
RESIST: A Recursive Test Pattern Generation

Algorithm for Path Delay Faults

Karl Fuchs Michael Pabst Torsten R�ossel

Siemens Mobile Radio Networks Siemens Transportation Systems Siemens Corporate R & D

81359 Munich, Germany 38126 Braunschweig, Germany 81739 Munich, Germany

Abstract
This paper presents Resist, a recursive test pat-

tern generation (TPG) algorithm for path delay fault
testing of scan-based circuits. In contrast to other ap-
proaches, it exploits the fact that many paths in a cir-
cuit have common subpaths. Resist sensitizes those
subpaths only once, reducing the number of value as-
signments during path sensitization signi�cantly. In
addition, our procedure identi�es large sets of redun-
dant path delay faults without enumerating them. Re-
sist is capable of performing TPG for all path delay
faults in all ISCAS-85 and ISCAS-89 circuits. For the
�rst time, results for all path delay faults in circuit
c6288 are presented. A comparison with other TPG
systems revealed that Resist is signi�cantly faster
than all previously published methods.

1 Introduction
In synthesized circuits, delay testing becomes

mandatory since many paths have a propagation delay
close to the maximumcircuit delay [1]. The path delay
fault model is the most comprehensive model for real
delay defects. Recent research has solved some prob-
lems associated with this model. In [2] it is shown
that complete path delay fault testability is not al-
ways necessary to guarantee circuit performance, i.e.,
test patterns for a small fraction of testable path delay
faults may provide a su�cient test quality. In addi-
tion, synthesis for delay fault testability can increase
the delay fault coverage. A remaining problem, how-
ever, is the determination of a test set that detects all
robustly testable path delay faults (RPDFs) in prac-
tical circuits. Since most methods only �nd a small
fraction of all RPDFs with reasonable e�ort, there is
still need for e�cient TPG tools.

TPG for path delay faults is either based on branch-
and-bound algorithms [3,4,5,6,7,8,9] or on Boolean al-
gebraic methods [10,11]. No conventional TPG algo-
rithm that targets a speci�c fault can cope with the
large number of paths existing in practical circuits.
Today's fastest TPG methods are Tsunami-d [11],
Nest [9], andDynamite [8]. These methods can han-
dle large path sets but they have certain limitations.
Tsunami-d uses reduced ordered binary decision

diagrams (ROBDDs) to represent constraint func-
tions that have to be satis�ed by a delay test. This
approach, however, requires post-processing steps to
check for robustness. Since an exhaustive check may

be prohibitively cpu intensive, Tsunami-d only pro-
vides a conservative estimate of the robust path delay
fault coverage.
Nest determines pairs of signals such that a max-

imum number of paths between the signals can be si-
multaneously tested. In order to sensitize the paths
between two selected signals, test generation objec-
tives are established. Once the objectives are satis-
�ed, the fault simulation method from [12] is used to
estimate how many faults are actually detected. As
mentioned in [9], the algorithm is most e�ective in
highly testable circuits but may fail in those poorly
testable. A comparison between Nest and our algo-
rithm reveals that Nest also provides only a conser-
vative estimate of the robust path delay fault coverage
for the ISCAS-85 and ISCAS-89 circuits.
Dynamite applies improved redundancy identi�-

cation techniques. All selected paths are stored in a
path tree. A stepwise path sensitization procedure
identi�es sets of redundant path delay faults without
enumerating them. This method is very e�ective in
poorly testable circuits but many faults have to be
treated separately in those highly testable. A limi-
tation of this approach is the path tree which is im-
practical for large circuits. Because of limited memory
resources, the set of all path delay faults must usually
be partitioned into many subsets.

Our algorithm, named Resist (recursive selection
and sensitization technique for path delay faults),
overcomes the limitations of previously published
methods. It is a cost-e�ective way to generate delay
tests for a large number of path delay faults in both
poorly testable and highly testable circuits.

