
Algorithms for a Switch Module Routing Problem�

Shashidhar Thakur D.F. Wong

Department of Computer Science,

University of Texas at Austin,

Austin, Texas 78712-1188

S. Muthukrishnan

Courant Institute of Mathematical Sciences,

New York University,

New York, NY 10012

Abstract
We consider a switch module routing problem for symmetric
array FPGAs. The work is motivated by two applications. The
�rst is that of e�ciently evaluating switch module designs [8].
The second is that of evaluating the routability of global routing
paths for a placement on this architecture. Only an approxi-
mate algorithm was previously known for this problem. In this
paper, we present an optimal algorithm for the problem based

on integer linear programming. Experimental results consis-
tently show that our algorithm is very e�cient for practical
sized switch modules. We further improve this technique, by do-

ing some pre-processing on the given switch module. We also
identify interesting special cases of the problem which can be

solved optimally in polynomial time.

1 Introduction

In the symmetrical-array FPGA architecture [1, 7, 2], routing
resources consist of horizontal and vertical channels and their
intersecting areas. The layout in such an architecture is shown
in Figure 1. An intersectingarea of horizontal and vertical chan-
nels is referred to as a switch module. A net can change its rout-
ing direction via a switch module and such a direction change
requires going through at least one programmable switch inside
the switch module. Due to the area constraints of switch mod-
ules and delay constraints of routing, the number of switches
which can be put inside a switch module, usually, is limited. On
the other hand, less switches in a switch module would reduce
routability. Thus, this presents a problem of designing switch
modules to maximize the routability under area and delay con-
straints. Zhu, Wong, and Chang in [8] presented an algorithm
for switch module design. In order to evaluate their designs,
they introduced a switch module routing problem, which was
the key problem for analyzing the routability of a switch module
with respect to various routing instances. This switch module
routing problem is the subject of this paper.

Another problem that motivates our work is that of routabil-
ity analysis of a set of global routing paths for a placement
on the FPGA. Typically, routers do a global routing followed
by detailed routing. Due to the constraints of the architec-
ture, the channel density in channels does not necessarily give
a good measure of the possibility of the existence of a detailed
routing [6]. It is therefore important to do some check on the
global routing before proceeding with the time-consuming de-
tailed routing. Our work provides a way of doing a local, i.e.
at each switch module, feasibility check of the global routing.
Thus, if for some switch module the global routing cannot be
mapped to a detailed routing, there is no need to attempt a

�This work was partially supported by the Texas Advanced
Research Program under Grant No. 003658459, by a DAC De-
sign Automation Scholarship, and by a grant from the AT&T
Bell Laboratories.

switch
modules

vertical channels

horizontal
channels

L L L L

L L L L

L L L L

L L L L

S S S

S S S

S S S
logic
modules

Figure 1: Symmetrical array architecture.

detailed routing for the entire FPGA. Figure 2 illustrates this
concept.

L L L L

L L L L

L L L L

L L L L

S S S

S S S

S S S

Global Routing
 Paths

S
Feasible?

Figure 2: Routability Analysis of Global Routing.

In this way, our technique gives a way of estimating conges-
tion at individual switch modules in a FPGA. This can be used
to generate global routing paths which avoid heavily congested
channels and switch modules.

A network-
ow based algorithm was developed in [8] for the
switch module routing problem. But the algorithmwas approx-
imate in the sense that it overestimated routability. In this
paper, we present an optimal algorithm for the problem, based
on integer linear programming. Although the algorithm, in the
worst case, does not run in polynomial time, experimental re-
sults consistently show that our algorithm is very e�cient for
practical size switch modules. For example, running times for
all the 20 � 20 switch modules we considered averaged about
0.25 seconds of CPU time. We further improve this approach
by proposing a method, that avoids having to recompute so-
lutions to the integer programming problems. This is done by
doing some pre-processing on the given switch module. We also

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

identify interesting special cases of the switch module routing
problemwhich can be solved optimally in polynomial time. This
is achieved by reducing them to instances of bipartite matching
problems and network
ow problems.

