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We describe here a new strict multilevel  takes many iterations alongall the simulation
generalization of relaxation techniques including interval. In all these cases the convergence
Gauss-Seideland Gauss-Jacobi algorithms used to problems havehe samenature that is theplit
solve algebl’aic CirCUitequationS in IteratedTiming matrix (Or operator)corresponding to some
analysis, and differential systems by Waveform  yejaxation iterationsexceedingly differs by its
relaxation. The proposedmodification of relaxation spectral features from the Jacofmiatrix (or
algorithms significantly enlarges the convergence operator fordynamiccase) of thesystem to be
region comparing with conventional (one-level) solved
relaxation techniques without change the mode of Many. attempts weremade to improve the
circuit partitioning.

P J relaxation techniques[3,4] that dealt with
1. INTRODUCTION optimal partitioning and orderintye subcircuits,

The direct circuisimulation techniquessed in ~ time windowing, stepsize refinement, etc. but
programs like SPICE are known toecome they didn'tmodify the relaxatioralgorithm itself.

inefficient when applied tdarge systemsThis [N this paper a new approach to convergence
arises from impossibility to pick timesteps problems is presentetdat_lsbgsed _ormultllevel
independentlyfor  differenstate variables and generallzatlor_l of relaxation |terat_|ons (MLR). It
overlinear CPUtime spent growing along the a!lows to distribute the mentloned spectral
increase of the circuit size and complexity [1]. As differences among all these iteratlevelsand to

a promising way to overconteese problems the Provide the convergence of iteration @ach
relaxation techniques were proposed that providd€vel- As aresult, this approacisignificantly
the almostlinear dependence oEPU time on  enlarges the convergence region of MLR
number of equations. Besidelynamicvariant of ~ eSPected tone-level relaxation method without
relaxation  technique, waveform relaxation change of the mode of circuit partitionirigging
method (WR), allowshe multirate integration the strict generalization of conventional

for different subsystems of equations and appeardelaxation algorithms, MLR inheriall positive
to be particularly promisingfor parallel features of the lasts such lsear time spent

processing [1,2]. growing with the number of equations, the

However, the implementation of relaxation possibility of multi_rateintegrgtion formultilevel
techniques encounters often with some Waveform relaxation algorithm (MLWR) and
difficulies generated by slow convergence of Multiprocessor implementation. It also can be
iterations and/or bjmpossibility topartition the ~ USed togetherwith other techniques applied to
circuit without danger to lose the convergence IMProve the  characteristics of WR such as
entirely. These problemanay occur when optlmgl partitioning and o_rderlrtgle sub_cwcwts,
relaxation algorithmsare used to soh@ystems adaptive error control, time-step refinement,
of linear or nonlinear algebraic antifferential ~ Waveform Newton, etc.
equations. In addition, WR iterations often

converges in a very nonuniform manner and 2. BASIC RELAXATION ALGORITHM
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We start theconsideration with lineastatic p W= max{|l-a min L1180 maxl}  (4)

problem that helps to understandhe basic If & max< 2 thenp (W) <1 and BR converges.
concept ofmulti-level technique. Let us suppose

the algebraic system describing the circuit has theg MULTILEVEL RELAXATION
following form: ALGORITHM (MLR)

F(X)DAX+B=0, AORN*N: X BORN (1) Considering (2) and @), an important
and X is theinitial guess to exact solutio". observation can be donéhat convergence

To solve this problenthe collection of iteration problems of iteration§2) are produced by the
relaxation algorithms can be usttht based on  difference between spectral characteristicof
the structural decomposition dfl) such as andA. Naturally, it is desirable to make some
Richardson method, Gauss-Sei@8IS), Gauss- steps to reduce thisnequality. We'll try to
Jacobi(GJ), sequential overrelaxation method distribute this spectral difference among L >1
and otherghat have thelements of split matrix iteration cycle loops.

QORNXN to be easilyexpressed from that of the  Suppose thatQ in (2) is replaced by
Jacobian matri) [5]. Let, forinstanceA can be ~ H1=0;Q+r;A, whereqy, r{ - some nonnegative

split in the form:A=A +Ap+A, , whereAp - coefficients. If H; approaches tdQ then the
diagonal or block-diagonal matrig , A - the  iterations _ _

lower and upper (block) triangular matriaeish -HiX*l=(-H + A)X + B (5)
zerodiagonal elements. Then, in particul@rz= acquire thesamerate ofconvergence as (2). If

