Formal Verification of Pipeline Conflicts
in RISC Processors

Sofiéene Tahar

University of Karlsruhe, Institute of Computer
Design and Fault Tolerance (Prof. D. Schmid),
P.O. Box 6980, 76128 Karlsruhe, Germany

Abstract

W& outline a general methodology for the formal verifi-
cation of pipeline conflicts in RISC cores. The different
kinds of conflicts that can occur due to the simultaneous
execution of the instructions in the pipeline have been for-
malized and automated proof techniques for each kind of
conflict have been given. When conflicts are detected dur-
ing the proof process, the conditions under which these
occur are generated, thus aiding a designer in their
removal. The described formalizations and proofs have
been illustrated via the DLX RISC processor.

1. Introduction

The objective of our endeavour is the development of a
generic methodology for the hierarchical verification of a
large number of redlistic RISC processors cores. The past
work in formaly verifying microprocessors has mostly
concentrated on the verification of microprogrammed
processors. Although large exampleshavebeen verified [2, 5]
and a general methodology for verifying microprogrammed
processors has been given [6, 13], these efforts do not reflect
the complexity of the commercially available CISC
processors. We have therefore focused our efforts on devel-
oping amethodology for the verification of RISC cores, since
they havesimpler instruction sets.

Thepreviouswork in theverification of RISC processors
wereonly ableto verify parts of processors at certain levels
of abstraction [9]. In contrast, we are devel oping a method-
ology and an associated environment for the routine verifi-
cation of RISC cores in its entirety, i.e. from the
specification of instruction sets down to their circuit imple-
mentations. In our previous work, we have constructed a
hierarchical model comprising of various abstraction levels,
which closely corresponds to the hierarchy used in the
design of RISC cores [10]. Using this model, the higher-
order logic specificationsat variousabstraction levelscan be
given in astraightforward manner. These formal specifica-
tions are then used in conjunction with parameterized proof

Ramayya Kumar

Forschungszentrum Informatik, Department of
Automation in Circuit Design, Haid-und-Neu
Stral3e 10-14, 76131 Karlsruhe, Germany

scriptswhich automatetheverification process[11]. Partsof
the formal proofs which do not dea with the conflicts
occurring dueto pipelining, havebeen describedin[12].

In this paper, we focus our attention on the formalization
and proofs of pipeline conflicts. These conflicts occur due to
the data and control dependencies and resource contentions
when many instructions are smultaneoudy executed in the
pipeline. We have formalized al possible conflicts and
described largely automated proof techniques for conflict
detections. The proof techniques that are given are
congtructive, i.e. theconditionsunder which theconflictsoccur
are explicitly stated, so that the designer can easily formulate
the conflict resolution mechanisms either in hardware or
generate software constraintswhich haveto be met.

The organization of this paper is as follows. Section 2
briefly presents the hierarchical model on which the formal
verification methodology is based. Section 3 gives an
overview of the overall verification process adapted.
Sections 4 through 6 define the conflicts arising due to the
pipelined nature of RISCs and describe the correctness
proofsfor resource, dataand control conflicts, respectively.
Section 7 contains some experimental results and section 8
concludesthepaper. It isto benoted, that all the methodsand
techniquespresented in thispaper areillustrated by meansof
aRISC example—DLX1[4].

2. RISC Verification M odel

Our RISC interpreter model isclosely related to theinter-
preter model of Anceau [1] for the design and description of
microprogrammed processors. Thismodel has been adapted
for the formal verification of microprogrammed processors
by Joyce [6] and Windley [13]. Instead of directly showing
that the implemented circuit (Electronic Block Model —
EBM) correctly implements each instruction, they have
shown the correctness between the nel ghbouring abstraction
levels and thus reduced the complexity of the verification
process. Although the RISC processors al so possess similar

1. DLX isan hypothetical RISC which includes the most common fea-
tures of existing RISCs such as Intel i860, Motorola M88000, Sun
SPARC or MIPS R3000.

Permission to copy without fee al or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and thetitle of the publication and its date appear, and notice is given that copying is by permission of the Assoication for Computing

Machinery. To copy otherwise, or to republish, requires afee and/or specific permission.

(c) 1994 ACM 0-89791-687-5/94/0009 3.50

levels of hierarchy in the design, a naive mapping of this
interpreter model onto RISCs does not reduce the
complexity of theverification process, asshownin[10].

