
An E�cient Veri�cation Algorithm for Parallel Controllers

K. Bili�nski, J. M. Saul, E. L. Dagless, J. Szajna y

Department of Electrical and Electronic Engineering,

University of Bristol, Bristol BS8 1TR, United Kingdom

yDepartment of Computer Engineering and Electronics,

Higher College of Engineering, 65-246 Zielona Gora, Poland

Abstract

A new algorithm for verifying the equivalence of
parallel controller designs is presented along with its
implementation. The controller is speci�ed using a
Petri net, and its implementation is given as a netlist.
The reachability graph of the Petri net is generated
and simultaneously the network is implicitly simulated.
By exploiting information from the reachability graph
a reduction of the time and memory needed for veri�-
cation has been achieved.

1 Introduction

VLSI circuit design methodology can be divided
into two main stages: synthesis and veri�cation. Syn-
thesis, which is usually done automatically, refers to
the process of creating a circuit from its speci�cation.
It is possible that synthesis may introduce incorrect by
construction results for a particular circuit. For that
reason, independent, automatic, and trustworthy ver-
i�cation tools are needed. The process of determining
whether a designed circuit matches what was speci�ed
is called implementation veri�cation, which consists of
behavioural, logic and layout veri�cations [5].

The veri�cation of combinatorial circuits has re-
ceived the majority of attention for a long time, and
so there are many techniques available that can verify
combinatorial circuits e�ciently. The veri�cation of
sequential circuits is considerably more di�cult. The
simplest approach uses exhaustive simulation. Since
the number of states that have to be tested grows
exponentially with the number of inputs and storage
elements, this technique is very time and memory con-
suming and can only be used for small circuits (less
than 10 latches). However, new more suitable algo-
rithms have recently been presented for �nite state
machines (FSMs) which operate on a state transition
graph (STG) in order to verify designs. In [3] two
new approaches to FSM veri�cation were introduced.
The main idea of the �rst one is that two STGs are
extracted: one from the register{transfer{level speci�-
cation and the other from the netlist implementation.
While extracting the second STG, the use of don't care
information from the �rst STG enables the reduction
of the number of states and the number of edges in the

second STG. Then a graph multiplication method is
used to check the equivalence. In the second approach,
the STG of one circuit is enumerated and simultane-
ously simulated on the other one. An extension of the
second method is presented in [4], [5], [6]. The ad-
vantage of this approach is that only the current path
of the STG of the �rst FSM is stored, rather than
the entire STG. Other methods called symbolic STG
traversal algorithms were initially presented in [2], [5].
Within the methods, which can be implemented e�-
ciently using BDDs, an input as well as a state space
are implicitly enumerated. These methods work best
for data{path{type circuits, i.e. circuits in which al-
most any state can be reached from any other. How-
ever, for parallel controllers in which there are many
parallel interacting processes, the above methods can-
not be used e�ciently.

A parallel controller may be speci�ed using an in-
terpreted Petri net. As shown in [9] there are some
advantages in using a Petri net speci�cation to synthe-
size parallel controllers, especially when circuit area
and speed are considered. In this paper, a new e�-
cient approach for verifying parallel controllers design
is given and illustrated with examples. The method
presented is the �rst known approach to implementa-
tion veri�cation of parallel controllers that are speci-
�ed using Petri nets.

The paper is organised as follows: basic de�nitions
are presented in Section 2. The algorithm for paral-
lel controller veri�cation is described of Section 3. In
Section 3.1 an algorithm for reachability graph gen-
eration is given. The method of implicit simulation
is shown in Section 3.2. Experimental results are dis-
cussed in Section 4. Section 5 draws conclusions and
makes suggestions for future work.

2 Preliminaries

A Petri net is a bipartite, weighted, directed graph,
which has two types of nodes called places, repre-
sented by circles, and transitions, represented by bars
or boxes. Directed arcs connect the places and the
transitions, with some arcs leading from the places to
the transitions and others vice versa. To each arc a
weight, a positive integer represented by a label, is
assigned, where the m{weight arc can be viewed as

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

the set of m parallel arcs. When m = 1, the label is
usually omitted. A marking is an assignment of to-
kens, represented as black dots, to the places. The
position and the number of tokens changes during the
net execution. Formally a Petri net PN is de�ned as
a 5-tuple [8]:

PN = (P; T; F;W;M0)

where: P = fp1; p2; :::; pmg is a �nite non-empty set of
places; T = ft1; t2; :::; tng is a �nite non-empty set of
transitions; F � (PxT)[(TxP) is a �nite non-empty
set of arcs; W : F ! f1; 2; 3; :::g is a weight function;
Mo : P ! f0; 1; 2; :::g is the initial marking; P \T = ;
and P [T 6= ;.