2 Problem Speci�cation

crossing switch

separating
switch

(b) Switch Matrix

1

2

3 4

56

(a) Switch Block (c) 6 types of connections

Figure 3: Models for switch module.

A switch module is a W1 � W2 rectangular box with W1 ter-
minals on the left and right faces and W2 terminals on the top
and bottom faces. Within a switch module, various terminals
are interconnected in somemanner dependenton the module. A
switch module can be one of two types, namely, a switch matrix

or a switch block.
A switch matrix is a rectangular grid ofW1 horizontal tracks

and W2 vertical tracks. These tracks are electrically non-
interacting. The horizontal tracks are numbered top to bottom
and the vertical tracks left to right. A switch matrix comprises
of two types of switches, namely, crossing switches and separat-
ing switches. These switches are utilized in establishing connec-
tions between the tracks. Crossing switches are found between
a horizontal track and a vertical track and, when ON, connect
those two tracks. Separating switches are found anywhere along
a track and, when ON, connects the two track segments. We
assume that each horizontal or vertical track has at most one

separating switch. This is justi�ed by the fact that the rout-
ing resources of commercial FPGAs satisfy this constraint. An
example switch matrix is shown in Figure 3(b).

A switch block is a rectangular box with W1 terminals on
the left and right faces and W2 on the top and bottom. Some
pairs of terminals, on di�erent faces of the box, may have pro-
grammable electrical links i.e. these pairs can be programmedto
be connected or disconnected. Moreover, these links are electri-
cally non-interacting, unless they share a terminal. An example
switch block is shown in Figure 3(a).

Henceforth, a connection is a electrical path in the switch
module between two terminals on di�erent faces of the switch
module. Connections can be of six types as shown in Fig-
ure 3(c). The connection labeled i, 1 � i � 6, in Figure 3(c), is
said to be of Type i. Type 1 and Type 2 connections are called
the straight connections and Types 3,4,5, and 6 are called the
bent connections. For a switch matrix, we require that at most
one switch be found on the electrical path comprising the con-
nection. Thus, only straight connections can use a separating
switch. This assumption is justi�ed by the fact that each switch
introduces a delay. For a switch block, connections have to be
chosen from the programmable links speci�ed.

A routing requirement vector (rrv for short) n is a 6-tuple
(n1; n2; n3; n4; n5; n6) where 0 � n1 � W1, 0 � n2 � W2, and
0 � n3; n4; n5; n6 � minfW1;W2g. For a given switch module
and rrv, a routing is a set of connections which are electrically
non-interacting such that there are ni of Type i connections, for
i 2 f1 � � �6g. A rrv n is said to be routable on a switch module
S, if there exists a routing for n on S. For example, in Figure 4 a
switch matrix and the routing for the rrv (1;1;1;0; 0;1) on this
switch matrix are shown. The rrv (0;0;2;0; 0;0) is not routable

on the same switch matrix as only the two crossing switches on
vertical track 2 can be used for a Type 3 routing and not both
can be used simultaneously.

1
2
3

1 2 3

Figure 4: Example of routing.

We consider the following problems.

Routing Decision Problem (RDP): Given a switch module
S (either a switch matrix or a switch block) and a rrv n, is n
routable on S?

Routing Solution Problem (RSP): Given a switch mod-
ule S (either a switch matrix or a switch block) and a rrv n,
determine a routing for n on S, if any.

For convenience, we often refer to these problems as simply
RDP with n or RSP with n, omitting the input S.

Due to lack of space, we present only the results for the
switch matrix model. We have obtained similar results for the
switch block case. We refer the interested reader to [5] for these
and for proofs of theorems stated in this paper.

3 ILP Formulation

In this section we solve the RDP using an integer linear program
(ILP); the solution to the RSP is obtained from the solution
to the ILP. We show our formulations for switch matrices and
switch blocks separately.