[Instruction Level | | ClassLevel |

|
A

Phase Level

EBM
Figure 1: RISC Interpreter Model

The RISC interpreter model comprises the instruction,
class, stage and phase levels, each of which corresponds to
aninterpreter at different abstraction levels, and the lowest
level which corresponds to the circuit implementation —
EBM (figure 1). Each interpreter consists of aset of visible
states and a state transition function which defines the
semantics of the interpreter at that level of abstraction.
Between two levels, a structural abstraction (set of visible
states), a behavioural abstraction (functional semantics), a
temporal abstraction (level of time granularity) and a data
abstraction (level of datagranularity) may exist.

At the instruction level, states such as the program
counter, register file, instruction and datamemories, etc. are
visible and the set of transition functions correspondsto the
instruction set of the RISC core. Theclasslevel isessentialy
an abstraction of the different instructions into instruction
classes such as, the arithmetic instructions, store instruc-
tions, load instructions, control instructions, etc. The set of
visible states are the same asthat of theinstruction level and
the state transfers are abstractions of the instruction set. For
example, all binary arithmetic and logic operations at the
instruction level are replaced by a single operation called
“op” (row EX and column ALU in table 1). The temporal
granularity at these two levelsisthat of an instruction cycle.
At the stage and phase levels more states, corresponding to
refined implementations are seen and the time granularities
arethat of aclock cycle and a clock phase duration, respec-
tively. A stage (phase) instruction is defined as the set of
elementary transfers of one or more class instructions at a
specific pipeline stage (clock phase), asillustrated in table 1
for the DLX example. The EBM corresponds to the circuit
implementation at theregister-transfer level.

In our previous papers, we have given a detailed
formalization of instructionsat all abstraction levels[10, 11,
12]. We briefly recapitulate some of the needed definitions
here. Table 1 shows the pipeline structure of DLX. The
columns represent the four instruction classes — ALU,
LOAD, STORE and CONTROL. The rows correspond to
the related stage and phase transfers at the five pipeline
stages—IF, ID, EX, MEM and WB (Type: pipeline_stage)
and the two clock phases @, and (), (Type: clock_phase),
respectively. The stage and phase instructions are directly

derived from the pipeline structure, e.g. the stageinstruction
ID¢ (for the instruction class CONTROL and the pipeline
stage| D) isdefined intermsof thetransfers*BTA - f.(PC)"
and “PC — BTA’. Furthermore, we define a each
abstraction level an enumeration instruction type, e.g. the
type Class _Instruction:= ALU | LOAD | STORE | CONTROL
for the class level. We have a so defined types of resources
which are related to the structural abstraction (seen storage
elements), e.g. a the class level — Resource:= PC | RF |
I_MEM| ... Thesequential order of theexecution of the stage
and phaseinstructionsisindicated by theordinal value of the
related pipeline stage or clock phase, respectively, e.g.
IF=1,ID=2¢etc.or =1, =2 ¢tc.

Table 1: .DLX Pipeline Structure

ALU LOAD STORE CONTROL
| E IR « M[PC] IR < M[PC] IR « M[PC] IR M[PC]
PC — PC+4 PC — PC+4 PC — PC+4 PC — PC+4
A Z'I:F[rsl] A 2II:F[rsl] A 2:F[rsl] BTA 4 fo(PO
< 1
ID|B) Flrs2] B 9, Flrs2] B o, A | oo dra
IRL< IR IRLS IR IRL< IR @,
EX |Aluout — A opB|MAR - A+(iR1) | MAR—A*(RD
SMDR ~ B

MEM Aluout — AluoutlL MDR— M[MAR]M[MAR] - SMDR

VB |RF[rd] Aluoutl RF[rd] — LMDR
@ @

3. Formal Verification Process

Informally verifying a RISC processor, we haveto show
that the instruction set is executed correctly by the EBM, in
spite of the pipelined architecture. Given that ng is the
pipeline depth, a RISC processor executesnginstructionsin
paralel (see figure?2), in ng different pipeline stages.
Although the overall throughput of the processor is
increased, no single instruction runs faster. Hence we have
to prove that the sequential execution of each instruction is
correctly implemented by the EBM. Furthermore, the
existence of data/control dependencies and the resource
contentions between the instructions in the pipeline could
lead to semantical inconsistencies. Therefore, we have to
prove that the pipelined sequencing of instructions is
correctly implemented. Thus the correctness proof is split
into two independent stepsasfollows:

