
f g

Abstract

1 Introduction

2 The STAR data model

A Tightly Coupled Approach to Design and Data Management

Fl�avio R. Wagner, Lia G. Golendziner, Miguel R. Fornari

Universidade Federal do Rio Grande do Sul { Instituto de Inform�atica

Caixa Postal 15064, 91501-970 Porto Alegre RS, Brazil

e-mail
avio,lia @inf.ufrgs.br

This paper describes the tight coupling between de-
sign and data modeling and management facilities in
the STAR EDA framework. STAR implements an in-
novative and
exible data model that allows the user
to de�ne, for each object type, a schema of the de-
sign alternatives and views to be created during the
design process. Alternatives and views can be hierar-
chically related through an inheritance mechanism in
order to establish arbitrary data integrity constraints
that must be followed when new object descriptions are
generated. On-the-
y extensions and modi�cations to
each object schema are supported by a schema evolu-
tion mechanism. The evolutionary schemata of alter-
natives and views and the integrity constraints that are
established through the object schemata build the basis
for a design methodology management mechanism.

syntactical

semantics

Typical EDA frameworks are built upon a database
management system which o�ers data representation
facilities and basic versioning mechanisms. On top of
this layer, various servers, eventually implemented as
domain-neutral tools, are available. Typical servers
support the management of versions, con�gurations
(both being aspects of data management), and design
methodologies.

A problem found in most approaches to data and
design methodology management is that they have a
pure nature. This means that, although
they help the user to organize meta-objects such
as versions, con�gurations, and tasks, they have no
knowledge about the of the relationships
between these meta-objects. As an example, many
version management systems do not consider the fact
that di�erent versions must share common, arbitrary
data representation properties in order to be semanti-
cally meaningful. A semantically rich data and design
management, in turn, can support the automatic ver-
i�cation of design integrity constraints, thus guiding
and/or enforcing the user towards meaningful results.

The semantics of the design process is related to
the data contents of object versions and con�gura-
tions that are the inputs and outputs to/from the
tasks. Therefore, a more powerful support to data
and design management can be o�ered if the version,
con�guration, and design methodology managers are
tightly coupled to the data representation mechanism.
This is a two-way coupling. Data and design managers

must have knowledge about the design data in order
to guide the user in the establishment of semantically
meaningful relationships among meta-objects. As a
result, they can conduct the design process (i.e. the
derivation of new design objects) so as to guarantee
the ful�llment of the design integrity constraints that
are established as properties of the meta-objects or of
the relationships among them. In the other direction,
the data representation model must be de�ned so as
to consider an adequate support to the various data
and design management services to be integrated into
the framework.

Although the literature describes semantic ap-
proaches to data and design management services,
very few of them consider all services in an integrated
way, and none of them is based on a tight coupling
between the management services and the data repre-
sentation model.

The STAR framework follows this approach. It im-
plements an innovative and
exible data model that al-
lows the user to de�ne, for each object type, a schema
of the design alternatives and views to be created dur-
ing the design process. Alternatives and views can
be hierarchically related through an attribute inheri-
tance mechanism. This model allows the designer or
project manager to establish arbitrary data integrity
constraints that re
ect a sequence of design decisions
to be taken and that must be followed when new ob-
ject descriptions are generated. On-the-
y extensions
and modi�cations to each object schema are supported
by a schema evolution mechanism. The evolutionary
schemata of alternatives and views and the integrity
constraints that are established through the object
schemata build the basis for a design methodology
management mechanism.

The remainder of this paper is organized as follows.
Section 2 presents the main features of the STAR data
model. The version management mechanisms are then
discussed in Section 3. Schema evolution facilities are
considered in Section 4. Section 5 discusses the STAR
approach to design methodology management. Sec-
tion 6 concludes with �nal remarks and describes fu-
ture developments.