The net execution is performed according to simple
rule for transition enabling and �ring [8]. A Petri net
is said to be an ordinary Petri net if all of its arc
weights are set to one.

The behaviour of a sequential circuit can be mod-
elled using a �nite state machine (FSM). When there
are many parallel, interacting subprocesses to be con-
trolled, using a �nite state machine can be awkward,
since each state has to control all of them. A better
solution is to divide each of the global sequential states
into a number of concurrently active local states, with
each local state controlling a di�erent subprocess. The
main di�erence between a �nite state machine and
parallel controller is that whilst a �nite state machine
has only one state active at any time, a parallel con-
troller can have several states active simultaneously.

For a synchronous parallel controller speci�cation
a high level Petri net is used, which is called an in-
terpreted synchronous Petri net. A predicate may be
attached to each transition, which is a Boolean func-
tion of the controller's input signals. Moore outputs
are associated with places and Mealy outputs with
transitions. Each place represents a local state of the
controller, and so the global state of the controller is
equivalent to the current marking of the net. Thus the
net execution de�nes the controller behaviour, which
can be represented using a reachability graph. New
rules for transition enabling and �ring are introduced.
A transition is enabled when all of its input places are
marked and its predicate, if present, is asserted. All
transitions are synchronized by a global clock and so
all enabled transitions �re simultaneously. An exam-
ple of a Petri net representation of a parallel controller
is shown in Figure 1.a.

A state, in general, is a symbol indicating the in-
ternal state of the circuit. Each state has a unique
bit vector, known as the state code, which represent-
ing that state. A state with only 1's and 0's as bit
values is called a minterm state. A cube state can
have the values in the di�erent bit positions 0, 1, or
don't{care ({). The cube state therefore represents a
group of minterm states [5]. The reset or initial state
is the state to which the machine goes after a power{
up. If a circuit consists of n simple memory elements
(latches or ip{ops) the state space is 2n. However
for a particular circuit, especially for a large one, the
number of states that can be reached from an initial
state is signi�cantly smaller. All states that can be
reached from the initial state are called valid states,

P3

in2

in1

out2

T5

P5

P2

P4

T4

in1
T3T2

out2

T1

P1out1

in3 .transition T1 T2 T3 T4 T5

.clock clk

.input in1 in2 in3

.output out1 out2

.place P1 P2 P3 P4 P5

.net

T5: P5 * in2 |- P1;
.MooreOutputs

.marking P1

.e

T4: P4 |- P2;

T1: P1 * !in3 |- P2 * P3;
T2: P2 * in1 |- P4;
T3: P2 * P3 * !in1 |- P5;

P1 |- out1;
P4 |- out2;
P5 |- out2;

.model 5p1.blif

.inputs in3 in2 in1

.outputs out2 out1

.clock clk

.latch D1 Q1 re clk 0

.latch D2 out2 re clk 0

.names out2 Q1 out1
00 1

0-00 1
-000 1

--1 1
10- 1
.names in2 Q1 out2 T5
101 1

010- 1
-010 1
.end

.names in3 out1 T5 n_P5 D1

.names Q1 out2 n_P5 D2

.names in1 Q1 out2 T5 n_P5

a) b) c)

Figure 1: An example of input date formats; a) A Petri
net speci�cation of a controller, b) PNSF description
of the net, c) BLIF representation of the controller's
implementation.

while other states are called invalid. Two circuits are
said to be equivalent if for all input sequences both
circuits produce the same output sequence. To deter-
mine the equivalence of two circuits a correspondence
between at least one state in each circuit should be
found. Usually it is the initial state. This de�nition
can be used for verifying circuits on a di�erent level
of description and/or to verify a speci�cation of the
circuit with its implementation.