1. given some software constraints on the actual architec-
ture and given the implementation EBM, we prove that
any sequence of instructionsiscorrectly pipelined, i.e.:
SW_ConstraintsEBM |- Correct_Instr_Pipelining (1)
2. we provethat the EBM implements the semantic of each
singlearchitectural instruction correctly, i.e.:
— EBM [J Instruction Level 2

instructions

In

1Clock time
I })

toi toj tu
Figure 2: Pipelined Execution

The software constraints in (1) are those conditions
which areto be met for designing the software so asto avoid
conflicts, e.g. the number of delay dots to be introduced
between the instructions while using a software scheduling
technique. Additionally it is also assumed that the EBM
includes some conflict resol ution mechanismsin hardware.

Step (2), has been discussed and reported in our previous
work [11, 12] and we recapitulate it briefly in the next
subsection. Step (1) isthe main topic of this paper and will
bediscussedin detail intherest of the paper.

3.1 Semantical Correctness

In order to show that the sequential execution of each
instruction iscorrectly implemented by the EBM, we usethe
higher-order logi ¢ specificationsand implementations at the
various levels of abstraction and prove the following —
EBM O Phase Level [0 Stage Level O Class Level. This
processis similar to the one used by Windley in proving the
correctness of microprogrammed processors [13]. Later,
these proofs are instantiated for each instruction at the
instruction level. We have implemented proof scriptsin the
HOL theorem prover [3], using the hardware verification
environment — MEPHISTO [8], which automates the entire
process, given the formal definitions of the specifications
and implementations at each abstraction level.

3.2 Pipeline Correctness

The correctness of step (1) consists in the proof that all
possible combinations of ng instructions are executed
correctly. Thisisequivalent to the proof that at any time, the
paralel execution of instructions does not lead to any
conflicts. There are three classes of conflicts (also called
hazar ds) that can appear during the pipelined execution of any
RISC machine namely, resource, data and control conflicts
[4]. Sincethe pipelinecorrectnessisthedirect consequence of
theabsenceof al theseconflicts, thecorrectnessstatement (1)
defines the non-existence of these conflicts. The predicate
Correct_Instr_Pipelining in (1) is hence defined as the
following conjunction, where we assign to each kind of
conflict a specific conflict predicate, i.e. Resource_Conflict,
Data_Conflictand Control_Conflict. Formally:
Correct_Instr_Pipelining:= (= Resource_Conflict [J
- Data_Conflict [7
= Control_Conflict)

and the correctness statement (1) can berewritten as.
(= Resource_Conflict [J
SW_Constraints, EBM - Data_Conflict [7
= Control_Conflict)

Thewhole correctness proof istackled by splitting it into
three independent parts, each corresponding to one kind of
conflict. These partsare elaborated in the sectionsto follow.

The proof of the predicate Correct_Instr_Pipelining
ensures that all possible combinations of instructions that
occur in the ng pipeline stages are executed correctly.
Exploiting the notion of class instructions, as described in
section 2, the case analysis explosion is avoided by consid-
ering the combinations of few classes instead of combina-
tions of al instructions. All conflict predicates are closely
related to our hierarchical interpreter model and will be
specified at a higher level in terms of class instructions,
taking thetemporal and structural abstractionsinto account.

4. Resour ce Conflicts

Resource conflicts occur when some resources are not
duplicated enough and two or more instructions attempt to
use them simultaneously [4, 7]. A resource could be a
register, amemory unit, afunctional unit, abus, etc. At any
timethe RISC processor executes up tonginstructionssimul-
taneously, where each instruction is in adifferent pipeline
stage. A resource conflict occurswhenevertwo or morestage
instructions of theng stage instructions, which arein parallel
execution (see hatched box in figure 2), attempt to use the
same resource. The use of aresource isawrite operation for
storage elementsand an all ocation for functional units.