The STAR data model is strongly based on the
GARDEN data model [1], developed at the IBM Rio
Scienti�c Center. Besides representing complex elec-
tronic design objects, it provides a
exible way for

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

Design

Ports
UserFields

ViewGroup

Ports
UserFields

View
Ports
UserFields

ViewGroup
Ports
UserFields

Views and
ViewStates

ViewStates

ViewGroup
Ports
UserFields

View

Ports
UserFields

ViewStates

View
Ports
UserFields

ViewStatesViews and
ViewStates

3 Version management

al-
ternatives views revisions

Design View-
Groups Views

object schema

HDL Views
Layout Views

MHD Views

instance inheritance

by default

strict

UserFields
Ports

Param-
eters

ViewStates

Process
Auxiliary Objects

Correlations

version

conceptual

managing the various representations created along
the various dimensions of the design evolution (

, , and). This feature al-
lows the system to implement, according to user- or
methodology-de�ned criteria, many di�erent concep-
tual schemata for representing the design evolution.

In the STAR data model, shown in Figure 1, each
object gathers an arbitrary number of
and . The ViewGroups may in turn

gather, according to user- or methodology-de�ned cri-
teria, any number of other ViewGroups and Views,
building a tree-like hierarchical . The
fact that Views may be de�ned at any level of the
object schema o�ers an unlimited number of ways for
organizing the di�erent representations of the Design.
Since the system does not enforce any grouping crite-
rion, it is left to the user or to the design methodology
to decide how Views will be organized.

Figure 1: The STAR data model

Views are the leaves of the tree structure. STAR
supports three kinds of Views: , for be-
havioral representations, , for physical
descriptions, and (Modular Hierarchical
Description Views), for purely structural representa-
tions. Although all three View types may contain
sub-objects that are instances of other object types,
for HDL and Layout Views the data model does not
handle the exact interconnections between the sub-
objects, as it does for the MHD Views. As opposed to
the MHD Views, HDL and Layout Views contain a �le
where speci�c design data, handled as a bit string by
the STAR data management system, are stored. User-
de�ned View types may be speci�ed, so that MHD
Views may be for instance of types \gate-level", \RT-
level", and so on.

The object schema resembles a generalization hier-
archy, in that each node is an abstraction of the sub-
tree below it. Each node has some properties that
may optionally be inherited by its descendant nodes.

This is an relationship [2]: not
only the existence of an attribute is transferred to the
descendant nodes, but also its value, when de�ned. In-
heritance may be , when descendant nodes
may rede�ne attributes to more specialized domains
and modify attribute values, or , when rede�ni-
tion at descendant nodes is not possible.

There are three types of attributes for each node
of the schema: are user-de�ned object at-
tributes; are interface signals and may contain
in turn their own user-de�ned attributes; and

allow the user to build generic, parameterized
objects. The inheritance is mandatory with regard to
the existence of Ports and Parameters.

Real design data, such as structural decomposi-
tions, HDL descriptions, and layout masks, are in fact
contained in the , that are the revisions cre-
ated for each of the Views. The purpose of Design,
ViewGroup, and View nodes of the object schema is
to organize the various representations of a design ob-
ject and to guarantee the consistency of the common
attributes through the inheritance mechanism. There-
fore, these nodes contain only the attributes to be
shared by the representations they gather.

The data model supports other features such as
the attachment of manufacturing process information
(objects) to the design object representations,
the speci�cation of , like test vec-
tors and testability measures, and the establishment
of general relationships among object representations
().

In the STAR context, is a general desig-
nation for three dimensions of the evolution process:
views, alternatives, and revisions. Version manage-
ment is thus supported by two di�erent mechanisms
[3]: a) user- or methodology-controlled,
versioning; and b) automatic revision control. Both
mechanisms are strongly related to the data represen-
tation mechanisms. Revision control (for more details
see [3]) is applied to all nodes of the object schema,
i.e., to all versions of the conceptual level.

At the conceptual level, the user or the design
methodology may de�ne a particular object schema
for each design object so as to organize views and
alternatives according to a given strategy. This al-
lows the user to apply a methodology control which
is highly tuned for the design of each object. At this
conceptual level, each design object has a small num-
ber of versions, that are created strictly under user-
or methodology-control.