During the design process, many descriptions of the
same circuit are created, so that various veri�cation
steps should be used. In Figure 2, part of a typical syn-
thesis pipeline and its connection with the proposed
veri�cation algorithm are given [5]. The problem of
checking the equivalence of a behavioural description
and a register{transfer{level description is referred to
as behavioural veri�cation which is a part of imple-
mentation veri�cation. The logic veri�cation, is the
process of verifying the equivalence of two logic{level
description of circuits | usually, the optimized and
the unoptimized descriptions of the circuit.

The meaning of veri�cation in this paper is as fol-
lows: for a given speci�cation and its implementation
the veri�cation algorithm checks the correctness of a
design. It is assumed that a parallel controller is syn-
chronized using a global clock, has a reset state, is
speci�ed using an interpreted synchronous Petri net
and the implementation is given as a netlist. An ex-
ample of input date is shown in Figure 1.b1 and 1.c2.

1The Petri Net Speci�cation Format (PNSF) allows a Petri
net to be described in a textual form. The PNSF was developed
at the University of Bristol[7].

2Berkeley Logic Interchange Format (BLIF) allow to de-

scribe a logic{level circuit speci�cation, which consists of in-
terconnected single{output gates and latches, in textual form.

The BLIF was developed at the University of California, Berke-
ley [10].

Behavioral Specification

Behavioral
Synthesis Tools

Unoptimized logic
Description

Combinatorial and
Sequential Logic Synthesis

Tools

Description
Optimized logic

Technology Mapping
Module Generation

Place and Route Tools
Verification
Layout

Verification
Logic

Verification
BehavioralI

M

P

L

E

M

E

N

T

A

I

O

N

T

V

E

R

I

F

I

C

A

T

I

O

N

verification algorithm
(RG-Simulation)

New

Layout

Figure 2: Part of a typical synthesis pipline.

3 Veri�cation algorithm and its imple-

mentation

The main idea of the method presented here is
to generate a reachability graph from the Petri net
speci�cation and simultaneously simulate the network.
This approach is e�cient for several reasons. First, the
reachability graph of only one circuit (speci�cation)
has to be created and stored. Second, a cube input
vector, which is computed in the reachability graph
generation procedure, is placed into the simulation
procedure, so that a smaller number of computation
steps for simulation is required. The new approach
is especially suited to circuits with many parallel pro-
cesses (parallel controllers), and it is time and memory
e�cient, since the input space can be implicitly enu-
merated. The presented algorithm may be used for
behavioural and logic veri�cation.

The veri�cation algorithm consists of two main
parts: a reachability graph construction and simula-
tion. The algorithm for reachability graph generation
from a given Petri net speci�cation of a circuit is pre-
sented �rst.

3.1 Reachability graph generation

To determine all of the valid states in the speci�ed
circuit, a reachability graph is generated. During the
graph construction, all possible relations among the
valid states are established. The algorithm is shown
in Figure 3 and will be illustrated with an example.

Let us consider the net shown in Figure 4. At the
beginning, the current state M0 is the initial marking

foreach_transition i(T , T) {

i(T);InputVector = InputVector + get_input_signals

(InputVector, In) {iforeach_input_sequence

M = 1

Ini/* Create new node from Mo for input signal combination */

Ini(M ,);0

Ini

Out =graph

Out = net

graphOut netOut (,)) {

{
/* Mo is the current node */

/* Generate an InputVector for curren marking */

InputVector = NULL;

}

/* Searching for a new node */

new_marking

if 1(M is new marking from M)0 {

if
1

/* Determine active outputs from simulated network */

network_simulate ();

/* Determine active outputs from reachability graph */

get_outputs

if check_equivalence(!

return (FALSE); /* Networks are not equivalent */
}

if (! generate_reachability_graph 1

(FALSE);return /* Networks are not equivalent */

}
}

}

return (TRUE); /* Networks are equivalent */

T = get_marking_transitions (M);0

generate_reachability_graph 0(M , RG)

(M is new node in reachability graph RG) {

1M ();

1Add M to reachability graph RG;

(,)) {M RG

Figure 3: Reachability graph generation algorithm.

