the conditions of Theorem 3.1. A
straightforward application of our methodology would re-
quire cutting all feedback wires and splitting all input sig-
nals with scan D-latches (see, e.g., Section 3.1).

The implementation can also be optimized as a multi-
level circuit, using the transformations that Unger showed
to preserve the ability to eliminate hazards. These trans-
formations, applying the distributive, associative and De
Morgan’s laws, have also been shown ([3]) to preserve
both stuck-at-i and robust path delay fault testability. So
the optimized circuit will also be testable (at least) for those
two models using our strategy.

Burst Mode Machines. Similar considerations apply to
the synthesis algorithm for self-clocked and 3-D circuits
presented in [12] and [16]. In this case, the specification is
a Burst Mode FSM. Burst Mode FSMs restrict the class of
allowed FSMs and of allowed environment behaviors with
respect to [14] to prove the completeness of the algorithm.

In a Burst ModeFSM, inputs and outputs are constrained
to change in bursts, that is sets of signals that can change
in any order. When all the signals in an input burst have
changed value, the FSM changes state and produces an
output burst. The environment is not allowed to change the
inputs again until the output burst is completed.

The synthesis procedure uses a constrained two-level
minimization framework, described more in detail in [12].
The final cover C implementing the next state and output
functions must satisfy a set of conditions that allow us to
prove the following result [10].



2

2

1

1
L-

L+

Ro+

Ao+Ri-

Ai+

L-

D+

Ro-

Ao-

L+

Ri+

Ai-

D-

Figure 4: Example of a Signal Transition Graph

Theorem 4.2 Any circuit constructed using the algorithms
described in [16] and [12] can be made fully testable for
stuck-at-i faults, and fully hazard-free-robustly testable for
path-delay faults and transistor stuck-open faults.

Bounded-delay circuits implementing Signal transition
Graphs. A Signal Transition Graph (STG) is an inter-
preted Petri net formalizing the concept of timing diagram.
See, for example, Figure 4, where x+ and x� represent
rising and falling transitions of signal x respectively, and
arcs represent causality relations between transitions.

Various methods for STG synthesis have been described
in the literature. All methods share a common underlying
implementation hypothesis, that each output signal is im-
plemented by a combinational logic block and can be fed
back to implement the circuit state. Here we are mainly
concerned with the method described in [8] for bounded
wire-delay circuits, because strong theoretical results are
known on its underlying circuit structure.

Signal Ai corresponding to one of the outputs of the
box of Figure 4 can be implemented without hazards as a
prime redundant two-level cover Ai = DL+DRi+LRi,
as shown in Figure 5.(a). The redundant cube DRi is
included in the implementation for preserving hazard-free
operation. A stuck-at-1 fault on the output of the gateDRi,
for example, is not testable without introducing test inputs,
therefore, as shown in [9], to test this implementation two
additional inputs test1 and test2 should be used.

Figure 5.(b) shows an implementation of signalAi with
signal L being split into L0 and L00. According to the
Theorems 3.1 and 3.2 the coverAi = DL00+DRi+L0Ri is
prime and irredundant and can be tested without additional
testing inputs.

We can claim the following result:

Theorem 4.3 Any circuit constructed using the algorithms
described in [8] can be made fully testable for stuck-at-i
faults, and fully hazard-free-robustly testable for path-delay
faults and transistor stuck-open faults.

(a) (b)

D

AiRi

L’

L’’

D

Ai

L

Ri

test1 test2

Figure 5: Testable implementation of Figure 4

5 Experimental Results

To test the effectiveness of our proposed methodology,
we tried it on a standard set of asynchronous circuit speci-
fications. The results are reported in Table 1. The column
labeled “literals” contains the number of literals in a fac-
tored form representation of a circuit implementation. The
column labeled “untestable paths” contains the number of
paths that are not robustly path delay fault testable in a
two-level hazard-free implementation of the specification
(obtained using the approach described in [8]). The col-
umn labeled “split signals” gives the number of signals
that need to be split to ensure full robust path delay fault
testability using a partial scan approach. The column la-
beled “total signals” gives the number of primary inputs
and primary outputs of the circuit (the latter coincide with
feedback signals in the chosen implementation). Only cir-
cuits with untestable paths are included in the table. The
line labeled “total 1” gives total counts for these circuits.
The line labeled “total 2” gives total counts for all circuits
in the benchmark which we checked, including completely
path-delay testable circuits.

The greedy algorithm that we used for this experiment
tries to ensure full testability by splitting each input signal
in turn. Theorem 3.1 ensures that full testability can always
be achieved in this way. The order of splitting is heuristi-
cally chosen by considering signals that are at the head of
untestable paths first, and non-unate signals next. Signals
that give the best reduction in the number of untestable
paths are tried first within each of those two groups. The
number of split signals seems reasonably low even using
this simple-minded heuristic. The CPU times for synthesis,
testability analysis and split variable selection are at most
a few seconds on a DEC5000 machine.