4.1 Resource Conflict Specification

Let I; and I; be two sequential instructions within the
pipeline that are issued at times ty and ty;, respectively
(0<(tqj - to)) <ny). A ressource conflict occurswhen l; and;
attempt to simultaneously use a given resourcer at the same
timepointt, (seefigure2). Lets ands; betherelated pipeline
stages in which the resourcer is used by the instructionsl;
and |, respectively. Assuming alinear pipeline execution of
instructions, i.e. no pipeline freeze or stall happens, the use
time pointt,, isequal to (t,; + §) and (ty +), respectively,
where the variables 5 and § are used here as the ordinal
values of some pipeline stages. Hence, the timing condition
for the resource conflict isequivalent to (ty; - t;) = (S -).
Considering a simultaneous use of aresourcer at agiven
clock cycle (stage level), the resource conflict occurs in
reality only if thisresource is used
at the same phase of the clock,
since a multi-phased non-over-
lapping clock is used (figure 3).
Let p; and pj be the related clock 1Phase
phases by which the resourcer is Figure 3: Phase
used by the instructions I; and lj, Resource Conflict

Pro e Py

respectively. Theaccurate resource conflict conditionisthus
equivalent to (= p).

Using the predicate Phase_used (l;, S, p;,) which implies
that theresourcer isused by theinstruction|; at the pipeline
stage s; and the clock phase p;, the resource conflict
predicate Resource _Conflict isdefined asfollows:

Resource_Conflict ((I;, tq), (Ij, tg)), 1):=
s, s;: pipeline_stage.
Up;, pj: clock_phase.
(0< (tj - to)) L((tei + 8) = (toj + §)) L(pi=)
(Phase_used (1, s;, p;, 1) LJPhase_used (I;, 5, p;, 1)

The predicate Phase_used is extracted from the specifi-
cations of the instruction, stage and phase levels (refer to
[12]) and iscomputed either to trueor tofalse.

4.2 Resource Conflict Verification

The existence of resource conflicts will degrade the
performance of a RISC core, since stalls have to be used to
postponetheexecutionof aninstruction, if they exist. Our goal
isto show that for al instructions and resources, the predicate
Resource_Conflictisnevertrue. Usingtheformal definition of
resource conflicts, thegoa isexpressed formally as:

[1j: Class_Instruction.

Dtoi tOj: time.
[Jr: Resource.
= Resource_Contflict ((I;, tg), (I}, tgj), 1)

This goal is hierarchically expanded at the stage and phase
levels and the proof leads either to True or to a number of
subgoal swhich explicitly include aspecific resourceand the
specific stage/phase instructions which conflict. For
example a conflict due to the resource PC between the IF
stage instruction of ALU-class and the ID stage instruction
of CONTROL- classisoutput asfollows:

(Ii= ALU), (I; = CONTROL), (s = IF),

(5=1D), (B =). (B = @), (r = PC)
In order to ensure that the resource PC is not simultaneously
written by the stage instructions IF and 1D, the implemen-
tation EBM hasto be changed appropriately, e.g. by using an
additional buffer or splitting the clock cycleinto more phases.

Considering a RISC core with separate instruction and
data memories (Harvard architecture [4]), the hardware
implementation should ensure that no resource conflicts
ever occur, i.e. formally:

EBM | - Resource Conflict

 False

5. Data Conflicts

Data conflicts arise when an instruction depends on the
results of apreviousinstruction [4, 7]. Theterm datarefers
either to the content of some register within the processor or
to the content of the data memory. Such data dependencies
could lead to faulty computations when the order in which
theoperands are accessed ischanged by the pipeline.

Data conflicts are of three types called, read after write
(RAW), writeafter read (WAR) and write after write (WAW)
[4,7]. Letl; beaninstructionthat issequentially issued before
an instruction I;. A RAW conflict occurs when I; reads a
source before I; writes it, a WAR conflict happens when |
writesinto adestination beforel; readsit and aWAW conflict
occurswhenl; writesinto adestination beforel; writesit.

TheRAW conflictisthe most frequent dataconflict kind.
TheWAR and WAW conflicts, however, arelesssevereand
rarely occursexcept in somespecial cases. Theformal speci-
ficationsand the proofsof all these dataconflictsaresimilar,
hencein therest of in this paper wewill focuson RAW data
conflictsfor illustration purposes.