Consider the RDP with the rrv (n1; : : : ; n6) and switch ma-
trix M . We formulate this problem as an ILP. In the resultant
ILP, there are two main sets of constraints. The �rst set contains
at most two constraints for each horizontal or vertical track. For
each horizontal track one constraint ensures that the segment
of the track to the left of the separating switch, if any, is part
of at most one connection; the other constraint ensures this for
the segment to the right of the separating switch. Similarly,
at most two constraints are generated for each vertical track.
Note that if a track does not contain a separating switch, then
only one constraint is generated for this track. The second set
of constraints and an objective function are generated to ensure
that a maximumnumber of connections speci�ed by the rrv are
routed in the solution of the ILP. We introduce some notation
to succinctly describe the ILP.

Let S1; S2; S3, and S4 be four constant matrices de�ned as
follows. (S1)ij = 1 if a crossing switch is found between horizon-
tal track i and vertical track j such that a separating switch,
if any, in this horizontal track is to the right of this crossing
switch. Otherwise, it is 0, i = 1; : : : ;W1; j = 1; : : : ;W2. S2
is similarly constructed as an indicator matrix of the crossing
switches to the right of separating switches in the horizontal
tracks. Likewise, S3 (S4) is an indicator matrix of the crossing
switches above (below) the separating switches in the vertical
tracks.

Four W1 � W2 variable matrices are de�ned as follows.
(Xk)ij = (xk)ij if M has a crossing switch between horizon-
tal track i and vertical track j and this can be used to achieve
a connection of Type k. Otherwise, it is 0, k = 3; 4;5;6; i =

1;:::;W
1
; j = 1; : : : ;W

2
. Variable (xk)ij is an indicator vari-

able that indicates if the switch between horizontal track i and
vertical track j is utilized in a connection of Type k. Note that
not every switch can be used for every type of connection. For
example, if a crossing switch is above a separating switch for
that column, then the switch cannot be used to realize a con-
nection of Type 6. In Figure 3(b), the crossing switch in row 2,
column 1 can only route connections of the Types 3,4 and not
of Types 5,6. The one in row 4, column 1 can route connections
of Type 5,6 and not of Types 3,4.

De�ne the binary operator
 on matrices as the the
component-wise multiplication, i.e., (A
B)ij = AijBij.

De�ne a variable column vector r of dimensionW
1
as:

ri =

n
1 if horizontal track i is used in a connection
0 else

for i = 1; : : : ;W
1
.

De�ne a variable column vector c of dimensionW
2
as:

cj =

n
1 if vertical track j is used in a connection
0 else

for j = 1; : : : ;W2.
Let e1; e2 be two constant column vectors of dimensions

W1;W2, respectively, with all components 1. The integer pro-
gramming formulationis shown in Figure 5. The number of vari-
ables� W1+W2+4(number of switches) � 4W1W2+W1+W2

and the number of constraints� 2(W1 +W2)+ 6+W1 +W2 +
4(number of switches) � 4W1W2 + 3(W1 +W2) + 6.

Problem ILP1.

max eT
1
r+ eT

2
c +

6X
k=3

eT
1
Xke2

(S1

6X

i=3

Xi)e2 + r � e1

(S2

6X

i=3

Xi)e2 + r � e1

(S3

6X

i=3

Xi)
T e1 + c � e2

(S4

6X

i=3

Xi)
T e1 + c � e2

eT
1
r � n1

eT
2
c � n2

eT
1
Xke2 � nk; k = 3; : : : ; 6

r 2 f0;1gW1; c 2 f0;1gW2

Xk 2 f0;1gW1�W2 ; k = 3; : : : ;6

Figure 5: ILP Formulation for Switch Matrix.

Theorem 1 The problem ILP1 has a solution with objective

value
P

6

i=1
ni if and only if the rrv (n1; : : : ; n6) is routable on

M .