A conceptual schema for an object restricts / spe-
cializes the generic object schema presented in the
previous section by: a) de�ning the overall topology
of the schema, i.e., which are the ViewGroups and
Views, how they are related to each other, which are
the View types; b) specifying at which nodes Ports
and Processes are to be attached; and c) de�ning at-
tributes (both inherited and non-inherited) in the var-
ious nodes.

ViewGroups have a very general semantics. They
can be used, for instance, to build a hierarchy of design
decisions, where alternatives from a given design state

Design: ControlBlock
 P: control lines
 PA: Port directions

ViewGroup: VG-RandomLogic
 (random logic design)
 UF: maximum delay

ViewGroup: VG-PLA
 (PLA design)
 UF: maximum delay

HDL View: V-FSM-Symbol
 (symbolic FSM)

HDL View: V-FSM-StateAssign
 (FSM after state assignment)

HDL View: V-RL-Equations
 (after multi-level logic minimiz.)

MHD View: V-RL-Gates
 (after technology mapping)

MHD View: V-RL-Timing
 (gates with extracted timing)

ViewGroup: VG-RL-Layout
 P: VDD, GND
 PA: width, coord, layer
 UF: height, width

Layout View: V-RL-Layout
 UF: LayoutOK

MHD View: V-RL-Netlist
 (extracted logical netlist)
 UF: NetlistOK

conventions:
P: Ports,
PA: Port Attrib.
UF: UserFields

static dynamic open

abstract object
Version hierarchies

version graphs
partitions

cell views
facets

contents
interface

facets

workspaces

represen-

are appended to the previous alternative that has orig-
inated this state. This hierarchy of design decisions,
if desired, can be close to a hierarchy of design ab-
straction levels. Furthermore, ViewGroups store the
attributes that are common to all representations that
correspond to a given design decision. The data model
thus helps the designer guarantee that all representa-
tions related to a given design alternative have these
common properties.

The application of these conceptual versioning
mechanisms to the de�nition of an object schema
which is specially oriented to the design of a micro-
processor control block is illustrated in Figure 2. The
schema de�nes the various representations that cor-
respond to the control block behavior (a symbolic
FSM before and after state assignment) and imple-
mentation, in both random logic and PLA design ap-
proaches. For each of these approaches, representa-
tions are organized under a distinct ViewGroup. For
the random logic approach, representations include
boolean equations after multi-level minimization, a
gate-level structure after technology mapping, and a
gate-level structure annotated with timing extracted
from the layout. Layout related representations cor-
responding to the random logic approach are orga-
nized under an additional ViewGroup and include a
layout view and an extracted logical netlist. This lay-
out representations add two Ports (VDD and GND)
to the control lines already de�ned at the root of the
schema. Further representations for the PLA design
are not shown. All random logic related representa-
tions share as a common attribute the maximumprop-
agation delay, stored as a UserField in the ViewGroup
VG-RandomLogic.

A con�guration manager, which is highly integrated
to the version manager, is also available. It supports

, , and con�gurations and is imple-
mented as an interactive tool that o�ers several facili-
ties for building, storing, and re-using con�gurations.
Version selection may be performed in a manual, au-
tomatic, or semi-automatic way. In the automatic se-
lection, pre-de�ned criteria, such as current version
or most recent version, are used. The semi-automatic
selection is based on user-de�ned con�guration expres-
sions, involving object attributes.

In order to compare version models supported by
other systems to the STAR approach, we may clas-
sify them into two main categories. The �rst cate-
gory corresponds to general-purpose approaches, such
as those proposed by Kemper et al [4] and Katz et al
[5]. Kemper et al proposed a version model where an

holds the properties that are common
to all its versions. of any depth
can be built, using the instance inheritance mecha-
nism. Furthermore, for each design object a di�erent
organization for the version set can be de�ned, using

(ordering of versions by time relations
or development history) and (classi�cation
of versions according to the design status). This gen-
eral model allows for the de�nition of any versioning
schemata. It could be used as a platform for build-
ing application-oriented version models, such as the
model in the STAR framework. The Version Server
of Katz et al also supports a very general versioning

Figure 2: An example of an object schema

schema. While o�ering an interesting model for re-
solving dynamic con�gurations and a powerful change
propagation mechanism, a distinction between alter-
natives and views cannot be established. The model
does not support separate interface and contents por-
tions of design objects and makes an unclear distinc-
tion between object de�nitions and object instances.