In contrast to Dynamite, Resist needs no path
tree. Therefore, no fault set partitioning is re-
quired. As with Dynamite, many path delay faults
are concurrently identi�ed as redundant. For redun-
dancy identi�cation, however, no path tree traversal
is needed. To e�ciently handle highly testable cir-
cuits, we improved the path sensitization step. Re-

sist exploits the fact that faults are dependent in the
path delay fault model, i.e., paths in a circuit usu-
ally have sections in common. In order to eliminate
the repetition of work, Resist executes the sensiti-
zation step for common subpaths only once. This
technique signi�cantly decreases the number of value
assignments during path sensitization. Compared to
conventional methods, a speed-up factor that grows

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

linearly with the circuit depth is obtained. Exper-
imental results revealed that Resist is signi�cantly
faster than Tsunami-d, Nest, and Dynamite.

Section 2 gives some de�nitions. Section 3 presents
the basic idea and implementation of Resist. Sec-
tion 4 contains experimental results on TPG for the
ISCAS-85 and ISCAS-89 circuits and Section 5 con-
tains our conclusions.

2 Basic De�nitions
2.1 Structural and Functional Paths

A structural path P = (x0; :::; xn) starts at a pri-
mary input (PI) x0 and ends at a primary output
(PO) xn. P consists of several structural subpaths
S1; :::; Sm. Each subpath leads from a PI or a fanout
stem to a PO or a fanout stem. To simplify the fol-
lowing discussion, we will assume that there are no
XOR- or XNOR-gates in the circuit. Then, two func-
tional paths Pr = (xr0; :::; x

tn
n) and Pf = (xf0 ; :::; x

tn
n)

are associated with a structural path P (rising tran-
sition (r) or falling transition (f) at x0). The transi-
tions ti 2 fr; fg at all other signals xi, 1 � i � n, are
uniquely determined by the gates (inverting or non-
inverting) along path P . Signals x0; :::; xn are called
on-path signals. All other inputs of the gates along
path P are referred to as o�-path signals.

2.2 Con
icts, Updates, Unjusti�ed Lines
Logic A10 proposed in [5] is used for TPG of ro-

bust tests. A robust test remains valid even if there
are multiple path delay faults in the circuit. The
basic values (B10) and composite values (C10) of
this logic are shown in Fig. 1. In particular, 0s and
1s denote the stable values 0 and 1. 0s is either a
static zero hazard or a falling transition and 1s is
either a static one hazard or a rising transition. A
composite value c 2 C10 is given by c = fb1; :::; bng
where b1; :::; bn 2 B10 represent basic values. The
relation between a value v 2 A10 and its basic val-
ues can be described by a mapping � : A10 ! 2B10 ,
where �(v) = fb1; :::; bng if v is a composite value and
�(v) = fbg if v is a basic value.

0s 0s 1s 1s

X0 X1U

U0 U1

X

B10

C10

Figure 1: Hasse diagram of the 10-valued logic A10.

Let us assume that a signal x already has a value
vi 2 A10 and the test generator tries to assign value
wi 2 A10 to x. Depending on these values, two cases
are possible. If the two values vi and wi have no basic
value in common, i.e.,

�(vi) \ �(wi) = ;;

then there is a con
ict that must be resolved by back-
tracking. Otherwise, if �(vi) and �(wi) intersect, there

is a value vi+1 2 A10 with �(vi+1) = �(vi) \ �(wi).
Obviously, value vi+1 represents the basic values of
the intersection. If �(vi+1) 6= �(vi), the test genera-
tor assigns the new value vi+1 to x which is called the
update of vi by wi. For example, the update of U0
by X1 is 1s since �(1s) = �(U0) \ �(X1) (see Fig. 1).

Let G be a gate and let vi; vj 2 A10 be the values
at its inputs i and j. Furthermore, let \�" be the gate
function of G and let vy be the value at output y. y
is called an unjusti�ed line, if

�(vy) � �(vi � vj):

2.3 TPG Status
The values at unjusti�ed lines are satis�ed via a

backtrack search. Tentative value assignments are
performed at head lines [13]. Each time an assign-
ment leads to a con
ict, backtracking is performed.
The set of unjusti�ed lines as well as the signal up-
dates must be stored to continue the search after
backtracking. Several stacks are used for that pur-
pose. These stacks determine the TPG status TS =
(US;VS(x0); :::;VS(xN)). US denotes the unjusti�ed
line stack. An entry of stack US is a set of unjus-
ti�ed lines. VS(x0); :::;VS(xN) are the value stacks
for all signals x0; :::; xN in the circuit. A value stack
VS(xi) = (:::(((v0); v1); v2); :::; vk), 0 � i � N , con-
sists of the updates v1; v2; :::; vk of signal xi. The ini-
tial value v0 is X which is assigned to each signal in
the initialization step of the TPG process. The value
stacks are bounded by the maximum number of up-
dates (3 for logic A10), and the unjusti�ed line stack
is bounded by the number of PIs.