As an example, consider the switch matrix in Figure 6. Fig-
ure 7 shows a set of important constraints in the corresponding
ILP.

Note that the set of variables that have value 1 assigned to
them give a solution to the correspondingRSP .

1
2
3

1 2 3

Figure 6: Switch matrix.

(x
3
)
12

+ (x
4
)
12

+ (x
5
)
12

+ (x
6
)
12

+ r
1
� 1

(x
3
)
22

+ (x
6
)
22

+ r
2
� 1

(x
4
)
23

+ (x
5
)
23

+ r
2
� 1

(x
5
)
31

+ (x
6
)
31

+ r
3
� 1

(x
5
)
31

+ (x
6
)
31

+ c
1
� 1

(x
3
)
12

+ (x
4
)
12

+ (x
5
)
12

+ (x
6
)
12

+ (x
3
)
22

+ (x
6
)
22

+ c
2
� 1

(x4)23 + (x5)23 + c3 � 1

r1 + r2 + r3 � n1

c1 + c2 + c3 � n2

(x3)12 + (x3)22 � n3

(x4)12 + (x4)23 � n4

(x5)12 + (x5)23 + (x5)31 � n5

(x6)12 + (x6)22 + (x6)31 � n6

Figure 7: Example of ILP1 (important constraints).

4 Minimal Dominating Set

For this section, �x a switch module S. Consider solving either
RDP or RSP on S for various rrv's. Using our algorithm in
Section 3, an instance of integer programming problem is solved
for each rrv. In this section, we describe a pre-computation on
S so that following this pre-computation, either RDP or RSP
on S can be solved for any given rrv without resorting to the
integer programming problem. For a given S, a set of routing
requirement vectors are identi�ed during the pre-computation
(this involves solving several integer programs). Following this
computation, RDP or RSP on any given rrv can be solved fast
by comparing it with this set of rrv's; both the computation of
this set and the comparison of a given rrv with the rrv's in this
set is now described. First consider solving RDP .

A rrv (n1; : : : ; n6) is said to dominate another rrv

(m1; : : : ;m6) if and only if ni � mi; i = 1; : : : ; 6 and for some i,
ni > mi. It is a simple observation that any rrv n is routable if
another rrv m is routable on S andm dominates n. Intuitively,
we wish to compute the set of all rrv's which dominate all the
routable rrv's for S. We formalize this below.

A setR of rrv's is called a dominating set for a switch module
S, if for a rrv v, v is routable on S if and only if either v 2 R or
there exists a rrv w 2 R such thatw dominates v. A dominating
set R for S is called minimal if 8v;w 2 R neither v dominates
w nor w dominates v. The following property is crucial.

Lemma 1 The minimal dominating set for a switch module S
is unique.

Observe that the set of routable rrvs for S is partially or-
dered under dominance relation. A rrv v is called a top element
if it is routable and there exists no other rrv that dominates v.
The following lemma is the key in computing the minimal dom-
inating set for S.

Lemma 2 Let � = fvj v is a top element g. Then � is the
minimal dominating set.

Let W = minfW
1
;W

2
g. Let V be the set of rrvs for S.

De�ne L(�) = fv 2 V j
P

6

i=1
vi = �g: A rrv w is a child of rrv

v 2 L(�) if w 2 L(�� 1) and w di�ers from v in exactly one
component. Thus, each rrv has six parents and six children,
except for the rrvs (0;0;0; 0;0;0) and (W

1
;W

2
;W;W;W;W)

which have no children and no parents respectively.

We describe an algorithm to compute the minimal dominat-
ing set for a given switch module S. Our algorithm proceeds
in levels 1 � � �W

1
+ W

2
. At level �, the set of rrvs in L(�) is

considered. In particular, only those rrvs in L(�), all of whose
children in L(�� 1) are routable, are considered. For each such
rrv, using the integer programming approach in Section 3, it is
determined if the rrv is routable. All the rrvs that were con-
sidered in level ��1 which have the property that none of their
parents in level � are routable, are output as top elements. Note
that it is su�cient to stop the algorithm after level W

1
+W

2
,

since in succeeding levels, the rrvs are trivially infeasible. From
Lemma 2, it is easy to see that the set of top elements in the
output of our algorithm is the minimal dominating set. The
pseudocode is shown in Figure 8.

