
Formal Verification of Pipeline Conflicts
in RISC Processors

Sofiène Tahar

University of Karlsruhe, Institute of Computer
Design and Fault Tolerance (Prof. D. Schmid),

P.O. Box 6980, 76128 Karlsruhe, Germany

 Ramayya Kumar

Forschungszentrum Informatik, Department of
Automation in Circuit Design, Haid-und-Neu

Straße 10-14, 76131 Karlsruhe, Germany

 Abstract

We outline a general methodology for the formal verifi-
cation of pipeline conflicts in RISC cores. The different
kinds of conflicts that can occur due to the simultaneous
execution of the instructions in the pipeline have been for-
malized and automated proof techniques for each kind of
conflict have been given. When conflicts are detected dur-
ing the proof process, the conditions under which these
occur are generated, thus aiding a designer in their
removal. The described formalizations and proofs have
been illustrated via the DLX RISC processor.

1. Introduction

The objective of our endeavour is the development of a
generic methodology for the hierarchical verification of a
large number of realistic RISC processors cores. The past
work in formally verifying microprocessors has mostly
concentrated on the verification of microprogrammed
processors. Although large examples have been verified [2, 5]
and a general methodology for verifying microprogrammed
processors has been given [6, 13], these efforts do not reflect
the complexity of the commercially available CISC
processors. We have therefore focused our efforts on devel-
oping a methodology for the verification of RISC cores, since
they have simpler instruction sets.

The previous work in the verification of RISC processors
were only able to verify parts of processors at certain levels
of abstraction [9]. In contrast, we are developing a method-
ology and an associated environment for the routine verifi-
cation of RISC cores in its entirety, i.e. from the
specification of instruction sets down to their circuit imple-
mentations. In our previous work, we have constructed a
hierarchical model comprising of various abstraction levels,
which closely corresponds to the hierarchy used in the
design of RISC cores [10]. Using this model, the higher-
order logic specifications at various abstraction levels can be
given in a straightforward manner. These formal specifica-
tions are then used in conjunction with parameterized proof

scripts which automate the verification process [11]. Parts of
the formal proofs which do not deal with the conflicts
occurring due to pipelining, have been described in [12].

In this paper, we focus our attention on the formalization
and proofs of pipeline conflicts. These conflicts occur due to
the data and control dependencies and resource contentions
when many instructions are simultaneously executed in the
pipeline. We have formalized all possible conflicts and
described largely automated proof techniques for conflict
detections. The proof techniques that are given are
constructive, i.e. the conditions under which the conflicts occur
are explicitly stated, so that the designer can easily formulate
the conflict resolution mechanisms either in hardware or
generate software constraints which have to be met.

The organization of this paper is as follows. Section 2
briefly presents the hierarchical model on which the formal
verification methodology is based. Section 3 gives an
overview of the overall verification process adapted.
Sections 4 through 6 define the conflicts arising due to the
pipelined nature of RISCs and describe the correctness
proofs for resource, data and control conflicts, respectively.
Section 7 contains some experimental results and section 8
concludes the paper. It is to be noted, that all the methods and
techniques presented in this paper are illustrated by means of
a RISC example – DLX1 [4].

2. RISC Verification Model

Our RISC interpreter model is closely related to the inter-
preter model of Anceau [1] for the design and description of
microprogrammed processors. This model has been adapted
for the formal verification of microprogrammed processors
by Joyce [6] and Windley [13]. Instead of directly showing
that the implemented circuit (Electronic Block Model –
EBM) correctly implements each instruction, they have
shown the correctness between the neighbouring abstraction
levels and thus reduced the complexity of the verification
process. Although the RISC processors also possess similar

1. DLX is an hypothetical RISC which includes the most common fea-
tures of existing RISCs such as Intel i860, Motorola M88000, Sun
SPARC or MIPS R3000.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Assoication for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

levels of hierarchy in the design, a naive mapping of this
interpreter model onto RISCs does not reduce the
complexity of the verification process, as shown in [10].

Figure 1: RISC Interpreter Model

The RISC interpreter model comprises the instruction,
class, stage and phase levels, each of which corresponds to
an interpreter at different abstraction levels, and the lowest
level which corresponds to the circuit implementation –
EBM (figure 1). Each interpreter consists of a set of visible
states and a state transition function which defines the
semantics of the interpreter at that level of abstraction.
Between two levels, a structural abstraction (set of visible
states), a behavioural abstraction (functional semantics), a
temporal abstraction (level of time granularity) and a data
abstraction (level of data granularity) may exist.