+| (identity matrix) for Richardson method, Hi approximates toA, then the rate of
Q=Ap, for GJ,Q=A, +Ap for GS,Q=t -1A +Ap convergence in (5) increases and becomes infinite
for SOR method, where [(0,2) isrelaxation ~ WhenHi = A From otherhand, thenecessity
parameter, etc.We'll use the terniBasic appears in this case to sol forX_ » SO one
relaxation algorithm” (BR) for some technique !gera:_lonltof r'(r?\) rbyrltsbl rgor:plexny becomes
that belongs to thiset ofalgorithms.For given 'dentical to primary problem (1).

nonsingularQ the iterations of BR fosystem The intermediate va_rlant_ IS of intereathen
(1) can be represented in the form gy, 1 >0, and theestimation for the spectral

i+1 — i radius of corresponding companion maifx in
-QX*1=(-Q+A X +B (2) ; .
wherei denotes the iteration count. Note that the Eﬁ) beﬁomreserl]izsrgt':?nm%’ 'i'seé(t;?g\‘g:fethog Use
split matrix Q given the system(1) determines € converg (5) y

fully the convergence properties of iterations (2) of ';‘(?Jrelr It—?—;,?;lor;?t?; torosb(?(l-:tvrﬁ tcgi f)zu?:r?;fie(z q
and appropriating companion matrix as : P P

W=lg-P, whereP = Q1A 3) as to solve th_esystgm with “matrle_l. .The
process of the iteratiooycles "granulation" can

be continued to represent the solutiorsysgtem

(1) by L>1 iterationcycleloops with companion

The iteration algorithm (BR) is known to
converge if all the eigenvalues ofW are
contained in the unit ball of centdD, O0).

Corresponding eigenvalues & must locate matrlces_l TR I 4r Pyl
inside the unitball of center (1,0). Let the Win =l -Hm Hm-1 =l -(Omlg +m P)™x
eigenvalues oP be inside theircle passing the e X(qlm-llEd-l-VI;/m-l P), gFl---L- o(l6)'
POINtS & i 10)s @ mas O O max> O min The eigenvalues oV, can be expressed via

> 0, of center [§ in +d max)/2, O]. Let OP eigenvalues oP. Leta =0 {P}, n n, =0
denote thenner region of this circle. 1all the  j{Wmk then

eigenvaluew {P}0 OP then spectral radius of N m=L-Om1Hm10 ) (Omtrma ),
W, determining the convergence of BR; mel..L. (7)



If gn+rma =a ML for eachm=0...L In particular, if L=1 then (14) gives

(8) tlQXi*l+[(t_0't1)Q+(f0'r1)53Xi+toBo:0, (15)
then using7) we getq 1=n »=..n [ =1q that, accounting t5=1, rg=1, r;=0, =1,
UL | Definingqy, .fm from the equations coincides with (2).

O m @ {minmas =0 {minmas (L-m)/L It must be added thagsy and regular way was
’ ’ (9) found to construct theequivalent circuit

we makethe upper (and lower) spectral bounds "€Presentation of  MLR based on the
for W, the samefor all m=1...L. Theconform corresponding equivalent circuit f@R. This

mappingP - Wi, transforms the region OP into tecdhniqulc_—:- is general Z‘é‘d can be aPp”e””“E“
the inner part of thecircle traversinghe points and nonlineastatic andlynamiccircuits.For the

\ ke of condensity this material is omitted
1-a mintt 1 UL nd having the >3 . : :
(10 min ", 0), (10 max”™, 0) and having the though it is used as we consider th@mples in
center at the realxis. Consequentlyhe spectral

radii of the companion matric®4,,, m=1...L are Sec.6.
defined as n y % MLRFOR NONLINEAR CASE
P (Wm)smaX[l-a min'= [, |18 max The decomposition techniques (BR) are known

_ ~ 1h(A0) " to be used to solve theonlinear systenfl) if
thatcan be considered as generalization of (4). ltsome continuation conditions are held. Because
follows from (10) that convergencdomain of  of MLR is the strict generalization of BR,also
MLR respected to eigenvalues (i’f P IS can be used for thipurpose. In order to
characterized by thball of center (21,0) and  represent MLR iterations in most general case,
radius 2-1. This is also right for BR when L=1.  \\o need in additional denotationst Q.50