The second category corresponds to application-
speci�c version models and includes for instance the
DAMASCUS [6] and Oct [7] systems. The Oct man-
ager organizes representations of a in . A
view has any number of . A special facet, named

, contains the actual design data for the view
and its basic interface de�nition. Other

de�ne externally visible information for spe-
cialized tools. Each facet can have many versions.
Cells are grouped into , and a con�guration
mechanism allows the automatic selection of versions
for facets in a workspace. The Oct manager does not
support a distinction between design alternatives and
views. The DAMASCUS system de�nes a design ob-
ject through a 4-stage hierarchy consisting of

4 Schema evolution

5 Design methodology management

tations alternatives revisions
design stages

schema invariants

schema evolution transaction

design methodology

Design methodology management

input
conditions

Task
goals

(similar to views), , , and
. Each alternative may de�ne a di�erent

object interface, which is then inherited by all its re-
visions. Revisions may add new interface attributes.
While considering all dimensions of the version space,
this versioning schema is �xed.

These version management approaches are thus ei-
ther too general, o�ering a weak semantic support for
electronic design automation, or too speci�c, imple-
menting a particular, �xed versioning schema. Some
of them do not consider all dimensions of the version-
ing space [7], or are in fact restricted to revision con-
trol [5]. The STAR data model, on the other hand,
handles revisions, alternatives, and views in an in-
tegrated approach. Instance inheritance exists from
the Design node down to the ViewStates. It com-
bines adequate semantic expressiveness (ViewGroups,
Views, interface and attribute inheritance) with the
support for the implementation of schemata according
to user-or methodology-de�ned strategies. Its
exibil-
ity and completeness allows the modeling of a variety
of versioning schemata [1], as well as the de�nition of
schemata that are not supported by other systems.

The complete de�nition of an object schema may
include Design, ViewGroup, and View nodes. Due to
the nature of the design process, an object schema
may need to be dynamically modi�ed in several ways,
re
ecting new speci�cations and user requirements
and the correction of modeling errors. In particular,
schema evolution is an essential feature for supporting
design methodology management in an evolving envi-
ronment, where new design strategies, de�ned during
the design process, may impose the incorporation of
new types of object representations and new attributes
to the already existing object schemata.

A mechanism for the de�nition and evolution of ob-
ject schemata was thus developed for the STAR frame-
work. As in other systems [8, 9], this mechanism is
based on , that are basic conditions
that must be always ful�lled in order to assure that the
schema is in a consistent state. Evolution operations
include: creation and removal of Design, ViewGroup,
and View nodes; creation, removal, and modi�cation
of attribute domain and value; migration of an at-
tribute to a descendant; and modi�cation of attribute
characteristics (versionable / non versionable, inheri-
table / non-inheritable, strict / default inheritance).

The set of invariants assures that the object schema
is in a consistent state. However, sometimes a great
number of operations is necessary to modify the ob-
ject schema from its actual state to another consis-
tent state. In order to perform this modi�cation, the
user has to open a , sus-
pending checking of invariants until the transaction
is committed, except when an operation for stabiliz-
ing or consolidating a version is contained within the
transaction. This is important to assure that further
selections of versions will result in a set of consistent
versions. These transactions will be incorporated into
a more general long transaction mechanism to be de-
veloped in the future, since their duration is much
longer than conventional transactions.

When a new node is created, its name and its im-
mediate ascendant must be informed. The name of
the node must be unique, according to the schema in-
variants. When a node is removed, all its descendant
nodes are removed too. For working versions, the de-
sign data are really removed. For stable versions, the
data are maintained in the database, but just histor-
ical queries can be done on them. Consolidated ver-
sions cannot be removed.