3 The Test Generation Algorithm
The TPG process can be divided into path sensi-

tization and line justi�cation. The path sensitization
step consists of assigning values to all on-path and o�-
path signals and performing all implications of these
assignments. After all mandatory value assignments
have been carried out, a target path is said to be sen-
sitized. The logic values of all unjusti�ed lines must
then be justi�ed. This is done via a backtrack search.
The TPG process is �nished when there are no more
unjusti�ed lines.

The complexity of line justi�cation may be expo-
nential in the number of PIs. The complexity of path
sensitization directly depends on the number of se-
lected paths. In the following we describe a path sen-
sitization strategy which signi�cantly reduces the com-
putation time required for this step.

3.1 Basic Idea of Resist
Path delay faults are dependent since many paths

have common subpaths. Therefore, treating each path
delay fault separately is inappropriate. To illustrate
this, let us use the circuit example Cn from [9] (see
Fig. 2). Only the bold paths starting from PI y0
and ending at PO yn will be considered. There are
2 � n di�erent structural subpaths Ski;i+1, 0 � i < n,
1 � k � 2, between consecutive fanout stems. Each
path from y0 to yn consists of n subpaths Ski;i+1. Al-
together, there are 2n di�erent paths from y0 to yn.

S0,1

S0,1

S1,2
Sn-1,n

S1,2

a1

a2

c2

c1

an

cn

y1

y2

yn

yn-1

Sn-1,n

y0

1

2

1

2

1

2

Cn Cn-1 C1

Figure 2: Circuit Cn from [9].

A conventional test pattern generator (CTPG) sen-
sitizes each path separately. Hence, it performs
S(n) := n � 2n subpath sensitization steps (SPS) in
circuit Cn. To reduce the number of SPS, Resist
uses a di�erent strategy.

Let us consider the subpaths S10;1 and S20;1 from PI
y0 to fanout stem y1. Both subpaths are included in
2n�1 paths from y0 to yn. Hence, sensitizing S10;1 and

S20;1 only once reduces the number of SPS from S(n)
to

2 �
�
1 + (n � 1) � 2n�1

�
= 2 + 2 � S(n � 1);

where S(n � 1) := (n � 1) � 2n�1 is the number of
SPS performed by CTPG in circuit Cn�1. Applying
the same principle to all subcircuits Cn�1; :::; C1 (see
Fig. 2), the number of SPS becomes

2 + 2 � [2 + 2 � [:::[2+ 2 � S(1)]:::]] =

21 + :::+ 2n�1 + 2n�1 � S(1) =
nX

i=1

2i = 2n+1 � 2;

since S(1) = 2. Compared with CTPG, the number of

SPS is reduced by n�2n

2n+1�2
= n

2�2�n+1
� n

2
. If n = 100,

for example, the reduction factor is 50. The reduction
factor increases with an increasing number of fanout
branches (fanout > 2) converging to n.

Performing the sensitization step for a common
subpath S only once requires that the TPG status
is updated at fanout stems. Both, mandatory value
assignments for subpath sensitization and the corre-
sponding unjusti�ed lines have to be stored in order
to exploit the TPG status for all paths including S.

3.2 Pseudo-Code of Resist
The pseudo-code of our test generation procedure

is depicted in Fig 3. Resist is called twice for each
PI x0, where t0 is �rst initialized to a rising transi-
tion and second to a falling transition. The procedure
consists of path selection, path sensitization, and line
justi�cation.