Unfortunately a precise comparison with other results
from the literature is almost impossible. Some approaches,
as discussed in Section 1, do not guarantee full testabil-
ity even for stuck-at-i faults. Estimating the overhead for
approaches that use test inputs to ensure full testability
([11, 9]) is also very difficult without a detailed explana-
tion of exactly when and how these test inputs are added.
Generally speaking, we can assume that such inputs are
implemented with scan-like flip-flops, like in our proposed
methodology, because the overhead of adding one I/O pad
for each test input would be unacceptable. A major differ-



circuit literals paths signals
untestable total split total

chu150 12 2 15 1 6
converta 26 2 30 1 6
dc 20 5 27 2 6
dlatch 6 2 7 1 4
ebergen 16 4 18 1 5
fifo 6 2 7 1 4
hazard 12 4 14 1 5
qr42 16 4 18 1 5
rpdft 10 2 10 2 6
wrdatab 42 2 48 1 11
dff 10 4 14 1 5
future 26 2 30 1 8
isend 52 2 62 1 11
total 1 254 37 300 15 82
total 2 878 37 1061 15 287

Table 1: Number of split input variables

ence with these approaches is that we can give a tight and
reasonably low bound on the number of scan flip-flops: the
number of primary inputs, primary outputs and feedback
signals. On the other hand, we can assume that the number
of test inputs required by the above mentioned approaches
is approximately proportional to the number of redundant
gates, which in general can be (much) larger. Finally, the
approach of [13] uses an implementation methodology that
is so different from our setting (being based on handshake
components rather than basic gates), to make a direct com-
parison totally impossible.

6 Conclusions and Future Work

This paper shows that full testability can be achieved for
the circuits produced using the main existing asynchronous
synthesis methods. The result applies to stuck-at-i, delay
and stuck-open fault models, and hence covers both the
most widely used and the most stringent test methods.

Full testability is achieved without modification to the
logic circuit, even if it is non-prime or redundant. The test-
ing architecture requires only to use special scan flip-flops
that can drive both phases of each signal separately. Even
though the results about the testability of unate functions
were already known, their application to asynchronous cir-
cuit testing is, to the best of our knowledge, new. New
is also a more general result that allows to use only three
out of the possible four combinations of values for the split
variables, in order to reduce the cost of the scan flip-flops.

We also prove that the circuits synthesized using the best
known automated design techniques for asynchronous cir-
cuits automatically satisfy the conditions required to ensure
full testability using this method.

References

[1] P. A. Beerel and T. H-Y. Meng. Semi-modularity and self-
diagnostic asynchronous control circuits. In Proceedings of
the Conferenceon AdvancedResearch in VLSI, March 1991.

[2] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and
A. Sangiovanni-Vincentelli. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[3] M. J. Bryan, S. Devadas, and K. Keutzer. Testability-
Preserving Circuit Transformations. In Proceedings of
the International Conference on Computer-Aided Design,
November 1990.

[4] S. Devadas and K. Keutzer. Synthesis of robust delay-fault
testable circuits: Theory. IEEE Transactions on Computer-
Aided Design, 11:87–101, January 1992.

[5] D. A. Huffman. The synthesis of sequential switching cir-
cuits. J. Franklin Institute, 257:161–190,275–303, March
1954.

[6] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen,
and A. Yakovlev. Basic gate implementation of speed-
independent circuits. In Proceedings of the Design Automa-
tion Conference, 1994.

[7] S. Kundu and S. M. Reddy. On the design of robust testable
CMOS combinational logic circuits. In Proceedings of the
International Conference on Fault Tolerant Computing Sys-
tems, pages 220–225, 1988.

[8] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli.
Algorithms for synthesis of hazard-free asynchronous cir-
cuits. In Proceedings of the Design Automation Conference,
June 1991.

[9] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli.
Synthesis for testability techniques for asynchronous cir-
cuits. In Proceedings of the International Conference on
Computer-Aided Design, November 1991.

[10] L. Lavagno, M. Kishinevsky, and A.Lioy. Testing redundant
asynchronous circuits. Technical Report ID-TR: 1993-124,
Technical University of Denmark, October 1993.

[11] A. J. Martin and P. J. Hazewindus. Testing delay-insensitive
circuits. In Proceedings of the Conference on Advanced
Research in VLSI, March 1991.

[12] S. M. Nowick and D. L. Dill. Exact two-level minimiza-
tion of hazard-free logic with multiple-input changes. In
Proceedings of the International Conference on Computer-
Aided Design, November 1992.

[13] M. Roncken and R. Saeijs. Linear test times for delay-
insensitive circuits: a compilation strategy. In proceed-
ings of the Working Conference on Asynchronous Design
Methodologies, March 1993.

[14] S. H. Unger. Asynchronous Sequential Switching Circuits.
Wiley Interscience, 1969.

[15] V. I. Varshavsky, M. A. Kishinevsky, V. B. Marakhovsky,
V. A. Peschansky, L. Y. Rosenblum, A. R. Taubin, and B. S.
Tzirlin. Self-timed Control of Concurrent Processes.Kluwer
Academic Publisher, 1990. (Russian edition: 1986).

[16] K. Y. Yun and D. L. Dill. Automatic synthesis of 3D asyn-
chronous state machines. In Proceedings of the International
Conference on Computer-Aided Design, November 1992.


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