Attributes can be inserted, removed and copied at
any time. If the current version is not a working one, a
new version is derived from it, and the attribute mod-
i�cation is e�ective in this new version. If an inherita-
ble attribute is rede�ned, some rules must be veri�ed.
If this attribute rede�nes another inherited attribute,
then the inheritance mode must be by default, and
the rede�ned domain must be a subset of or equal to
the inherited domain. Furthermore, if there is a re-
de�nition of this attribute in descendant nodes, this
rede�nition must also follow the two previous rules.
When the domain of a UserField is changed, its value
can be changed in the descendant nodes to keep them
consistent. It is also possible to de�ne a special func-
tion which automatically maps the old values to the
new domain.

A is a set of design rules that
either enforce or guide the design activities performed
by the user, so as to obtain design objects with de-
sired properties. Rules can express: a) tasks that must
be executed when the design process reaches a given
state (this state can be expressed for instance in terms
of design object properties); b) alternative design ap-
proaches that must be followed from a given design
state, as well as criteria for deciding between the pos-
sible design paths; and c) design representations that
must be created under given conditions, e.g., a rep-
resentation at a more detailed abstraction level or al-
ternatives that must be evaluated according to design
requirements. is the
control of the creation of design object representations
and of the execution of required tasks so that objects
and tasks conform to the established rules.

The de�nition of a design methodology in the STAR
framework is based on three main principles: 1) the
de�nition of object schemata for design objects; 2) the
speci�cation of the task
ow; and 3) the hierarchiza-
tion of design strategies.

A design methodology is primarily based on object
schemata that organize all representations that can be
created for the design objects of a given application.
Each design object can have its own object schema,
depending on the design strategy to be applied to it.
Section 3 already discussed the many possible special-
izations of an object schema.

Task
ow is expressed through a condition-driven
model. A task is eligible for execution when its

hold true. These conditions can express
the existence of objects or qualities of them, explicitly
modeled as attributes in the object schemata.

describe properties expected from objects after
a task is executed. If they are not achieved, the task
\fails", though new object representations may have

6 Final remarks

design strategy

by construction

post-veri�cation

equivalences

been created. It is left to the user to select among
many enabled tasks. A methodology succeeds when
all its tasks have succeeded. Tasks may be executed
stand-alone or within a (a collection of
tasks).

Design methodologies can be organized in a hierar-
chical way. A new design methodology can be derived
from a previous one: a) by specializing (either by ex-
tending or restricting) the object schemata of the pre-
vious methodology; b) by de�ning new Design objects
(and their object schemata), Auxiliary Objects, and
Correlations; and c) by de�ning new tasks or strate-
gies. A design task is de�ned at a given level of this
methodology hierarchy. The task de�nition must be
consistent with the object schemata that are known
to this methodology. Users are also constrained by a
methodology to the execution of a given set of tasks
and to the manipulation of a given set of design object
representations. STAR does not make a distinction
between \designers" and \project managers". Each
user is potentially also a project manager and has the
possibility of deriving new methodologies by extend-
ing/restricting the object schemata to which he/she
has access.

A comparison to other approaches can be better
understood by making it clear that a design method-
ology manager must not only provide a mechanism
for sequencing the design tasks. Instead, it must also
guide or enforce the design process in order to meet
the design constraints and to achieve the desired goals,
while maintaining the overall data consistency. From
this broader perspective, four basic approaches to de-
sign methodologymanagement can be identi�ed in the
literature.

In the �rst approach, there is only a mechanism for
sequencing the tasks. The system may have capabili-
ties for the de�nition and automatic execution of task
sequences, including conditional branchings and iter-
ations, and for storing and repeating user-de�ned ad-
hoc sequences. The CFI approach [10] and the history
model of Chiueh and Katz [11] follow this reasoning.

In the second approach, which is followed by the
Ulysses [12] and Cadweld [13] systems, as well as in
the ADAM Design Planning Engine [14], the task
ow
control is enhanced with knowledge about design con-
straints, goals, tools, and data. This knowledge pro-
vides two basic capabilities: a) automatic tool selec-
tion, by identifying alternative tasks that can be exe-
cuted from the current design point and selecting the
most promising one (e.g. based on tool result estima-
tions, as in the ADAM DPE); and b) automatic back-
tracking to previous design points, either to restore
consistency, when design changes occur, or to analyze
other alternatives, when constraints cannot be met or
goals are not achieved. These systems are not based
on an underlying uni�ed data model, so that tools
operate on isolated �les. While this allows for easier
tool integration, the support for automatic data con-
sistency depends entirely on the task
ow control, and
the quality of the design depends on the completeness
of the knowledge representation.