Starting at a PI, the netlist of the circuit is tra-
versed in a depth-�rst manner. Path sensitization is
performed during the netlist traversal. The path sen-
sitization step is completed if the actual signal is a PO.
In this case a path from PI x0 to PO xn has been se-
lected and sensitized. A backtrack search is then used

RESIST(xi, ti) f
/* xi: on-path signal, ti: transition at xi. */
if (xi is a PO) f

(1) satisfy unjusti�ed lines(); /* Backtrack search. */
g else f
if (fanout(xi) > 1) f

(2) implication();

Vimp := f(x; vk) jvk is the last update assigned
to x during implicationg;

U := actual set of unjusti�ed lines;

if (no con
ict) f
(3) foreach ((x; vk) 2 Vimp) f push(vk, VS(x)); g
(4) push(U, US);

g else f
foreach ((x; vk) 2 Vimp) f

(5) assign value top(VS(x)) to signal x; g
return;gg

(6) foreach (branch signal bj of xi) f
Gi := gate with input signal bj ;
I(Gi) := set of input signals of Gi;
xi+1 := output signal of Gi;

if (Gi is a bu�er or AND/OR-gate) f
(7) assign gate values(xi, I(Gi)nfxig, ti, type of Gi);

Vgate = f(x; vk) j vk is the update assigned to x

during path sensitization at Gig;
if (no con
ict) f
foreach ((x; vk) 2 Vgate) f push(vk, VS(x)); g
ti+1 := ti;

RESIST(xi+1, ti+1); /* Recursive call. */

/* Restore TPG status. */
(8) foreach ((x; vk) 2 Vgate) f
(9) pop(VS(x));
(10) assign value top(VS(x)) to signal x;

g
if (fanout(xi) > 1) f
if (bj is the last processed branch) f

(11) foreach ((x; vk) 2 Vimp) f
(12) pop(VS(x));

(13) assign value top(VS(x)) to signal x; g
(14) pop(US);

g else f
(15) actual set of unjusti�ed lines := top(US);

g
g

g else f
(16) foreach ((x; vk) 2 Vgate) f
(17) assign value top(VS(x)) to signal x; g

g

g else if (Gi is an inverter or NAND/NOR-gate) f
/* Similar to above. */

g else if (Gi is a XOR/XNOR-gate) f
/* Similar to above. */

gggg

Figure 3: Pseudo-code of Resist.

for line justi�cation (step (1)). The backtrack search
is guided by a multiple backtrace procedure which is
based upon the principles described in [13]. After gen-

erating a test or proving the fault as redundant, the
path selection and sensitization process is continued.

In the sequel we assume that the actual signal xi
is no PO. We distinguish between two cases: 1) xi is
a fanout stem, i.e. fanout(xi) > 1, and xi does not
branch, i.e. fanout(xi) = 1. To refer to gate input
and output signals we use the following notation: bj
denotes a branch signal of xi, Gi is the gate with input
signal bj , I(Gi) is the set of inputs of Gi, and xi+1 is
the output of Gi. Note that xi has only one branch
if fanout(xi) = 1. Since the next steps of Resist are
similar for all considered gate types, we will suppose
that Gi is a non-inverting gate (bu�er or AND/OR-
gate).

Each time a fanout stem is encountered, the cur-
rent TPG status TS = (US;VS(x0); :::;VS(xN)) has
to be updated. Initially, the TPG status TS =
(empty stack; :::; empty stack). Let us assume that S
denotes the selected subpath from the last encountered
fanout stem xj or from PI x0 to the actual fanout
stem xi. The value assignments to the on-path sig-
nals (except xi) and o�-path signals of S have already
been done in previous calls of Resist. In step (2) we
complete the sensitization of subpath S by perform-
ing all implications of these assignments. Assuming
that no con
ict occurred in step (2), the last update
of a signal included in set Vimp and the actual set
U of all unjusti�ed lines are stored in TS (see steps
(3) and (4) in Fig. 3). Note that several updates
may be assigned to a signal x during the implication
step but only the last one has to be stored in the
value stack VS(x). After updating the TPG status,
top(TS) := (top(US); top(VS(x0)); :::; top(VS(xN)))
represents the unjusti�ed lines of the sensitized sub-
path S = (xt00 ; :::; x

ti
i) and the actual signal assign-

ments in the circuit. Hence, entry top(TS) is common
for all paths that start at fanout stem xi. If a con
ict
occurred in step (2), all paths including subpath S are
identi�ed as untestable. Consequently, path selection
and sensitization is stopped at xi. Before continuing
the path selection and sensitization process at the last
encountered fanout stem xj or at PI x0, each signal
x with (x; vk) 2 Vimp gets its previous value which is
stored in top(VS(x)) (see step (5)).