5.1 Data Conflict Specification

Let I; be an instruction that is issued into the pipeline at
timety; andwritesagivenresourcer at t,;i (to <t;). Letl; be
another instruction that isissued at alater timety; (to; <ty)
and reads the same resourcer at t;. A RAW data conflict
occurswhentheresourcer isread by |; before(and not after)
thisresourceiswritten by the previous sequential instruction
li (figure 4). Let 5 and s be the related pipeline stages in
which the resource r is written and read, respectively.
Assuming alinear pipeline execution of instructions, i.e. no
pipelinefreeze or stall happen, the usetime pointst,; and t,;
areequal to (ty; + s) and (ty +), respectively. Hence, the
timing condition for the RAW conflict, i.e. (ty < ty), is
equivalentto (ty; - ty) < (S;-).

instructions

time

t;oi ‘ toj tuj thi
Figure 4: RAW Data Conflict

A specia case of the data conflict timing condition
happenswhen t; = t;, i.e. both instructions simultaneously
use the resource r. In this case the conflict should be
examined at the phase level. According to figure 5, aRAW
data conflict at the phase level happens when the resourcer
iswrittenby I;ins; at aclock phasep; that occurs after clock
phase pj, whereitisread by I; in 5. Sinceinstructions at the
phaselevel are executed purely in parallel, they al havethe
sameissuetime 1, (figure5). Theadditional timing condition
(Tii = 1) is thus equivalent to
(Totpi 2 To+p) = (0 2) P Py

Let Range(l;,5,p;,r) beapredi- S
cates which implies that the §
resource r is written by the Toil
instruction I; in pipeline stage s; at
clock phase p; and let Domain
(li,s,p;,r) be a similar predicate

Ty Tui
Figure 5: Phase
RAW Conflict

that is true when the resource r isread by I in's at pj. A
formal specification of the RAW data conflict isthus given
asfollows:
RAW_Data_Conflict (1, to), (Ij, tg)), 1):=
s, §: pipeline_stage.
Op;, py: clock_phase.
(0<(tg -t) U
[((toj~ to) < (5 -5)) D((toj - toi) =(5:-5)) TP -py))] 0
Range (I;, s, p;, r) JDomain (1, s;, pj, 1)
The Range and Domain predicates are extracted from the
specification of the classlevel instructions at the clock cycle
granularity (refer to [12]) and are computed either to false or
totrue, e.g. Domain (ALU, ID, @, RF) = True(refer to table 1).
The WAR and WAW predicates are defined in a smilar
manner, wherethesemanticsof thecorresponding dataconflict
isreflected by the order of theRangeand Domain predicates.

5.2 Data Conflict Verification

Our ultimate goal inthe proof of the non existence of data
conflicts relies in showing that none of the data conflict
predicatesistrue. This proof is split into three independent
parts each corresponding to one data conflict type. These
proofsare similar and in thefollowing wewill handle RAW
conflicts for illustration purposes. Formally, the goa to
provefor RAW dataconflictsisgiven asfollows:

[1j: Class_Instruction.

Dtoi toj: time.
[Jr: Resource.

- RAW_data_COﬂﬂiCt ((li, tOi)’ (Ij’ tOj)7 r)
The proof adapted for this goal is constructive, i.e. if
conflicts occur, the corresponding instructions, resources
and the conflict timing conditionsareexplicitly output tothe
user. For example, a data conflict that occurs between
LOAD and ALU instructionsdueto theresourceregister file
RF, which is written at the WB-stage by the LOAD-
instruction and read at the ID-stage by the AL U-instruction
is detected and output as follows, where the number “3”
correspondstothedifference(s - §) =“WB-ID":

Elr': |IQ_|9)AD)' G=A0. (0< (ty - toi) Lt -toi) <3)
Thistiming information gives exactly the maximum number
of pipeline dots or bypassing paths that have to be provided
by the software scheduling technique or the implementation
EBM, respectively. Inother words, theissuetimeof aL OAD-
instruction followed by an AL U-instruction should be at | east
3 time units apart. Using instruction scheduling, the needed
software constraint (assumption) could then bedefined as.