At the instruction level, states such as the program
counter, register file, instruction and data memories, etc. are
visible and the set of transition functions corresponds to the
instruction set of the RISC core. The class level is essentially
an abstraction of the different instructions into instruction
classes such as, the arithmetic instructions, store instruc-
tions, load instructions, control instructions, etc. The set of
visible states are the same as that of the instruction level and
the state transfers are abstractions of the instruction set. For
example, all binary arithmetic and logic operations at the
instruction level are replaced by a single operation called
“op” (row EX and column ALU in table 1). The temporal
granularity at these two levels is that of an instruction cycle.
At the stage and phase levels more states, corresponding to
refined implementations are seen and the time granularities
are that of a clock cycle and a clock phase duration, respec-
tively. A stage (phase) instruction is defined as the set of
elementary transfers of one or more class instructions at a
specific pipeline stage (clock phase), as illustrated in table 1
for the DLX example. The EBM corresponds to the circuit
implementation at the register-transfer level.

In our previous papers, we have given a detailed
formalization of instructions at all abstraction levels [10, 11,
12]. We briefly recapitulate some of the needed definitions
here. Table 1 shows the pipeline structure of DLX. The
columns represent the four instruction classes – ALU,
LOAD, STORE and CONTROL. The rows correspond to
the related stage and phase transfers at the five pipeline
stages – IF, ID, EX, MEM and WB (Type: pipeline_stage)
and the two clock phases φ1 and φ2 (Type: clock_phase),
respectively. The stage and phase instructions are directly

Instruction Level Class Level

Phase Level

Stage Level

EBM

derived from the pipeline structure, e.g. the stage instruction
IDC (for the instruction class CONTROL and the pipeline
stage ID) is defined in terms of the transfers “BTA ← fc (PC)”
and “PC ← BTA”. Furthermore, we define at each
abstraction level an enumeration instruction type, e.g. the
type Class_Instruction:= ALU | LOAD | STORE | CONTROL
for the class level. We have also defined types of resources
which are related to the structural abstraction (seen storage
elements), e.g. at the class level – Resource:= PC | RF |
I_MEM | ... The sequential order of the execution of the stage
and phase instructions is indicated by the ordinal value of the
related pipeline stage or clock phase, respectively, e.g.
IF = 1, ID = 2, etc. or φ1 = 1, φ2 = 2, etc.

Table 1: .DLX Pipeline Structure

3. Formal Verification Process

In formally verifying a RISC processor, we have to show
that the instruction set is executed correctly by the EBM, in
spite of the pipelined architecture. Given that ns is the
pipeline depth, a RISC processor executes ns instructions in
parallel (see figure 2), in ns different pipeline stages.
Although the overall throughput of the processor is
increased, no single instruction runs faster. Hence we have
to prove that the sequential execution of each instruction is
correctly implemented by the EBM. Furthermore, the
existence of data/control dependencies and the resource
contentions between the instructions in the pipeline could
lead to semantical inconsistencies. Therefore, we have to
prove that the pipelined sequencing of instructions is
correctly implemented. Thus the correctness proof is split
into two independent steps as follows:

1. given some software constraints on the actual architec-
ture and given the implementation EBM, we prove that
any sequence of instructions is correctly pipelined, i.e.:

SW_Constraints, EBM 5 Correct_Instr_Pipelining (1)

2. we prove that the EBM implements the semantic of each
single architectural instruction correctly, i.e.:
 5 EBM ⇒ Instruction Level (2)

ID

IF

EX

MEM

WB

ALU LOAD STORE CONTROL

IR ← M[PC]

PC ← PC+4

IR1 ← IR

B ← RF[rs2]

A ← RF[rs1]

IR ← M[PC]

PC ← PC+4

IR ← M[PC]

PC ← PC+4

IR← M[PC]

PC ← PC+4

φ
2

φ
1

RF[rd] ← Aluout1

φ
2

MAR ← A+(IR1)
SMDR ← B
MAR← A+(IR1)