In the third approach, instead of specifying which
and when tools must be executed, the system only
controls the consistency of the objects to be created.

Although objects thus automatically hold the desired
consistency, the system does not give user guidance
to obtain them. Although data consistency manage-
ment is normally considered as a data management
feature, it is clear that it provides support for design
methodology management too. There are two alter-
natives for controlling the consistency of the objects.
The �rst one is to ensure consistency
through a uni�ed data model, which can handle user-
or methodology-de�ned integrity constraints. Tools in
this case become obviously more complex, since they
must implement the veri�cation of the integrity con-
straints expressed through the data model. As an al-
ternative, consistency can also be obtained through
a approach, as in the Valkyrie valida-
tion system [15], which veri�es if objects to be checked-
in into the data base are consistent with previously
existing ones (consistency is in fact restricted in this
system to among objects). The check-
ing is performed by verifying if the appropriate design
steps have been applied to the objects.

Finally, a task
ow control enhanced with design
knowledge can be combined with mechanisms for con-
trolling the creation of object representations that
must ful�ll integrity constraints. In this case, both
automatic data consistency and methodology-oriented
user guidance are obtained. Design qualities are
achieved partially by the data model and partially by
the task
ow control, in such a way that each of these
mechanisms responds for the consistency management
that is most natural to it. In particular, the model-
ing of the design knowledge, for the speci�c purpose
of controlling the task
ow, is released from the bur-
dening of representing all design consistencies that are
already maintained by the data schemata. The STAR
design methodology management model is the only
one that implements such a combination of features.

The STAR framework establishes a strong coupling
relating data representation mechanisms, versioning
capabilities, and design methodology control. This
paper highlighted these relationships, and the most
important ones are summarized in the following.

The data model has highly interleaved data repre-
sentation and management (conceptual versioning) as-
pects, supporting the inheritance of design data (User-
Fields, Ports, and Parameters) among design alter-
natives and views and the de�nition of application-
speci�c schemata for each design object.

The object schemata are an integral part of a design
methodology de�nition, since they specify all object
representations to be created during the design pro-
cess, as well as the attributes and Correlations that
are needed for controlling the task
ow. The cre-
ation of new object representations is restricted by
the constraints imposed by the inheritance of design
attributes in object representations. Schema evolution
is an essential feature for supporting design method-
ology management in an evolving environment, where
new design strategies may impose the incorporation of
new features (representations, attributes, and Corre-
lations) to the object schemata.

As a very general feature, it may be concluded

cockpit

References

Acknowledgments

28th De-

sign Automation Conference

Advances in

Object Oriented Database Systems

3rd IFIP Intern. Workshop on

EDA Frameworks

2nd IFIP Intern. Workshop

on EDA Frameworks

IEEE

Design & Test of Computers

IFIP Workshop on Tool Integration and Design Envi-

ronments

26th Design Automation Conference

ACM Transactions on O�ce Information

Systems

SIGPLAN Notices

27th Design

Automation Conference

International Confer-

ence on Computer-Aided Design

23rd Design

Automation Conference

26th Design Automation Conference

23rd Design

Automation Conference

24th Design Automation Conference

An Approach to Knowledge Base Manage-

ment

XVIII Conferencia Latinoamericana de In-

formatica
[1] F.R.Wagner and A.H.Viegas de Lima. Design version

management in the GARDEN framework. In

. ACM/IEEE, 1991.

[2] W.Wilkes. Instance inheritance mechanisms for object-

oriented databases. In K.R.Dittrich, ed.,

. Springer, 1988.

[3] F.R.Wagner et al. Design version management in the

STAR framework. In

. North-Holland, 1992.

[4] F.Kemper, W.Wilkes, and G.Schlageter. Basic mecha-

nisms to support versioning in the database component

of a CAD framework. In

. North-Holland, 1991.