of the net. The initial marking is added to the reach-
ability graph as the �rst node before calling the pro-
cedure generate reachability graph(). In this ex-
ample the initial marking is 00100101, which becomes
the �rst node in the graph. The routine �rst deter-
mines transitions that have all of their input places
marked (transitions t3 and t6). Next an input vector
is created. Since transitions t3 and t6 do not have
predicates assigned the input vector is set to don't
care (this means that the above transitions are en-
abled for any input signal combination). Next all pos-
sible combinations of the input signals are determined
| a di�erent subset of transitions may be �red for
each combination. When all input signals are set to
don't{care status only, one combination of transitions
can �re. In such a case all of the enabled transitions
�re simultaneously (here t3 and t6). Continuing the
graph construction, for each �ring sequence of transi-
tions, the routine new marking() tries to �nd a new
marking. In the case described above only marking
01001001 is possible. Next the new marking M1 is
�rst checked to see whether it is a new marking which
can be reached from M0, and then M1 is checked to
determine if it is covered by any node that is already
in the graph. If the marking does not appear in the
graph it is added to the graph and the network simula-
tion routine is called with the current input vector. A
description of the simulation method is given in Sec-
tion 3.2.

x

xy

p1
p2 p3

p4

p5

p6

p7

p8

t1t2

t4

t5

t6

t7

t8

t9

t3

x

xy

y
y

C

A

B

Figure 4: An example of a parallel controller speci�-
cation.

It may seem redundant that �rst M1 is checked to
determine if it is a new node which can be reached
from current marking M0, and then also to check
whether M1 is a new node in the reachability graph,
since if M1 is a new node in the graph it is obviously
enough to perform the rest of the algorithm. However,
the search space for the �rst comparison is always con-
siderably smaller than for the second one. Having the
network simulated, the routine check equivalence()
is called to determine the equivalence relation between
corresponding outputs. If for any pair of checked out-
puts di�erent values appear, then the circuits are not
equivalent. After equivalence has been determined,
further node generation is performed by calling the
routine generate reachability graph() recursively
with M1 as the input marking. These steps of the
algorithm are illustrated in Figure 5.

3.2 Simulation

Whenever a new node of the reachability
graph is produced by the routine generate reach-
ability graph() an input vector is simulated on the
circuit representing an implementation. When the
input vector is a minterm the simulation is called
minterm simulation; otherwise, it is called cube sim-
ulation [6]. Since the input vector in the presented
algorithm is in general a cube and not a minterm, an
algorithm for cube simulation is used. Usually, for
the cube simulation a cube{splitting algorithm is per-
formed on the input lines to produce a known value on
the output and next{state lines [6]. However, in the
presented algorithm (as shown in Section 3.1) valid
input signals, i.e. signals whose value may change
the present state of the controller, are always set to
a known value. To determine the proper work of the
simulator only a correct topological ordering of nodes
within the simulated circuit is required (i.e. the nodes
are ordered such that every node appears somewhere
after all of its transitive fanin nodes).

Let us again consider the net of Figure 4. The con-
troller which was synthesized from that speci�cation
and its BLIF description are shown in Figures 6.a and
6.b respectively. Node ordering during simulation and
a function associated to each node are presented in
Figure 6.c. Every function contains literals which ei-
ther represent input signals or latches' outputs or are

0 0 1 0 0 1 0 1

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 1

0 1 0 0 1 0 0 1

1 0 0 0 0 0 1 0

0 1 0 0 0 1 0 1

5 Sequence in which new nodes are asserted

5

5

t1

t6

t2 t9

t6

0 0 1 0 0 1 0 1

0 0 1 0 0 1 0 1

0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1

t7

0 0 1 0 1 0 0 1

5

1

2

3

4

6

Sequence in which nodes are generated

6

1

2

4

7

3

8 9 10

1211

13

- -

x y - yx y
t4 t7

x -

- y
t2 t8

- y

- y
t4 t6

x yt1 t6
x y

t3 t7 x - t3 x -

t3 t6

Node which was added to
reachability graph previously

New node in
reachability graph

Figure 5: The sequence of node generation.

computed before being used in the function (nodes
scheduled earlier in the node ordering). Now let us
consider table of Figure 6.d which shows successive
steps of simulation. The initial state of the controller
is represented by step 1. Let us recall from the pre-
vious section that being in this state the controller
changes its state for any combination of input signals,
so that this input vector has all its input variables
set to don't cares (lines x, y). In this case, taking
the node ordering (Figure 6.c) into account we can
compute value of every internal, next{state, and out-
put node without considering value of input signals
x, y. For each simulation step the routine gener-
ate reachability graph() guarantees that the input
vector, although in general being a cube, has required
input signals set to a known value.