RF[rd] ← LMDR

LMDR←M[MAR] M[MAR]←SMDR

BTA ← fc (PC)

PC ← BTAφ
2

φ
1

φ
1

IR1 ← IR
B ← RF[rs2]

A ← RF[rs1]φ
2

φ
2 IR1 ← IR

B ← RF[rs2]

A ← RF[rs1]φ
2

φ
2

Aluout ← A op B

Aluout ← Aluout1

Figure 2: Pipelined Execution

The software constraints in (1) are those conditions
which are to be met for designing the software so as to avoid
conflicts, e.g. the number of delay slots to be introduced
between the instructions while using a software scheduling
technique. Additionally it is also assumed that the EBM
includes some conflict resolution mechanisms in hardware.

Step (2), has been discussed and reported in our previous
work [11, 12] and we recapitulate it briefly in the next
subsection. Step (1) is the main topic of this paper and will
be discussed in detail in the rest of the paper.

3.1 Semantical Correctness

In order to show that the sequential execution of each
instruction is correctly implemented by the EBM, we use the
higher-order logic specifications and implementations at the
various levels of abstraction and prove the following –
EBM ⇒ Phase Level ⇒ Stage Level ⇒ Class Level. This
process is similar to the one used by Windley in proving the
correctness of microprogrammed processors [13]. Later,
these proofs are instantiated for each instruction at the
instruction level. We have implemented proof scripts in the
HOL theorem prover [3], using the hardware verification
environment – MEPHISTO [8], which automates the entire
process, given the formal definitions of the specifications
and implementations at each abstraction level.

3.2 Pipeline Correctness

The correctness of step (1) consists in the proof that all
possible combinations of ns instructions are executed
correctly. This is equivalent to the proof that at any time, the
parallel execution of instructions does not lead to any
conflicts. There are three classes of conflicts (also called
hazards) that can appear during the pipelined execution of any
RISC machine namely, resource, data and control conflicts
[4]. Since the pipeline correctness is the direct consequence of
the absence of all these conflicts, the correctness statement (1)
defines the non-existence of these conflicts. The predicate
Correct_Instr_Pipelining in (1) is hence defined as the
following conjunction, where we assign to each kind of
conflict a specific conflict predicate, i.e. Resource_Conflict,
Data_Conflict and Control_Conflict. Formally:

Correct_Instr_Pipelining:= (¬ Resource_Conflict ∧
 ¬ Data_Conflict ∧

 ¬ Control_Conflict)

1 Clock

Ii

Ij

time

in
st

ru
ct

io
ns

s

i

s

j

tojtoi

I1

Ins

tu

and the correctness statement (1) can be rewritten as:
(¬ Resource_Conflict ∧

SW_Constraints, EBM 5 ¬ Data_Conflict ∧
 ¬ Control_Conflict)

The whole correctness proof is tackled by splitting it into
three independent parts, each corresponding to one kind of
conflict. These parts are elaborated in the sections to follow.

The proof of the predicate Correct_Instr_Pipelining
ensures that all possible combinations of instructions that
occur in the ns pipeline stages are executed correctly.
Exploiting the notion of class instructions, as described in
section 2, the case analysis explosion is avoided by consid-
ering the combinations of few classes instead of combina-
tions of all instructions. All conflict predicates are closely
related to our hierarchical interpreter model and will be
specified at a higher level in terms of class instructions,
taking the temporal and structural abstractions into account.

4. Resource Conflicts

Resource conflicts occur when some resources are not
duplicated enough and two or more instructions attempt to
use them simultaneously [4, 7]. A resource could be a
register, a memory unit, a functional unit, a bus, etc. At any
time the RISC processor executes up to ns instructions simul-
taneously, where each instruction is in a different pipeline
stage. A resource conflict occurs whenever two or more stage
instructions of the ns stage instructions, which are in parallel
execution (see hatched box in figure 2), attempt to use the
same resource. The use of a resource is a write operation for
storage elements and an allocation for functional units.