Output min dom set(S)
/* S is a switch module description */

/* Outputs the elements of the dominating set */

f
begin

insert (0;0;0; 0;0;0) in L(0);
for i = 0 to W1 +W2� 1
for each v 2 L(i)
found = false;

for j = 1 to 6
if jth parent of v is routable

insert jth parent in L(i+ 1);
found = true;

endif

endfor

if (not found) output(v);

endfor

endfor

Output each element of L(W1 +W2);
end

g

Figure 8: Algorithm for computing the dominating

set.

Computing the minimal dominating set R for S completes
the pre-computation. Following this, consider solvingRDP with
rrv v. Clearly, v is routable if and only if v 2 R or there exists
some rrv in R which dominates v. This can be checked quickly
by successively performing binary search on the components of
the 6-tuples in a straightforward manner. Note in particular
that no integer programming problem need be solved.

To solve RSP, we modify the pre-computation described
above. Along with each rrv v determined to be in the mini-
mal dominating set R, we determine and store the routing for
v. Following this, RSP for any given rrv u can be solved fast.
First determine if u 2 R or �nd an element w, if any, in R

which dominates u. In the second case, it is easily seen that a
routing for u, if any, can be generated from the routing for w

(if w exists). Again, no integer programming problem is solved
in RSP.

To sum up, by precomputing the minimal dominating set R
of S o�-line, the need to solve an integer programming problem
while solving RDP or RSP on-line is avoided.

5 Special Cases

Since the integer programming problem is NP-Complete. poly-
nomial time algorithms are not known for RDP and RSP using
the approach in Section 3. In this section we identify several
interesting classes of switch modules for which RDP and RSP
can be solved in polynomial time. In what follows, we consider
solving the RDP; the solutions to the corresponding RSPs are
directly obtained from the proposed solutions to the RDP.

De�ne a generic rrv to be a 6 tuple in which each compo-
nent is either a number or a special symbol \�". For example,
(�;0;0; 0;0;�) is a generic rrv. Any generic rrv represents the
class of all rrv's which di�er only in the componentsmarked \�".
For example, (�;0;0;0; 0;�), represents the class containing all
rrv's which have 0's in components 2,3,4 and 5. Examples of
rrv's in this class include (10;0;0;0; 0;6) and (0;0;0;0; 0;6).

In what follows, RDP (or RSP) with generic rrv v stands for
the problem of RDP on any rrv in the class of rrv's represented
by v.

5.1 No separating switches

Suppose that the given switch matrixM contains no separating
switches. We characterize the complexity of routing on M in
terms of the complexity of the bipartite matching problem. The
bipartite matching problem is to determine, if a given bipartite
graph has a matching of size k.

Let P1 and P2 be two problems. We denote P1) P2 if
P2 reduces to P1, that is, an e�cient algorithm for problemP1
yields an e�cient algorithm for P2.1

We state the following lemmas. Since Lemmas 3, 4 have
important observations, we give the proofs of them here.

Lemma 3 RDP with (0;0; �;0;0; 0)) RDP with

(�;�;�; 0;0;0).

Proof: Consider the instance of RDP on M with rrv

(n1; n2; n3; 0;0; 0). If n1 + n3 > W1 or n2 + n3 > W2 the
problem is trivially infeasible. Otherwise (n1; n2; n3;0; 0;0) is
routable on M if and only if (0;0; n3; 0;0;0) is routable on M .
This is because, given a routing for (0;0; n

3
;0; 0;0), we can gen-

erate a routing for (n
1
; n

2
; n

3
;0; 0;0) by utilizing n

1
horizontal

tracks and n2 vertical tracks disjoint from the connections in
the routing of (0; 0; n3;0; 0;0).