When comparing the presented algorithm with al-
gorithms for FSM veri�cation, there are at least two
reasons of e�ciency of the new method. First, the gen-
eration of reachability graphs for parallel controllers
does not require a cover of the ON and OFF sets of
each primary output and next{state line to be gener-
ated. Second, it is not necessary to perform the cube{
splitting algorithm, so that time and memory needed
for the simulation is reduced.

4 Experimental results

In this section results that were achieved by using
the algorithm presented above are described. The al-
gorithm has been implemented in C and linked to the

Q1D1

D2

D3

D4

Q1

Q2

Q2

Q3

Q3

Q4

Q4

.model f4.blif

.inputs y x

.outputs C B A

.clock clk

.latch t5 Q1 re clk 0

.latch next_p5 Q2 re clk 0

.latch next_p4 Q3 re clk 0

.latch next_p7 Q4 re clk 0

.names Q2 Q1 A
00 1
.names Q3 B
1 1
.names y x B t1
101 1
.names x Q2 Q4 t5
011 1
.names Q1 Q4 C
00 1
.names y Q2 Q1 B next_p4
1-1- 1
0--1 1
-000 1
.names Q2 t1 t5 next_p5
-1- 1
1-0 1
.names x Q1 t5 C next_p7
---1 1
000- 1
.end

simulation

node

A
t5
B
t1

next_p7

Q1 Q2
Q2 Q4 x
Q3
B x y
Q2 t5 + t1
Q1 y + Q1 Q2 B + B y
Q1 Q4
Q1 t5 x + C

associated function

node ordering during

next_p6
next_p4
C

c)
inputs

outputs

state
next

internal

node

simulation steps

x
y

t1

A
B
C

t5
next_p5
next_p4
next_p7

Q1
Q2
Q3
Q4

0 0 0
0 0

0 1 1 0 0 1
0 1 0 0 1 0

1 0 0
01

0
0

0

0 1 0 0
0 0

1
1

1 0
0 0

0

0 1 0 0 0

0
0 1 0

0 0 1 0
1 0 0 1

0
0
0

1

1 0 1 1
1 0 1 0

1 0 0 1 0

-
- 1

0 0 1
1 0- 1

- -

31 2 4 5 6
d)

A

C

B

next_p4

t5 t1

next_p7

next_p5

x

y

b)

a)

Figure 6: Simulation steps.

SIS sequential logic synthesis system [10]. It forms a
part of the methodology that was developed for paral-
lel controller design [1]. All examples were counted on
a Sun SPARC{Station2 computer. For each of the ex-
amples veri�cation timeTcpu and memory size needed
Memory were considered. CPU times are quoted in
seconds and memory required in kBs.

The algorithm was evaluated with three groups of
parametrized benchmarks to �nd how its performance
varies with problem size | based on the sleeping bar-
ber, tra�c light controller, and cigarette smokers prob-
lems, respectively. The maximum size of benchmarks
was limited to 20000 states or 100000 state transi-
tion edges in order to keep simulation time below one
hour. In addition, to evaluate the veri�cation results
when real hardware designs are considered a set of
examples, which were taken from published papers
and various other sources, was also veri�ed. Statis-
tics of the benchmarks are given in Table 1. The
�rst two columns show the number of primary in-
puts and primary outputs respectively. The next two
columns show the number of places and transitions of
the Petri net speci�cation of each controller. The last
two columns show the number of states and state tran-
sition edges of an equivalent state transition graph of
each controller.