4.1 Resource Conflict Specification

Let Ii and Ij be two sequential instructions within the
pipeline that are issued at times toi and toj, respectively
(0 < (toj - toi) < ns). A ressource conflict occurs when Ii and Ij
attempt to simultaneously use a given resource r at the same
time point tu (see figure 2). Let si and sj be the related pipeline
stages in which the resource r is used by the instructions Ii
and Ij, respectively. Assuming a linear pipeline execution of
instructions, i.e. no pipeline freeze or stall happens, the use
time point tu is equal to (toi + si) and (toj + sj), respectively,
where the variables si and sj are used here as the ordinal
values of some pipeline stages. Hence, the timing condition
for the resource conflict is equivalent to (toj - toi) = (si - sj).
Considering a simultaneous use of a resource r at a given
clock cycle (stage level), the resource conflict occurs in
reality only if this resource is used
at the same phase of the clock,
since a multi-phased non-over-
lapping clock is used (figure 3).
Let pi and pj be the related clock
phases by which the resource r is
used by the instructions Ii and Ij,

Figure 3: Phase
Resource Conflict

1Phase

Si
Sj

…p1 pn… p

Pi

Pj

respectively. The accurate resource conflict condition is thus
equivalent to (pi = pj).

Using the predicate Phase_used (Ii, si, pi, r) which implies
that the resource r is used by the instruction Ii at the pipeline
stage si and the clock phase pi, the resource conflict
predicate Resource_Conflict is defined as follows:

Resource_Conflict ((Ii, toi), (Ij, toj), r):=
∃ si, sj: pipeline_stage.

∃ pi, pj: clock_phase.
(0 < (toj - toi)) ∧ ((toi + si) = (toj + sj)) ∧ (pi = pj) ∧
(Phase_used (Ii, si, pi, r) ∧ Phase_used (Ij, sj, pj, r)

The predicate Phase_used is extracted from the specifi-
cations of the instruction, stage and phase levels (refer to
[12]) and is computed either to true or to false.

4.2 Resource Conflict Verification

The existence of resource conflicts will degrade the
performance of a RISC core, since stalls have to be used to
postpone the execution of an instruction, if they exist. Our goal
is to show that for all instructions and resources, the predicate
Resource_Conflict is never true. Using the formal definition of
resource conflicts, the goal is expressed formally as:

∀ Ii Ij: Class_Instruction.
 ∀ toi toj: time.

∀ r: Resource.
¬ Resource_Conflict ((Ii, toi), (Ij, toj), r)

This goal is hierarchically expanded at the stage and phase
levels and the proof leads either to True or to a number of
subgoals which explicitly include a specific resource and the
specific stage/phase instructions which conflict. For
example a conflict due to the resource PC between the IF
stage instruction of ALU-class and the ID stage instruction
of CONTROL- class is output as follows:

(Ii = ALU), (Ij = CONTROL), (si = IF),
5 False

(sj = ID), (pi = φ2), (pj = φ2), (r = PC)

In order to ensure that the resource PC is not simultaneously
written by the stage instructions IF and ID, the implemen-
tation EBM has to be changed appropriately, e.g. by using an
additional buffer or splitting the clock cycle into more phases.

Considering a RISC core with separate instruction and
data memories (Harvard architecture [4]), the hardware
implementation should ensure that no resource conflicts
ever occur, i.e. formally:

EBM 5 ¬ Resource_Conflict

5. Data Conflicts

Data conflicts arise when an instruction depends on the
results of a previous instruction [4, 7]. The term data refers
either to the content of some register within the processor or
to the content of the data memory. Such data dependencies
could lead to faulty computations when the order in which
the operands are accessed is changed by the pipeline.

Data conflicts are of three types called, read after write
(RAW), write after read (WAR) and write after write (WAW)
[4, 7]. Let Ii be an instruction that is sequentially issued before
an instruction Ij. A RAW conflict occurs when Ij reads a
source before Ii writes it, a WAR conflict happens when Ij
writes into a destination before Ii reads it and a WAW conflict
occurs when Ij writes into a destination before Ii writes it.

The RAW conflict is the most frequent data conflict kind.
The WAR and WAW conflicts, however, are less severe and
rarely occurs except in some special cases. The formal speci-
fications and the proofs of all these data conflicts are similar,
hence in the rest of in this paper we will focus on RAW data
conflicts for illustration purposes.