Lemma 4 RDP with (�;�; �;0;0; 0)) RDP with
(�;�;�; �;�;�).

Proof: We claim that rrv (n1; n2; n3; n4; n5; n6) is routable
on a switch matrixM if rrv (n1; n2; n3 + n4 + n5 + n6;0; 0;0)
is routable. We observe that any connection from left to top,
in the absence of separating switches, renders the correspond-
ing horizontal and vertical tracks unusable for further connec-
tions. Indeed this observation holds for all bent connections.
Therefore, a left to top connection can be replaced by any other
bent connection without causing any con
icts with the other

1Formally, we say P1) P2 if an instance of problem P2
can be reduced to an instance of problem P1 in time O(W1 +
W2 + jT j) where T is the set of crossing switches in M and M

is the switch matrix in one of the problems P1 or P2.

connections in routing. In particular, if n
3
+ n

4
+ n

5
+ n

6

of Type 3 connections are possible then we can always re-
place these with ni connections of Type i; i = 3; : : : ; 6. There-
fore, if (n

1
; n

2
; n

3
+ n

4
+ n

5
+ n

6
;0; 0;0) is routable, so is

(n
1
; n

2
; n

3
; n

4
; n

5
; n

6
).

Lemma 5 RDP with (0;0; �;0;0; 0) , bipartite matching
problem.

(a) switch matrix (b) bipartite graph

1

2

3

4 5 6

1

2

3

4

5

6

Figure 9: No separating switches.

An example of a switch matrix with the bipartite graph in
the transformation of RDP with (0;0;�;0; 0;0) is shown in Fig-
ure 9. For any integer k, the rrv (0;0; k; 0;0; 0) can be routed
on the switch matrix in Figure 9(a) if and only if the graph in
Figure 9(b) has a matching of size k.
Now we are ready to state the following theorem.

Theorem 2 RDP with (�;�; �;�;�; �) , bipartite matching

problem.

The bipartite matching problem can be solved in time
O(
p
nm) for a bipartite graph with n vertices and m edges [4].

From Theorem 2, it follows that RDP for a switch ma-
trix M with no separating switches can be solved in time

O(
p

(W1 +W2)jT j), where jT j is the number of crossing
switches in M .

5.2 No separating switches in rows

Consider RDP or RSP with (�;0; �;�;�; �). Assume that in the
switch matrix for these problems, the horizontal tracks do not
contain any separating switches - similar results hold for the case
where vertical tracks do not have separating switches. Under
this condition, it is easy to see, using the technique in the proof
of Lemma 4, that (n1; 0; n3; n4; n5; n6) is routable if and only if
(n1; 0; n3+n4 ; 0;0; n5+n6) is routable. The RDP with generic
rrv (�;0;�; 0;0;�) is known to be solvable using unit capacity
network
ows [8]. It follows that under the given condition,
RDP or RSP with (n1; 0; n3 + n4; 0;0; n5 + n6) is solvable as
well, using unit capacity network
ows.

5.3 Problems solvable by
ows

Consider the following problem which we call the non-
interfering network
ow problem.

A

B

C

D

1

2

f

3
f

f

Figure 10: Non-interfering network.