Each of the examples was encoded using a method
presented in [9] (unoptimized description), and then

Petri net Equivalent STG

Example #in. #out. #pl. #tr. #st. #ed.

barber2 3 2 10 11 18 72
barber3 4 2 14 15 81 486
barber4 5 2 18 19 324 2640
barber5 6 2 22 23 1215 13740
barber6 7 2 26 27 4374 67896

tra�c2 0 3 10 8 8 8
tra�c4 0 6 20 16 16 16
tra�c8 0 12 40 32 34 34
tra�c16 0 24 80 64 66 66
tra�c32 0 48 160 128 130 130

smoke3 1 3 24 18 192 336
smoke4 1 4 32 24 331 662
smoke5 1 5 40 30 1222 4888
smoke6 1 6 48 36 4381 17524
smoke7 1 7 56 42 15316 30632

zigzag 6 11 20 18 40 80
fstore 8 8 18 19 48 86
pr sp 2 1 21 22 39 65
react 10 9 16 13 29 129
fgen 9 4 13 14 80 846

Table 1: Statistics of examples: parallel and sequential
controller representation.

synthesized using SIS (optimized description). Thus
two logic{level descriptions of each of the examples
were generated. Finally, using the algorithmpresented
here the behavioural and logic veri�cation were per-
formed by comparing the initial speci�cation of an ex-
ample with each of those two descriptions.

Since there are no standard benchmarks for ver-
i�cation, it is hard to compare the e�ciency of the
algorithm presented here with other techniques. A
functionally equivalent sequential controller for each
of the examples was also generated3 Next, using the
enumeration{simulation algorithm (verify fsm) for se-
quential circuit veri�cation [5], a set of corresponding
results was obtained.

Table 2 summarizes results of the behavioural ver-
i�cation. The �rst two columns show the number
of nodes and latches used to implemented each of
the examples respectively. The next columns show
statistics of veri�cation when using the algorithm pre-
sented in this paper (pn verify), and the verify fsm
approach. For the barber examples, the pn verify
approach is considerably better for all of the exam-
ples, considering both time and memory required. It
can be seen that veri�cation time for the pn verify
algorithm grows more quickly with the problem size
than for verify fsm. Using this observation we can
assume that for bigger examples of this kind the ver-
i�cation time of verify fsm approach is going to be
shorter. However, the pn verify approach remains
considerably more memory e�cient. When the tra�c
benchmarks are considered the comparison of equiva-
lent results reveals signi�cant improvements in terms
of both veri�cation time and memory needed when us-
ing the pn verify algorithm. Additionally, in this case
the veri�cation time for pn verify grows more slowly
than for the verify fsm approach. When the third set

3The method is based on converting a Petri net description
into a single state{transition{graph, from which a sequential
controller is next synthesized.

pn verify verify fsm
Tcpu Mem. Tcpu Mem.

Example #no. #la. (s) (kB) (s) (kB)

barber2 45 6 0.7 362 2.1 624
barber3 64 9 1.3 492 6.0 836
barber4 85 11 6.7 522 31.2 1380
barber5 104 14 44.2 944 122.7 3070
barber6 124 16 380.2 1794 566.7 7372

tra�c2 50 4 0.2 378 1.4 678
tra�c4 94 7 0.4 422 4.4 814
tra�c8 182 15 1.0 502 27.8 1150
tra�c16 358 31 2.7 652 245.5 4224
tra�c32 710 63 10.7 890 2290.8 13492
smoke3 120 14 1.7 602 13.5 974
smoke4 163 18 4.7 796 29.0 1108
smoke5 204 23 20.7 1538 86.4 1756
smoke6 240 27 81.6 4258 285.9 4096
smoke7 287 31 340.0 15066 1480.5 8496

zigzag 190 10 0.9 594 8.4 946
fstore 122 9 1.1 528 7.3 906
pr sp 105 8 0.6 562 6.9 868
react 84 6 0.5 512 5.9 784
fgen 73 7 1.5 942 3.1 766

Table 2: Behavioural veri�cation results.

of benchmarks | smoke | is considered the veri-
�cation time needed for pn verify grows similarly to
verify fsm, but the verify fsm one takes almost �ve
times longer to complete. The memory requirements
for the pn verify grows slightly faster than for the ver-
ify fsm. For the set of benchmarks represented real
hardware designs the pn verify method is better than
the verify fsm when comparing both time and memory
needed for veri�cation.

In Table 3 the logic veri�cation results are pre-
sented. In general, the logic veri�cation statistics have
similar characteristics to those of behavioural veri�ca-
tion. However, performances of the pn verify routine
are considerably better than those of verify fsm for al-
most all of the examples. For example, for the smoke
set of benchmarks the verify fsm approach takes al-
most ten times longer than pn verify.