5.1 Data Conflict Specification

Let Ii be an instruction that is issued into the pipeline at
time toi and writes a given resource r at tui (toi ≤ tui). Let Ij be
another instruction that is issued at a later time toj (toi < toj)
and reads the same resource r at tuj. A RAW data conflict
occurs when the resource r is read by Ij before (and not after)
this resource is written by the previous sequential instruction
Ii (figure 4). Let si and sj be the related pipeline stages in
which the resource r is written and read, respectively.
Assuming a linear pipeline execution of instructions, i.e. no
pipeline freeze or stall happen, the use time points tui and tuj
are equal to (toi + si) and (toj + sj), respectively. Hence, the
timing condition for the RAW conflict, i.e. (tuj ≤ tui), is
equivalent to (toj - toi) ≤ (si - sj).

Figure 4: RAW Data Conflict

A special case of the data conflict timing condition
happens when tui = tuj, i.e. both instructions simultaneously
use the resource r. In this case the conflict should be
examined at the phase level. According to figure 5, a RAW
data conflict at the phase level happens when the resource r
is written by Ii in si at a clock phase pi that occurs after clock
phase pj, where it is read by Ij in sj. Since instructions at the
phase level are executed purely in parallel, they all have the
same issue time τo (figure 5). The additional timing condition

Ii

Ij

time

in
st

ru
ct

io
ns

tojtoi tuj tui

s

i

s

j

(τui ≥ τuj) is thus equivalent to
(τo+pi ≥ τo+pj) = (pi ≥ pj).

Let Range(Ii, si,pi, r) be a predi-
cates which implies that the
resource r is written by the
instruction Ii in pipeline stage si at
clock phase pi and let Domain
(Ii, si,pi, r) be a similar predicate

Figure 5: Phase
RAW Conflict

Si
Sj

…p1 …

τuiτujτoi/j

Pj

Pi

pnp

that is true when the resource r is read by Ij in sj at pj. A
formal specification of the RAW data conflict is thus given
as follows:

RAW_Data_Conflict ((Ii, toi), (Ij, toj), r):=
∃ si, sj: pipeline_stage.

∃ pi, pj: clock_phase.
(0 < (toj - toi)) ∧
[((toj - toi) < (si - sj)) ∨ (((toj - toi) = (si - sj)) ∧ (pi - pj))] ∧
Range (Ii, si, pi, r) ∧ Domain (Ij, sj, pj, r)

The Range and Domain predicates are extracted from the
specification of the class level instructions at the clock cycle
granularity (refer to [12]) and are computed either to false or
to true, e.g. Domain (ALU, ID, φ2, RF) = True (refer to table 1).

The WAR and WAW predicates are defined in a similar
manner, where the semantics of the corresponding data conflict
is reflected by the order of the Range and Domain predicates.

5.2 Data Conflict Verification

Our ultimate goal in the proof of the non existence of data
conflicts relies in showing that none of the data conflict
predicates is true. This proof is split into three independent
parts each corresponding to one data conflict type. These
proofs are similar and in the following we will handle RAW
conflicts for illustration purposes. Formally, the goal to
prove for RAW data conflicts is given as follows:

∀ Ii Ij: Class_Instruction.
 ∀ toi toj: time.

∀ r: Resource.
¬ RAW_data_Conflict ((Ii, toi), (Ij, toj), r)

The proof adapted for this goal is constructive, i.e. if
conflicts occur, the corresponding instructions, resources
and the conflict timing conditions are explicitly output to the
user. For example, a data conflict that occurs between
LOAD and ALU instructions due to the resource register file
RF, which is written at the WB-stage by the LOAD-
instruction and read at the ID-stage by the ALU-instruction
is detected and output as follows, where the number “3”
corresponds to the difference (si - sj) = “WB - ID”:

(Ii = LOAD), (Ij = ALU),
5 ¬ (0 < (toj - toi) ∧ (toj - toi) ≤ 3)(r = RF)

This timing information gives exactly the maximum number
of pipeline slots or bypassing paths that have to be provided
by the software scheduling technique or the implementation
EBM, respectively. In other words, the issue time of a LOAD-
instruction followed by an ALU-instruction should be at least
3 time units apart. Using instruction scheduling, the needed
software constraint (assumption) could then be defined as:

SW_Constraint:= ((Ii = LOAD) ∧ (Ij = ALU) ∧
 (r = RF) ∧ (0 < (toj - toi))) ⇒ ((toj - toi) > 3)