SW_Congtraint:= ((l;= LOAD) LI(l; = ALU) [J

(r=RF) {0<(toj-to))) L ((toj-tai) >3)

Another widely used data conflict resolution techniqueis
bypassing (aso called forwarding) [4]. A bypassing
technique ensures that the needed datais forwarded as soon
asitiscomputed (end of the EX-stage) to the next instruction

(begin of the EX-stage). Thisisimplemented by using some
registersand feedback pathsthat hold and forward these data,
respectively. Formally, the existence of such registers and
corresponding forward paths can be specified asfollows:
Bypassing:= [fb: Resource. (rb=RF) [J
Range(l; EX, p;,rb) /Domain(lj, EX, p;, rb)

Having thisbypassing condition, theexistentially quantified
pipelinestagevariabless; and s inthedefinition of RAW are
set to EX and thetiming conditionisthen reduced to:

= (0< (tgj - ti) Ut - to)) <O)
whichisawaystrue.

Having implemented the bypass technique as part of the
EBM and/or assuming the mentioned software constraints,
we are ableto provethe non existence of dataconflicts:

SW_Constraints, EBM |- - Data_Conflict

6. Control Conflicts

Control conflicts arise from the pipelining of branches,
jumps, traps and other instructions that change the program
counter PC [4]. The presence of such control instructionsin
the instruction stream may lead to an interruption of the
linear instruction flow.

In highly pipelined processors, the next instruction fetch
may begin long before the current instruction has been fully
decoded and executed. Thus it may be impossible to
correctly update the machine' s program counter PC before
the next few instructions are fetched. If one instruction is
issued per clock, and a jump instruction takes N cycles to
fetch and execute, then the N-1 instructions following the
jump will always be executed, since they will have been
fetched before the program counter PC was updated. Thus
straightforward program coding may yieldincorrect results.

It can be seen from the discussion above that a control
conflict usually occurs when an instruction attempts to read
the resource PC that is not yet updated (written) by a
previous instruction. Hence, the control conflict definition
complieswith thedefinition of aRAW dataconflict inPC|[7]
andthecontrol conflict predicate could bedefined asfollows:

Control_Conflict:=
RAW_Data_Conflict ((CONTROL, t), (I;,ty;), PC)

Theconflict freedom proof isthereforeonly aspecial case of
the data conflict proofs and is totally covered by it. For
conflict resolution no bypassing is possible, since the calcu-
lation of the target address cannot be done earlier. Using the
software scheduling technique for the DLX processor, we
just need onedelay dlot to ensurethat control instructionsare
executed correctly. The software constraint needed in this
caseisdefined asfollows:
SW_Constraint:= ((I; = CONTROL) O (r = PC))
O ((tog+1) - to)) > 1)

Using these appropriate software constraints, the non
existenceof control conflictsisformally ensured, i.e.:

SW_Congtraints |~ = Control_Conflict

7. Experimental Results

For the validation of our whole methodology, we have
used the DL X RISC processor asaredistic benchmark. The
DL X processor isab5 stage pipeline RISC processor with a2
phased clock. The DLX architecture includes 51 basic
instructions (integer, logic, load/store and control). All these
instructionsaregrouped into 4 classesaccording to whichthe
stageand phaseinstructionsaredefined[10]. Wehaveimple-
mented the hardwarefor theDL X coreinacommercial VLSI
design environment using a 1.0 um CMOS technology. The
design hasapproximately 150 000 transi storswhich occupies
asilicon area of about 60.34 mn?, it has 172 1/0O pads and
currently runsat aclock rate of 12.5MHz.

All formal specifications and proofs of our methodology
are implemented within the HOL verification system [3].
The implementation of the interpreter model specifications
and the proof of step (2) is reported in [12]. The overall
specification text isabout 4760 lineslong and this part of the
proof for thewhole DL X processor coretook about 457 secs
onaSPARC10witha96 MB main memory.

For the proof of step (1), we have implemented for each
kind of conflict general specifications and proof strategies.
Further, all implemented specificationsand proof scriptsare
parameterized and kept generic, so that the implementation
could be used for a wide range of other RISC processors.
The overall specification and proof script text of step (1) is
about 1780 lines. The run timesfor the pipeline correctness
proof of the DLX processor on a SPARC10 with a 96 MB
main memory are given in table 2. The overall pipeline
correctness proof of the DLX, including the generation of
the Phase_used, Range and Domain predicates, istherefore
about 47 min. and 33 sec.