After all implications are done and the TPG status
is stored, path selection is continued in step (6). While
steps (2)-(5) are only executed for fanout stems, the
next steps are required for all signals. For each branch
signal bj of xi, a new subpath (xtii ; x

ti+1
i+1) is �rst se-

lected and subsequently sensitized in step (7). Table 1
shows the values which are assigned to on-path signal
xi and to the o�-path signals I(Gi) n fxig depending
on the transition ti and the type of Gi. If no con
ict
occurs in step (7), all signal updates (see set Vgate in
Fig. 3) are stored in the corresponding value stacks
and Resist is invoked with the gate output xi+1 and
the transition at that signal. After processing all sub-
paths in the output cone of signal xi+1, the TPG sta-
tus has to be restored.

First, the value assignments for subpath sensitiza-
tion are undone. In steps (8)-(10), the corresponding

value stacks are popped and the signals get their pre-
vious values. Next, we distinguish two cases:

1) fanout(xi) > 1 and bj was the last processed

branch: Since all branches of xi have been pro-
cessed, the updates of TS performed at xi in steps
(3) and (4) are no longer required. Hence, the cor-
responding stacks of TS are popped and the value
assignments of the implication step have to be un-
done. Each signal x with (x; vk) 2 Vimp gets its
previous value top(VS(x)) (see steps (11)-(14) in
Fig. 3).

2) fanout(xi) > 1 and there are still unprocessed

branches: top(TS) is still required for the unse-
lected subpaths starting at xi. Hence, only the ac-
tual set of unjusti�ed lines is restored, i.e., top(US)
becomes the unjusti�ed line set (see step (15)).

If a con
ict occurs in step (7), all paths includ-

ing subpath S = (xt00 ; :::; x
ti+1
i+1) are identi�ed as re-

dundant. Hence, path selection and sensitization is
stopped and each signal x with (x; vk) 2 Vgate gets its
previous value (see steps (16) and (17)).

Finally, path selection and sensitization is contin-
ued at the last encountered fanout stem xj or at PI
x0. Resist stops when all paths in the output cone of
PI x0 have been processed. Note that it is also pos-
sible to target only maximum length paths by taking
the nominal gate delays into account.

O�-Path Signals On-Path Signals

AND/NAND OR/NOR XOR/XNOR
rising falling rising falling rising falling

X1 1s 0s X0 0s/1s 1s 0s

Table 1: Logic values assigned to on-path and o�-
path signals during path sensitization.

Until now, we assumed that there are no
XOR/XNOR-gates in the circuit. If the actual sig-
nal xi is the input of a XOR/XNOR-gate, two recur-
sive calls of Resist must be performed (assigning 0s
and 1s to the o�-path signal, see Table 1). Subpath

(xri ; x
r=f
i+1) or (xfi ; x

f=r
i+1) is sensitized in the one case

and (xri ; x
f=r
i+1) or (x

f
i ; x

r=f
i+1) in the other case. In or-

der to exploit the TPG status for both subpaths, the
TPG status must also be updated at input signals of
XOR/XNOR-gates.

4 Experimental Results
Resist was implemented in 18000 lines of C code.

For evaluation, we used the ISCAS-85 and ISCAS-89
benchmark circuits. We compared our results with
those obtained with Dynamite [8], Tsunami-d [11],
and Nest [9]. Table 2 gives the number of all path
delay faults, the number of robustly tested faults, and
the required CPU time. Note that only circuits with a
large number of path delay faults (> 10 000) are listed.
Aborted faults occurred in circuits c432, c499, c1355,
c1908, c3540, and c6288.

Cir- All Path Delay Faults Tested Path Delay Faults CPU time [sec.]