Another widely used data conflict resolution technique is
bypassing (also called forwarding) [4]. A bypassing
technique ensures that the needed data is forwarded as soon
as it is computed (end of the EX-stage) to the next instruction

(begin of the EX-stage). This is implemented by using some
registers and feedback paths that hold and forward these data,
respectively. Formally, the existence of such registers and
corresponding forward paths can be specified as follows:

Bypassing:= ∃ rb: Resource . (rb = RF) ∧
 Range (Ii, EX, pi, rb) ∧ Domain (Ij, EX, pj, rb)

Having this bypassing condition, the existentially quantified
pipeline stage variables si and sj in the definition of RAW are
set to EX and the timing condition is then reduced to:

 ¬ (0 < (toj - toi) ∧ (toj - toi) ≤ 0)
which is always true.

Having implemented the bypass technique as part of the
EBM and/or assuming the mentioned software constraints,
we are able to prove the non existence of data conflicts:

SW_Constraints, EBM 5 ¬ Data_Conflict

6. Control Conflicts

Control conflicts arise from the pipelining of branches,
jumps, traps and other instructions that change the program
counter PC [4]. The presence of such control instructions in
the instruction stream may lead to an interruption of the
linear instruction flow.

In highly pipelined processors, the next instruction fetch
may begin long before the current instruction has been fully
decoded and executed. Thus it may be impossible to
correctly update the machine’s program counter PC before
the next few instructions are fetched. If one instruction is
issued per clock, and a jump instruction takes N cycles to
fetch and execute, then the N-1 instructions following the
jump will always be executed, since they will have been
fetched before the program counter PC was updated. Thus
straightforward program coding may yield incorrect results.

It can be seen from the discussion above that a control
conflict usually occurs when an instruction attempts to read
the resource PC that is not yet updated (written) by a
previous instruction. Hence, the control conflict definition
complies with the definition of a RAW data conflict in PC [7]
and the control conflict predicate could be defined as follows:

Control_Conflict:=
RAW_Data_Conflict ((CONTROL, toi), (Ij,toj), PC)

The conflict freedom proof is therefore only a special case of
the data conflict proofs and is totally covered by it. For
conflict resolution no bypassing is possible, since the calcu-
lation of the target address cannot be done earlier. Using the
software scheduling technique for the DLX processor, we
just need one delay slot to ensure that control instructions are
executed correctly. The software constraint needed in this
case is defined as follows:

SW_Constraint:= ((Ii = CONTROL) ∧ (r = PC))
⇒ ((to(i+1) - toi) > 1)

Using these appropriate software constraints, the non
existence of control conflicts is formally ensured, i.e.:

SW_Constraints 5 ¬ Control_Conflict

7. Experimental Results

For the validation of our whole methodology, we have
used the DLX RISC processor as a realistic benchmark. The
DLX processor is a 5 stage pipeline RISC processor with a 2
phased clock. The DLX architecture includes 51 basic
instructions (integer, logic, load/store and control). All these
instructions are grouped into 4 classes according to which the
stage and phase instructions are defined [10]. We have imple-
mented the hardware for the DLX core in a commercial VLSI
design environment using a 1.0 µm CMOS technology. The
design has approximately 150 000 transistors which occupies
a silicon area of about 60.34 mm2, it has 172 I/O pads and
currently runs at a clock rate of 12.5 MHz.

All formal specifications and proofs of our methodology
are implemented within the HOL verification system [3].
The implementation of the interpreter model specifications
and the proof of step (2) is reported in [12]. The overall
specification text is about 4760 lines long and this part of the
proof for the whole DLX processor core took about 457 secs
on a SPARC10 with a 96 MB main memory.

For the proof of step (1), we have implemented for each
kind of conflict general specifications and proof strategies.
Further, all implemented specifications and proof scripts are
parameterized and kept generic, so that the implementation
could be used for a wide range of other RISC processors.
The overall specification and proof script text of step (1) is
about 1780 lines. The run times for the pipeline correctness
proof of the DLX processor on a SPARC10 with a 96 MB
main memory are given in table 2. The overall pipeline
correctness proof of the DLX, including the generation of
the Phase_used, Range and Domain predicates, is therefore
about 47 min. and 33 sec.