5 Conclusions

A new method for the behavioural and logic veri�-
cation of parallel controllers has been developed. Ex-
perimental results for a number of parallel controllers
show that signi�cant improvements in speed and the
use of memory can be obtained this way, compared
with equivalent techniques which are targeted for an
FSM veri�cation, for almost all types of parallel con-
trollers. It should be noted that proposed algorithm
produces the best results for the tra�c examples.
These designs have the large number of concurrent
processes (e.g. tra�c4 is in 85% parallel), and so it
seems that the proposed algorithm is especially suit-
able for such a type of controllers.

The main directions for future work in this area
have become evident. Since the reachability graph
generation procedure is the bottleneck of the method
presented, this problem should be carefully investi-
gated.

pn verify verify fsm
Tcpu Mem. Tcpu Mem.

Example #no. #la. (s) (kB) (s) (kB)

barber2 8 5 0.2 322 1.8 610
barber3 15 8 0.9 432 5.3 800
barber4 21 10 4.9 474 29.3 1280
barber5 30 13 37.6 824 114.0 2974
barber6 35 15 362.7 1408 520.7 6282

tra�c2 9 4 0.1 312 1.3 644
tra�c4 12 7 0.2 386 4.0 792
tra�c8 40 15 0.6 476 24.9 1114
tra�c16 82 31 1.9 588 237.8 3862
tra�c32 157 63 4.9 794 2248.3 12964
smoke3 24 14 1.0 614 14.2 970
smoke4 34 18 2.4 782 29.4 1204
smoke5 42 23 11.5 1308 98.3 1936
smoke6 53 27 59.3 3068 497.3 4816
smoke7 59 31 295.4 9366 2013.5 9782

zigzag 56 10 0.7 584 8.2 938
fstore 42 9 0.8 464 5.9 882
pr sp 16 8 0.2 498 6.5 800
react 26 6 0.2 442 5.3 712
fgen 14 7 1.2 558 2.9 666

Table 3: Logic veri�cation results.

References

[1] K. Bilinski. Parallel Controller Synthesis and Veri�cation |
Petri Net Based CAD Tool. MSc thesis, University of Bristol,
1993.

[2] O. Coudert, J.C. Madre, and C. Berthet. Verifying temporal
properties of sequential machines without building their state
diagrams. In E.M. Clarke and R.P. Kurshan, editors, Proceed-
ings of Computer-Aided Veri�cation 2nd International Con-

ference CAV'90, volume 531 of Lecture Notes in Computer

Science, pages 23{32. Springer-Verlag, June 1990.

[3] S. Devadas, H-K.T. Ma, and A.R. Newton. On the veri�cation
of sequential machines at di�ering levels of abstraction. IEEE
Transactions on Computer Aided Design, 7(6):713{722, June
1988.

[4] A. Ghosh, S. Devadas, and A.R. Newton. Test generation and
veri�cation for highly sequential circuits. IEEE Transactions

on Computer Aided Design, 10(5):652{667, May 1991.

[5] A. Ghosh, S. Devadas, and A.R. Newton. Sequential Logic

Testing and Veri�cation. VLSI, Computer Architecture and
Digital Signal Processing. Kluwer, 1992.

[6] S. H. Hwang and A.R. Newton. An e�cient veri�er for �nite
state machines. IEEE Transactions on Computer Aided De-

sign, 10(3):326{334, March 1991.

[7] T. Kozlowski. Petri Net Based CAD Tools for Parallel Con-

troller Synthesis. MSc thesis, University of Bristol, 1993.

[8] T. Murata. Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4):548{580, 1989.

[9] J. Pardey, T. Kozlowski, J. Saul, and M. Bolton. State As-
signment Algorithms for Parallel Controller Synthesis. In Pro-

ceedings of the IEEE International Conference on Computer

Design, pages 316{319. IEEE Computer Society Press, 1992.

[10] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Sadanha, H. Savoj, P.R. Stephan, R.K. Brayton, and
A. Sangiovanni-Vincentelli. SIS: A System for Sequential Cir-

cuit Synthesis. University of California, Berkelay, May 1992.
Memorandum No. UCB/ERL M92/41.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