cuit Resist, Resist,

Name Dynam.
Tsun.-d Nest

Dynam.
Tsun.-d Nest Resist

1
Dynam.

2
Tsun.-d

2
Nest

3

s713 43624 43624 43624 1184 1184 181 3 15 20 105

s1423 89452 89452 89452 28 696 23220 465 92 315 926 176

s5378 27084 27084 27084 18 656 18248 2035 76 198 296 523

s9234 489708 - 489708 21 389 - 2079 175 472 - 6789

s13207 2690738 2 690638 - 27 603 27484 - 167 1984 4286 -

s15850 329476092 - - 182673 - - 1478 86040 - -

s35932 394282 394282 - 21 783 21655 - 636 1135 439 -

s38417 2783158 - - 598062 - - 9819 26392 - -

s38584 2161446 2 161442 - 92 239 90146 - 607 10636 4790 -

Resist - Nest Resist - Nest Resist
1 - - Nest

3

c432 583652 - - 3722� - - 137 - - -

c499 795776 - - 132684� - - 3327 - - -

c880 17284 - 17284 16 083 - 768 58 - - 30

c1355 8346432 - 8346432 22624� - 78 2473 - - 4502

c1908 1458114 - 1458112 97588� - 442 21224 - - 246

c2670 1359768 - 1359756 15 218 - 790 318 - - 3826

c3540 57353342 - 56531748 88378� - 842 5224 - - 24389

c5315 2682610 - 2682610 81 435 - 1668 1524 - - 9705

c6288 1:98 � 1020 - 1:98 � 1020 12592� - 1 1122 h - - 45739

c7552 1452986 - 1452986 86 250 - 2410 2457 - - 24145

1CPU time on a SUN SPARC IPX (28 Mips). 2CPU time on a DEC 5000 (25 Mips).
3CPU time on a SUN SPARC 2 (28 Mips).
- No results are available for these circuits. * Circuits with aborted faults.

Table 2: Results of Resist, Dynamite [8], Tsunami-d [11], and Nest [9] for TPG of robust tests.

The data show that Resist is signi�cantly faster
than Dynamite, especially in circuits with a large
number of path delay faults like s13207, s15850, and
s38584. For example, in circuit s15850, Resist is
nearly two orders of magnitude faster than Dyna-

mite.
A comparison with Tsunami-d reveals that Re-

sist is faster for circuits s713, s1423, s5378, s13207,
and s38584 while Tsunami-d is slightly faster for cir-
cuit s35932. As can be seen from the number of tested
faults, Tsunami-d provides only a conservative esti-
mate of the robust path delay fault coverage. For ex-
ample, in circuit s1423, 5476 faults are not proven to
be robustly testable by Tsunami-d.
Nest gives an even lower fault coverage. In all

listed circuits, it detected signi�cantly less faults. In
some poorly testable ISCAS-85 circuits (c1355, c1908,
c3540, c6288), the tested faults di�er by more than
two orders of magnitude. Although Resist gave a
higher fault coverage and used no fault simulator to
accelerate the TPG process, it is considerably faster
than Nest except in circuits c880, c1908, and c6288.
The higher CPU times required in these circuits are
a consequence of the much larger number of tested
faults.

Detailed results on TPG for circuit c6288 are de-
picted in Fig. 4. We invoked Resist for each PI sep-
arately. Fig. 4 shows the number of tested, aborted,
and proven redundant faults as well as the required
CPU time for each output cone (OC) of a PI. Note
that the 32 OCs are ordered in terms of increasing
number of paths starting at the corresponding PIs.

Besides a backtrack limit of 10 a total time limit of
500 000 seconds was used.
Resist detected 12 592 testable faults while Nest

found only one testable fault. 1:96789 � 1020 faults
were proven as redundant. From the remaining faults,
1 132 540 were aborted because of the backtrack limit
and about 1:09755 � 1018 were aborted because of the
time limit.

As can be seen in Fig. 4, the graphs for CPU-time
and for the number of aborted faults are similar. In
four cases (OC22, OC21, OC20, OC19) the time limit
was exceeded resulting in numerous aborted faults. In
the remaining 28OCs, relatively few faults are aborted
because large sets of faults were proven redundant
rapidly. The remaining aborted faults occurred due
to the backtrack search limit. The best results were
obtained in OC17 which has 7:34�1019 faults. Only 7.3
seconds were needed for TPG with no aborted fault.

5 Conclusions
We presented Resist that is capable of perform-

ing TPG for all path delay faults in the complete IS-
CAS benchmark set. We proposed an e�cient sensi-
tization technique which sensitizes common subpaths
only once. Our method resulted in a substantial de-
crease in the number of subpath sensitization steps.
The sensitization procedure has been shown to give
a speed-up factor that grows linearly with the circuit
depth. Compared to conventional approaches, Resist
is capable of detecting a signi�cantly larger number of
path delay faults in less time. Especially noticeable is
the fact that Resist can handle circuit c6288 which

102

101

CPU time [sec.]