Consider a directed network with four blocks of nodes,
namely, A;B;C; and D. In addition there exist special nodes

s
1
; s
2
and t

1
; t
2
, respectively, the pair of source nodes and the

pair of sink nodes. Arcs between nodes in the blocks, if any,
exist between nodes in block A and C or A and D, or between
nodes in block B and D. In particular, there are no arcs be-
tween nodes in the same block. The source s

1
(s
2
) is connected

to each node in A (B); every node in C (D) is connected to
the sink t

1
(t
2
). Each arc has capacity 1. The non-interfering

network
ow problem is the following: given such a network,
and integers f

1
, f

2
and f

3
, does there exist a feasible
ow such

that source s
1
supplies a
ow of f

1
+ f

2
, source s

2
supplies a

ow of f
3
, sink t

1
receives a
ow of f

1
and sink t

2
receives a

ow of f
2
+ f

3
? It is easy to see that such a
ow exists if and

only if there is a matching between the vertex sets A [B and
C [D such that there exist exactly f

1
arcs between nodes in A

and C, exactly f
2
arcs between nodes in A and D and exactly

f
3
arcs between nodes in B and D.
Following is a list of some RDP's which can be solved using a

transformation to the non-interfering network
ow problem. In
what follows, the switch matrix is assumed to have the following
property: each horizontal and vertical track of the matrix has
precisely one separating switch.

1. RDP's with generic rrv in which the components corre-
sponding to any three bent connections are marked \�"
and the remaining components are zero. For example,
RDP with (0;0;�; 0;�;�).

2. RDP's with rrv's in which the components corresponding
to any two bent connections which do not share a face
of the switch matrix are marked \�", and the component
of any one straight connection is marked \�". The re-
maining components are zero. For example, RDP with
(�;0;�; 0;�;0).

We now sketch the transformations from problems listed
above to non-interfering network
ow problems.

Consider an example of a problem in Category 1 above, say,
RDP with (0;0; n3;0; n5; n6). We create a node for every termi-
nal of the switch matrix. The nodes of the left face form block
A, those on the right formB, those on the top form C and those
on the bottom formD. For a crossing switch which is found be-
tween the horizontal track i and vertical track j, create an edge
from the node in A(B) to the one in C(D) corresponding to the
terminals i and j. It is crucial to note that since each horizontal

and vertical track has precisely one separating switch, a crossing
switch can be utilized in precisely one bent connection. It is now
easy to observe that (0;0; n3; 0; n5; n6) is routable if and only if
there is a matching between the vertex sets A [B and C [D

such that there exist exactly f
1
arcs between nodes in A and C,

exactly f
2
arcs between nodes in A and D and exactly f

3
arcs

between nodes in B and D. Thus, RDP with (0;0; n3;0; n5; n6)
is transformed to the non-interfering network
ow problem. See
Figure 11 for an example of this transformation.

(a) example switch
 matrix

1

2

3

4 5 6

7

8

101112

1

2
3

4
5
6

7
8
9

10
11

12

(b) Network

9

A

B

C

D

(c) Requirements

n 3
n6

n5

Figure 11: Example of a transformation into the non-

interfering network
ow problem.

A similar construction su�ces for transforming a problem in
Category 2 above to the non-interfering network
ow problem.

Using standard techniques for computing the max-
ow in
networks the non-interfering network
ow problemon a network
of n nodes andm arcs with unit capacity on arcs, can be solved
in time O(nm) [3]. Therefore, problems in Category 1 and 2
above can be solved in time O((W

1
+W

2
)jT j).

6 Experimental Results

We wrote programs that take in routing problems and switch
module descriptions and generate integer programming prob-
lems as described in Sections 3(a) and 3(b). We used a popular
integer linear programmingcode called lp solve that uses branch
and bound techniques combined with the simplex algorithm for
linear programming to generate integer solutions. We ran the
programon a Sun Sparc 1 workstation. This was done for switch
modules of sizes 10�10 and 20�20. We tested each of the sizes
for both switch matrix and switch blockmodels. The results are
tabulated in Table 1. The second column gives the size of the
switch module (W), the third gives maximum observed running
time and the fourth column gives the average running time over
100 experiments. The last three columns give an idea about the
size of the ILP. In all cases the RDP was being solved. The
fast running time of our algorithms makes our approach an at-
tractive one to use in practice for evaluating designs of switch
modules as well as for routability analysis of global routing.