Table 2: Formal Proof Results

Verification Goal Time (sec.)|Comments
Phase_used Gen. 247.26 -
Range& DomainGen. | 221.06 -

ResourceConflicts 457.66 Oconflicts

RAW DataConflicts |655.67 9conflict casesinRF (3dots)
and4conflictsinPC (15 ot)

WAR DataConflicts |551.77 Oconflicts

WAW DataConflicts |680.86 Oconflicts

Control Conflicts 39.25 4 conflict cases(1dot)
2 PipelineCorrectness | 2853.53 |-

8. Conclusions and Future Work

We have shown that pipeline conflicts which occur in
RISC cores — resource conflicts, data conflicts and control
conflictscan be conveniently modelled at variousabstraction
levels using higher-order predicates. The use of the hierar-
chical RISC interpreter model and in particular the exploi-
tation of the class level, allows us to derive compact
specifications of the conflicts that can occur in the pipeline.
Wehaveimplemented constructive proofsfor these conflicts
and hence the designer gets invaluable feedback for intro-

ducing conflict resolution mechanisms; either by making
appropriate modifications to the hardware or by generating
therequired software constraints.

Themodel, the specification and the proof techniquesare
generic in the sense that it is applicable to any RISC core.
Since the RISC interpreter model closely reflects the RISC
design hierarchy, the specificationsin higher-order logic are
easy to derive. Given such specifications and an implemen-
tation, the proof process has been automated by using
parametrizable proof scripts. These proof scripts are
independent of the underlying implementation and can be
used for alarge number of RISC cores. The entire method-
ology hasbeen validated by using the DL X processor.

Theruntimesof the proofsshowninthetable 2, illustrate
the feasibility of forma verification techniques when
applied intelligently to specific classes of circuits. In our
future work, we shall extend the layer of the coreto include
pipelined functional units, floating point processor, etc.

References

[1] Anceau, F.: The Architecture of Microprocessors; Addison-
Wesley Publishing Company, 1986.

[2] Cohn, A.: A Proof of the Viper Microprocessor: The First
Levd; In: Birtwistle, G. and Subrahmanyam, P. (Eds.), VLSI
Specification, Verification and Synthesis, Kluwer Academic
Publishers, 1988.

[3] Gordon, M.; Melham, T.: Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic; Cambridge,
University Press, 1993.

[4] Hennessy, J.; Patterson, D.: Computer Architecture: A
Quantitative Approach; Morgan Kaufmann Publishers, Inc.,
San Mateo, California, 1990.

[5] Hunt, W.: Microprocessor Design Verification; Journal of
Automated Reasoning, Vol. 5, 1989, pp. 429-460.

[6] Joyce, J.: Multi-Level Verification of Microprocessor-Based
Systems; Ph.D. Thesis, Computer Laboratory, Cambridge
University, December 1989.

[71 Kogge, P.. The Architecture of Pipelined Computers;
McGraw-Hill, 1981.

[8] Kumar, R.; Schneider, K.; Kropf, Th.: Structuring and
Automating Hardware Proofs in a Higher-Order Theorem-
Proving Environment; Journal of Formal Methodsin System
Design, Voal.2, No. 2, 1993, pp. 165-230.

[9] Srivas, M.; Bickford, M.: Formal Verification of a Pipelined
Microprocessor; |EEE Software, September 1990, pp. 52-64.

[10] Tahar, S.; Kumar, R.: A Formalization of a Hierarchica
Model for RISC Processors; In: Spies, P. (Ed.), Proc.
European Informatics Congress Computing Systems
Architecture (Euro-ARCH93), Munich, October 1993,
Informatik Aktuell, Springer Verlag, pp. 591-602.

[11] Tahar, S.; Kumar, R.: Towards aM ethodol ogy for the Formal
Hierarchical Verification of RISC Processors; Proc. |EEE
International Conference on Computer Design (ICCD93),
Cambridge, Massachusetts, October 1993, pp. 58-62.

[12] Tahar, S.; Kumar, R.: Implementing a Methodology for
Formally Verifying RISC Processors in HOL; Proc.
International Meeting on Higher Order Logic Theorem
Proving and its Applications (HUG93), Vancouver, Canada,
August 1993, pp. 283-296.

[23] Windley, P.: The Formal Verification of Generic Interpreters;
Ph.D. Thesis, Division of Computer Science, University of
Cadlifornia, Davis, July 1990.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