103
104
105
106

OC1

Faults

1015

1010

1020

105

1

aborted faults

proven redundant faults

OC
tested faults

time limit = 500 000 sec.

3 3 3 2 2 2 2 1 2 2 2 3 2 4 2 5 2 6 2 7 8 9 1 1 1 1 1 1 1 1 1 1
2 1 0 9 8 7 6 5 4 3 2 1 0 9 0 1 2 6 3 4 5 8 7

3 3 3 2 2 2 2 1 2 2 2 3 2 4 2 5 2 6 2 7 8 9 1 1 1 1 1 1 1 1 1 1
2 1 0 9 8 7 6 5 4 3 2 1 0 9 0 1 2 6 3 4 5 8 7

Figure 4: Tested, aborted, proven redundant path delay faults, and CPU time required for TPG of robust
tests in the output cones of c6288.

has about 1:98 � 1020 path delay faults. In 1122 CPU
hours it identi�ed 99.4% of all faults either as testable
or redundant. The average run time of 2 � 10�14 sec-
onds per fault indicates that Resist is very e�cient.

References
[1] T. W. Williams, B. Underwood, and M. R. Mercer.

The Interdependence Between Delay-Optimization of
Synthesized Networks and Testing. Proc. 28th DAC,
pp. 87 { 92, June 1991.

[2] W. K. Lam, A. Saldanha, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Delay Fault Coverage and
Performance Tradeo�s. 30th DAC, pp. 446 { 452,
June 1993.

[3] S. M. Reddy, C. J. Lin, and S. Patil. An Automatic
Test Pattern Generator for the Detection of Path De-
lay Faults. IEEE Int. Conf. on CAD, pp. 284 { 287,
Nov. 1987.

[4] C. J. Lin and S. M. Reddy. On Delay Fault Testing
in Logic Circuits. IEEE Trans. on CAD, Vol. CAD-6,
No. 5, pp. 694 { 703, Sept. 1987.

[5] M. H. Schulz, K. Fuchs, and F. Fink. Advanced Au-
tomatic Test Pattern Generation Techniques for Path
Delay Faults. 19th FTCS, pp. 44 { 51, June 1989.

[6] K. T. Cheng, S. Devadas, and K. Keutzer. Robust
Delay-Fault Test Generation and Synthesis for Testa-
bility under a Standard Scan Design Methodology.
Proc. 28th DAC, pp. 80 { 86, June 1991.

[7] K. Fuchs, F. Fink, and M. H. Schulz. DYNAMITE:
An E�cient Automatic Test Pattern Generation Sys-
tem for Path Delay Faults. IEEE Trans. on CAD,
Vol. CAD-10, No. 10, pp. 1323 { 1335, Oct. 1991.

[8] K. Fuchs, H. C. Wittmann, and K. J. Antreich. Fast
Test Pattern Generation for All Path Delay Faults
Considering Various Test Classes. 3rd Europ. Test

Conf., pp. 89 { 98, April 1993.

[9] I. Pomeranz, S. M. Reddy, and P. Uppaluri. NEST: A
Non-Enumerative Test Generation Method for Path
Delay Faults in Combinational Circuits. 30th DAC,
pp. 439 { 445, June 1993.

[10] P. C. McGeer et al. Timing Analysis and Delay-
Fault Test Generation using Path-Recursive Func-
tions. IEEE Int. Conf. on CAD, pp. 180 { 183, Nov.
1991.

[11] D. Bhattacharya, P. Agrawal, and V. D. Agrawal. De-
lay Fault Test Generation for Scan/Hold Circuits us-
ing Boolean Expressions. Proc. 29th DAC, pp. 159 {
164, June 1992.

[12] I. Pomeranz and S. M. Reddy. An E�cient Non-
Enumerative Method to Estimate Path Delay Fault
Coverage. Proc. IEEE Int. Conf. on CAD, Nov. 1992.

[13] H. Fujiwara and T. Shimono. On the Acceleration of
Test Generation Algorithms. IEEE Trans. on Comp.,
Vol. C-32, No. 12, pp. 1137 { 1144, Dec. 1983.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