Module W Run Time #var. #constr. #non-
Max. Avg. zeros

mod40 20 0.3 0.205 97 70 388
mod50 20 0.5 0.220 115 70 460
mod80 20 1.5 0.258 177 70 708
nm40 20 0.3 0.217 120 66 480
nm50 20 0.6 0.236 140 66 560
nm80 20 1.3 0.289 220 66 880

Table 1: Running times for ILP method.

We also compared the routabilities of several switch modules
as computed by our exact algorithmwith those obtained by the
approximate algorithm in [8]. This is shown in Table 2. All
experiments used 100 rrvs on the switch modules. The extent
of overestimation that results from an approximate algorithm
justi�es the use of our algorithms. The approximate algorithm
had an error of about 16%, on an average.

Module W % of routable vectors
Approx. algo. Exact algo.

mod40 20 65 58
mod50 20 70 64
mod80 20 94 82
nm40 20 99 76
nm50 20 99 83
nm80 20 99 90

Average 20 87.7 75.5

Table 2: Comparison with approximate algorithm.

We tested the techniquementioned in section 4. We observed
a dramatically small search space size (i.e. the size of the min-
imal dominating set). For example, it was observed that for a

10� 10 switch matrix design, the size of the minimal dominat-
ing set was 1254 which is just 0.12% of the possible 106 possible
rrvs. As explained before, a binary search could be used on this
set of vectors to test for the routability of a speci�ed rrv.

7 Conclusions

In this paper, we described an integer programming approach
to solving a routing problem on switch modules. The problem
was originally proposed in [8] as an important part of their ap-
proach to switch module design. The problem is also useful for
analyzing the routability of each switch module in a FPGA chip
after global routing. Experimental results consistently showed
that our algorithm was very e�cient for practical size switch
modules. We also identi�ed in this paper several special cases
of the problem which reduce to well known problems and to
which polynomial time algorithms are known.

The techniques proposed provide an e�cient way of estimat-
ing congestion at switch modules which can be using in com-
puting good global routing paths. We propose to demonstrate
this by building a global router based on techniques identi�ed
in this paper. The integer programming package we used was
general and we did not attempt to customize it to make use of
the speci�c nature of the problem matrix. As can be seen from
Table 1, the problem matrix is quite sparse. Exploiting this
would further speed up the solution process. Also, whether the
routing problemRDP is NP-complete is still an open problem.

8 Acknowledgements

We thank Kai Zhu for helpful discussions on several topics in
the paper. We also thank Yao-Wen Chang for providing test
designs of switch modules.

References

[1] AT&T. Optimized Recon�gurable Cell Array (ORCA) Se-

ries Field Programmable Gate Arrays, February 1993.

[2] H.C. Hsieh et al. Third generationarchitecture boosts speed
and density of �eld programmable gate arrays. In Proceed-

ings of the IEEE CICC, pages 31.2.1{31.2.7, 1990.

[3] H.N. Gabow. Scaling algorithms for network problems.
Journal of Computing Systems Science, 31:148{168, 1985.

[4] C. Papadimitriou and Steiglitz. Combinatorial Optimiza-

tion - Algorithms and Complexity. Prentice-Hall Inc., 1982.

[5] S. Thakur, D.F. Wong, and S. Muthukrishnan. Algorithms
for fpga switch module routability analysis. Technical Re-
port TR-94-14, Dept. of Computer Science, UT Austin,
1994.

[6] Y. Wu, S. Tsukiyama, and M. Marek-Sadowska. Compu-
tational complexity of 2-d fpga routing for arbitrary switch
box topologies. In International Workshop on Field Pro-
grammable Gate Arrays. ACM SIGDA, 1994.

[7] Xilinx Corporation. The Programmable Logic Data Book,
1993.

[8] K. Zhu, D.F. Wong, and Y.W. Chang. Switchmodule design
with application to two-dimensional segmentationdesign. In
International Conference on Computer Aided Design, pages
480{485. IEEE/ACM, 1993.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