[5] R.H.Katz et al. Design version management.

, February 1987.

[6] J.A.M�ulle, K.R.Dittrich, and A.M.Kotz. Design man-

agement support by advanced database facilities. In

. North-Holland, 1988.

[7] M.Silva et al. Protection and versioning for OCT.

In . ACM/IEEE,

1989.

[8] J.Banerjee et al. Data model issues for object-oriented

applications.

, January 1987.

[9] D.J.Penney and J.Stein. Class modi�cation in the

GemStone object-oriented DBMS. ,

December 1987. (Proceedings of the OOPSLA-87)

[10] K.Fiduk et al. Design methodology management - a

CAD Framework Initiative perspective. In

. ACM/IEEE, 1990.

[11] T.Chiueh and R.H.Katz. A history model for manag-

ing the VLSI design process. In

. IEEE, 1990.

[12] M.L.Bushnell and S.W.Director. VLSI CAD tool inte-

gration using the Ulysses environment. In

. ACM/IEEE, 1986.

[13] J.Daniell and S.W.Director. An object-oriented ap-

proach to CAD tool control within a design framework.

In . ACM/IEEE,

1989.

[14] D.W.Knapp and A.C.Parker. A design utility man-

ager: the ADAM Planning Engine. In

. ACM/IEEE, 1986.

[15] R.Bhateja and R.H.Katz. VALKYRIE: A validation

subsystem of a version server for computer-aided de-

sign data. In .

ACM/IEEE, 1987.

[16] N.Mattos.

. Springer-Verlag, 1991. (Lecture Notes in Arti�-

cal Intelligence)

[17] M.A.C.Livi and C.Iochpe. Design and cooperation

management through design steps and object charac-

teristics. In

. CLEI, 1992.

that data and design management aspects should not
be supported as completely distinct framework ser-
vices, as in most other approaches. The consistent and
tightly integrated design of mechanisms for data repre-
sentation, version management in all dimensions of the
design evolution (alternatives, views, and revisions),
con�guration management, and design methodology
management should be regarded as an essential re-
quirement in the design and implementation of a
framework. Furthermore, all these services must take
into account that every design environment is a living
entity, so that they must support evolution together.

STAR follows an innovative approach to version
management which simultaneously a) gives dedicated
support to all dimensions of the design evolution pro-
cess, b) allows the de�nition of versioning schemata
that are particular for each design object, according
to user- or methodology-de�ned strategies, and c) is
strongly oriented towards EDA.

The STAR data model (including conceptual ver-
sioning and schema evolution features) is mapped to
the KRISYS knowledge base management system [16],
developed at the University of Kaiserslautern, Ger-
many. KRISYS supports the abstraction concepts
that are needed for modeling complex, versioned ob-
jects. The basic data management layers (data rep-
resentation, version and con�guration management,
schema evolution) are now available. The mapping
from the STAR data model to KRISYS, implemented
through a set of LISP functions, is described in other
paper [3]. Other layers of the STAR framework (man-
agers and application tools) are developed in the C
programming language and communicate with the
LISP functions. Tools access the services of the var-
ious framework managers through application pro-
gramming interfaces. The STAR gives the user
access to all framework managers. Application tools
may be invoked either in the context of user-de�ned
design methodologies or stand-alone. The user may
browse through the data representation and manage-
ment information that is expressed in the data model,
by means of complex, interactive textual and graphi-
cal queries. Object-sharing mechanisms are supported
by a cooperation manager [17].

As a next step, the task
ow control mechanismwill
be implemented. As another further development, a
SQL-like language will be de�ned and implemented.
This language will be incorporated in a host language,
like C, to allow object schema de�nition and evolution
at run-time. Finally, a graphical interface, for de�ning
and manipulating object schemata, will be added to
the STAR cockpit.

The authors acknowledge the valuable support of
other people who are or were also involved in the de-
sign and implementation of the STAR framework, in
particular C.Iochpe, H.Grazziotin Ribeiro, R.S.Mello,
M.A.C.Livi, A.Lemos, and J.Lacombe.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