In each iteratiorevel, as follows from (5)(6), RNXN pe patterrmatrices for Jacobiaparts of
v|_\|/e S;tlzthe_%ysltjm %féni\:‘.o)r(m. ORN (11 (1) Q and S respectively.All their elements
m-127 =m-I75 im-1  X,Bm-IRT (11) belong tothe set {0,1}, andQ;; (S;) = 1 if and
with split matrixH,,,, where : T L
H =0 O+ A B.=(H -H JX+B 12 only if Qjj (§;)#0. In particular, the equalitQ j;
m=ImQ+T A Br=-(HpiHim-1) m-1 (12) = K | ;
From (9), (12) weobtain Hj=A, By=B, H =Q,  Sij = {0.1} takes place for GS and GJ

and 0=0p<Q+<...<q; =1, 1Tro>r,>... > =0. iterations.
Let )?.?n N d <th i OI 1t' I]:X ¢ At first, we represent theonlinear variant of
et X/ denote theevaluation ofX at ip, (15) in the form of

iteration thatbelongs tam-th iterationlevel. Let F, (W) =0, v=1...N, (16)
t=Om*fm HmtQ+rmS, where S=A-Q. Using  whereF, denotes the-th equation of (1) Yv=
(12) recursively, we get :tlcj\}'Xi+1+[(to't1)5\}+(f041 )§\}]-Xi; at, §\}
— i - — o
BLa= -(HLHLD X [\ ) +BLo= are thev-th transposed rows o, S and
= [(tL 2~ t 1) QH(r o- fL-1)S.|X(' |_L111)+--- s;l/mbol *" meansSchur matrixproduction [6].
: It's easy to show that element-by-element
+[(tg-t)Q+(rg-r1)9 X(ifftoBo- (13)  representation of (16)eads to well-known
Combining (11) and (13), we come to ©€xpressions forGS, GJ, etc. Furthermore,
representation of L-level iteration process: "r_‘l_iar'z'”ﬁllt_lof (1|6) g'VeSI_(15t?- 16) o
i +1 i e multilevel generalization o can be
S: X(ILL) (-1 t)Q+(rLa-r)S X(ILL)+ written in similar way:
+[(tL_z-tL_1)Q+(r|__2-r|__1)S_|X('I_L;11)+... Fy (W) =0, v=1...N, 17)

+(tot)Q+(ror)S X(ii)HoBo:O- (14)



where Yv= tL(j\}. x(iLLJ;1+[(t|_-1-t|_)(j\f +(rp 1) for WR iterations expressed byequalityy,, <

ety yiL At ovate wi 1, wherey, =maxgy(S)=maxy.yYs - the
“}/] X(L)+"'+[(t0_tl)Q"+(ro rl)_s"] )_((_1)' uniform contraction factor.
It L=1 then (17)gives (16) andlinearizing of As a rule, in conventional (L=1) WR iterations,
(17) leads to (14). based onGS, GJ decompositioonly y.<1 is
guaranteed that follows from diagonal
dominance in matribC. In manycasesMLWR
makes it possible to ensub®th thenecessary
conditionsy,, y;<1 for uniform convergence by
reduction ofyy, c= limg., o P (Wr(9). Ym

a=limg_ ogp (Wy(9), m=1...L as L increases.
We can represent tidynamicvariant of MLR

5. MULTILEVEL WAVEFORM
RELAXATION METHOD

Let the node equations of theercuit can be
represented in the form dlifferential system
and/or its linear analog:

F(X, X, t) OC X+AX+B=0, Xo(0)=X*(0);

NxN- N

C,A0 RNXN: X BORN, (18)  (MLWR) as:
with initial guessXp(t), where F(X, X, t) is Fy (YV’ Yo, )= 0, v=1.N, (19)
Lipschits continuous withespect toX , X for all  whereYv= Q;+ X('LLJ;1+ ERER Xy *ee
t. Suppose, forany "independent” node of the N st. x i
circuit there exists achain of capacitances (ro 'rl)Sv (1)
connecting this node to a referermee. Inthis If L=1 then (19)gives well-known description
case a Jacobiadffy/dwy] of function F(Q ,Zt) ~ for WR, and it produces also thmaulti-level
as well as matri are diagonally dominant [7].  iterations fornonlinear algebraic system when

Let's introduce aroperatorP(s)=(sQ*C+Q+ X =0. V=0
A)-1(sC+A) that is adynamicanalog of matriP ’ '

for MLR, Pc=lims. o P(9=(Q-C)y!C,P= 6 EXAMPLES AND EXPERIMENTAL
limg_ oP(9=(Q-A)1A. Let a . min @ ¢ RESULTS

max>0 be the bounds for specta suchthat all Consider theexamples of problems where
the eigenvalues ofP; lie inside the circle of ~ conventional relaxation algorithms (BR) diverge
center at the reahxis traversingthe points ( @S MLR ensures the convergence of iterations
d ¢ min0): @ ¢ max0). Similarly, define the B, '

boundsdt 5 min @ 4 maxfor Pa-

As shown in [7,Theor.5.3 artsl4], the rate of
WR iteration convergence ismall-time region
depends on the contraction degree in the L

mapping X*10 Xi. We can define the
corresponding contraction factors companion
operator y.= limg, o, p (W9)=p (g - B B
Po=max|l-a ¢ min [[1-0 ¢ max [} In the 1
large-time region the contraction factor for the
mapping X *1 0 X1 isiy,=limg_ o p (W(9

)=p (Ig- Pa)= max{|1-a z minl, 1180 3 maxl}
The necessary condition ohiform convergence

Fig .1a Fig.1b

with the same type of circuit partitioning.
In the firstexamplethe static circuit (fig.1a) is
decomposed by tearing the branches connecting



the subcircuitsa and B. Fig.1b illustrates the iteration the first subcircuit qT T,) provides the
equivalent circuit corresponding t®R. If voltagex;*1, havingx,' as an input. Then the
subcircuitsa, B have the admittance matricéks ~ second subcircuit G T4, Ts) is analyzed for
q YB near theequilibrium condition then, X,1*1, etc (sedig.2b). The detailed consideration

using previousdenotations, itseasy to show 9V€S & min=l, O maElsisg/(ys(y2tsy).
that A = =Yg +Yg , Q=Yy , SYg , P=Q where

_ _ Vdd g vdd .
IA=Ig+Yy -1Yp . Indeed, fromfig.1b Y, X*1 x;
+By =g | 4 Xit+l = Ig 1 soXi*tl = -y, - T1 |HEH
. T3
1Yg X' - Yy 1B, the companiomatrix W= g - [ w
P=-Y, '1YB and we come to above equalities. T1]|_+ o| T2 [x—l
If subcircuitsa, are reciprocal the¥, ,Yg are
symmetric and positively defineddence, the zﬂﬁ“
eigenvalues oP locate inside thenterval (1, 1+
p ), wherep "=p (Yy -1Yg)andwe can
choosed i1, ma 140 “.Ifp ">1then
p (V\/)>_1 and BR iter_atio_ns _diverge. reneral, of[T2 I:Ts _
reordering the subcircuits isBot a remedy x1+1
because each eigenvalee <1 of Y, “1Yg 2
produces an eigenvalae j>1 of Yg 1Y, 1 1 i
B Fig.2a Fig.2b
0 is s« is a differential slope dfansfer characteristic
— Ty T Lag andy. - an equivalent differential drain-sourse
oL IX(:,?) ] admittance for corresponding transistors. If the
i, S )
1 (-1 Ly subcircuits  are tightly couplec_i _and
il S5>y3(14yo/s) thena 52 and BR iterations
Ly i iy diverge. Furthermore, reordering thebcircuits
X3 (5,11
3 11 (1}
ﬁ vid
L iy,
Fig.1c T j(rL-l'rL}xZ(L)
To ensure the convergence, we construct MLR WG ;
with L >1log » 0 qax If, for instancea o| 12 lxl(L;. 'l

max=2, then minimum integer L is 3. From (9) we
obtain rg=1, r1=0.481, r,=0.177, r3=0, p
(Wp)=0.71,m=1...3.Fig 1c illustrateshe circuit
representation for MLR and it is 8&-level
generalization of iterations in Fig.1b. The 14 Uiz
iterations ofouter level are sufficient toreduce of[T4
the initial error by two orders. )

In the secondxamplethe MOS circuit (fig.2a) 1+l
is decomposed by block GS method. In each BR 1@?

?(‘"u rl)xz(n

Ydd

ip+1
*21)

Fig.2c



does not altett i, & max interval. At last, fig.3d illustrates the iterations of
MLWR with L=3, ny=n3=2. Both contraction

To makethe iterations converging we can use factorsyy, o Ym 5 MF1...L are less than 1, so the
MLR with L > logya 4 Which ensuresp convergence is almost unifordfor given error,
(W) = |10 madt |<1. The corresponding the number of MLWR iterations doesn't depend

equivalent circuit is shown in fig.2c. on the length of analysis interval.
The next example is a transianalysis of TTL As theory shows and waserified by

E R1 P Fl:?5
4 .
"-"i1 inv [ 2] inv |3 . ;
@ J. J. ;ﬂ"o"g;:%____ :
Fig.3a ot F \\o\,_-
bipolar inverter circuit with interconnect I 1 e e S
resistances (fig.3a) by WR and MLWR methods. 11Z§ \ T . . ..
Input is a constant voltagenaintaining the fz; |
inverters into activéamplifying) condition. This of 2 e
1]

circuit is decomposed as shown in fig.3bat L ’ b

corresponds to WR. Fig.3c demonstratesfitse  experiments, MLR and MLWR demonstrated
i i the capability to improvethe behavior of

W W

A 5 iterations when applied tdinear algebraic
|:1*‘ |'5+1 1 s system, to nonlinear discretized equations with
St i L i1 g R1Yy R2Yg Iterated Timing Algorithms and todifferential
vi L linv| 2 2 Jinw| 3 equations with WR method.
oo o'
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