8. Conclusions and Future Work

We have shown that pipeline conflicts which occur in
RISC cores – resource conflicts, data conflicts and control
conflicts can be conveniently modelled at various abstraction
levels using higher-order predicates. The use of the hierar-
chical RISC interpreter model and in particular the exploi-
tation of the class level, allows us to derive compact
specifications of the conflicts that can occur in the pipeline.
We have implemented constructive proofs for these conflicts
and hence the designer gets invaluable feedback for intro-

Table 2: Formal Proof Results

Verification Goal Time (sec.) Comments
Phase_used Gen. 247.26 –
Range & Domain Gen. 221.06 –
Resource Conflicts 457.66 0 conflicts
RAW Data Conflicts 655.67 9 conflict cases in RF (3 slots)

and 4 conflicts in PC (1 slot)
WAR Data Conflicts 551.77 0 conflicts
WAW Data Conflicts 680.86 0 conflicts
Control Conflicts 39.25 4 conflict cases (1 slot)
Σ Pipeline Correctness 2853.53 –

ducing conflict resolution mechanisms; either by making
appropriate modifications to the hardware or by generating
the required software constraints.

The model, the specification and the proof techniques are
generic in the sense that it is applicable to any RISC core.
Since the RISC interpreter model closely reflects the RISC
design hierarchy, the specifications in higher-order logic are
easy to derive. Given such specifications and an implemen-
tation, the proof process has been automated by using
parametrizable proof scripts. These proof scripts are
independent of the underlying implementation and can be
used for a large number of RISC cores. The entire method-
ology has been validated by using the DLX processor.

The run times of the proofs shown in the table 2, illustrate
the feasibility of formal verification techniques when
applied intelligently to specific classes of circuits. In our
future work, we shall extend the layer of the core to include
pipelined functional units, floating point processor, etc.

References
[1] Anceau, F.: The Architecture of Microprocessors; Addison-

Wesley Publishing Company, 1986.
[2] Cohn, A.: A Proof of the Viper Microprocessor: The First

Level; In: Birtwistle, G. and Subrahmanyam, P. (Eds.), VLSI
Specification, Verification and Synthesis, Kluwer Academic
Publishers, 1988.

[3] Gordon, M.; Melham, T.: Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic; Cambridge,
University Press, 1993.

[4] Hennessy, J.; Patterson, D.: Computer Architecture: A
Quantitative Approach; Morgan Kaufmann Publishers, Inc.,
San Mateo, California, 1990.

[5] Hunt, W.: Microprocessor Design Verification; Journal of
Automated Reasoning, Vol. 5, 1989, pp. 429-460.

[6] Joyce, J.: Multi-Level Verification of Microprocessor-Based
Systems; Ph.D. Thesis, Computer Laboratory, Cambridge
University, December 1989.

[7] Kogge, P.: The Architecture of Pipelined Computers;
McGraw-Hill, 1981.

[8] Kumar, R.; Schneider, K.; Kropf, Th.: Structuring and
Automating Hardware Proofs in a Higher-Order Theorem-
Proving Environment; Journal of Formal Methods in System
Design, Vol.2, No. 2, 1993, pp. 165-230.

[9] Srivas, M.; Bickford, M.: Formal Verification of a Pipelined
Microprocessor; IEEE Software, September 1990, pp. 52-64.

[10] Tahar, S.; Kumar, R.: A Formalization of a Hierarchical
Model for RISC Processors; In: Spies, P. (Ed.), Proc.
European Informatics Congress Computing Systems
Architecture (Euro-ARCH93), Munich, October 1993,
Informatik Aktuell, Springer Verlag, pp. 591-602.

[11] Tahar, S.; Kumar, R.: Towards a Methodology for the Formal
Hierarchical Verification of RISC Processors; Proc. IEEE
International Conference on Computer Design (ICCD93),
Cambridge, Massachusetts, October 1993, pp. 58-62.

[12] Tahar, S.; Kumar, R.: Implementing a Methodology for
Formally Verifying RISC Processors in HOL; Proc.
International Meeting on Higher Order Logic Theorem
Proving and its Applications (HUG93), Vancouver, Canada,
August 1993, pp. 283-296.

[13] Windley, P.: The Formal Verification of Generic Interpreters;
Ph.D. Thesis, Division of Computer Science, University of
California, Davis, July 1990.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

