
Parallel Controller Synthesis from a Petri Net Speci�cation

K. Bili�nski, M. Adamski y, J. M. Saul, E. L. Dagless

Department of Electrical and Electronic Engineering,

University of Bristol, Bristol BS8 1TR, United Kingdom

yDepartment of Computer Engineering and Electronics,

Higher College of Engineering, 65-246 Zielona Gora, Poland

Abstract

This paper presents new algorithms for the synthe-
sis of parallel controllers that operate on a Petri net.
This net is �rst simpli�ed by reduction, then coloured
and �nally used to generate a state assignment with
which the controller can be synthesised. The new con-
cept of using colours for detecting and representing
concurrency within the Petri net is presented.

1 Introduction

The synthesis of a controller which drives parallel
interacting processes can be carried out using one of
two main approaches. In the �rst one FSM synthe-
sis techniques are used. The speci�cation of a con-
troller is divided into a number of concurrent pro-
cesses, so that a set of sequential controllers is pro-
duced. Next, the controllers are implemented as FSMs
and linked together with cross{connected control lines
and/or semaphore bits subject to the initial parallel
speci�cation. The second approach uses a Petri net
to specify the parallel controller. Controller behaviour
can be analysed using well de�ned concepts from Petri
net theory, which involve reachability graphs and net
invariants methods. In addition, a graphical represen-
tation of concurrency is often easier to understand,
and so it can reduce the likelihood of parallel synchro-
nisation errors.

In [2] and [5] some techniques for synthesising par-
allel controllers from Petri net speci�cations were in-
troduced. However, they have a major disadvantage.
All of them need the construction of a reachability
graph from the Petri net. This operation requires a
long computation time and lots of memory, particu-
larly when complex controllers are synthesised. In this
paper a new approach to parallel controller synthesis
is given and illustrated with examples. The main idea
is to use colours to detect and represent concurrency
within the net instead of reachability graph genera-
tion. It should be pointed out that the concept of
colouring a Petri net presented here is di�erent to the
one presented in [3], known as CP{nets. The main
point in CP{nets is that token represents information
and the data value which is attached to it is referred
to as the token colour. CP{nets explicitly attach a

set of possible token{colours to each place and a set
of possible occurrence{colours to each transition. The
basis of the approach investigated in this research was
to use colours in order to detect and represent con-
currency in Petri nets. It is shown in Section 6.2 that
information about concurrency within the net, which
can be obtained from a coloured Petri net, is similar
to that contained in its reachability graph.

The paper is organised as follows: Section 2 gives
a brief introduction to Petri nets and parallel con-
trollers. An overview of the proposed methodology
is given in Section 3. In Section 4, an algorithm for
structural reduction is presented. In the following sec-
tion a set of colouring rules and a net colouring algo-
rithm is shown. Two methods for place encoding are
given in Section 6. Experimental results are discussed
in Section 7, and concluding remarks are presented in
Section 8.

2 Preliminaries

A Petri net is a bipartite, weighted, directed graph,
which has two types of nodes called places, represented
by circles and transitions, represented by bars. Di-
rected arcs connect the places and the transitions,
with some arcs leading from the places to the tran-
sitions and others vice versa. To each arc a weight,
a positive integer represented by a label, is assigned,
where the m{weight arc can be viewed as the set of m
parallel arcs. When m = 1 the label is usually omit-
ted. A marking is an assignment of tokens, represented
as black dots, to the places. The position and the
number of tokens changes during the net execution.
Formally a Petri net PN is de�ned as a 5-tuple [4]:

PN = (P; T; F;W;M0)

where: P = fp1; p2; :::; pmg is a �nite non-empty set of
places; T = ft1; t2; :::; tng is a �nite non-empty set of
transitions; F � (PxT)[(TxP) is a �nite non-empty
set of arcs; W : F ! f1; 2; 3; :::g is a weight function;
Mo : P ! f0; 1; 2; :::g is the initial marking; P \T = ;
and P [T 6= ;.

The net execution is performed according to simple
rule for transition enabling and �ring [4]. A Petri net
is said to be an ordinary Petri net if all of its arc

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

x1

x3

Input signals
{x1, x2, x3}

Moore outputs
{y1, y2,y3}

Mealy outputs
{y4, y5, y6}

P6

P8P5

P7

P3

P1P2

T2
T1

T7

T4

T3

T6

P17

P14

P16 P15

P10

P9 P12

T14

T13

T10T9

T8

T15

T5

x1

x2

x2

x3

y4

y6

y5

y3
y2

P4

y1

P13

T11

T12

T16
P19

P18

P11

T17

Figure 1: An example of an interpreted Petri net.

weights are set to one. An ordinary Petri net is said
to be a State Machine (SM) if each its transition has
exactly one input and one output place. An ordinary
Petri net is said to be a State Machine Decomposable
(SMD) if and only if there exist a collection of state
machines SMi = (Pi; Ti; Fi), 1 � i � N+ such that
P = [Pi; T = [Ti; F = [Fi.

When there are many parallel, interacting subpro-
cesses to be controlled, using a �nite state machine
can be awkward, since each state has to control all
of them. A better solution is to divide each of the
global sequential states into a number of concurrently
active local states, with each local state controlling a
di�erent subprocess [5]. The main di�erence between
a �nite state machine and parallel controller is that
whilst a �nite state machine has only one state ac-
tive at any time, a parallel controller can have several
states active simultaneously.

For a parallel controller speci�cation a high level
Petri net is used, which is called an interpreted syn-
chronous Petri net. An example of an interpreted Petri
net is shown in Figure 1. A predicate may be attached
to each transition, which is a Boolean function of the
controller's input signals. Moore outputs are associ-
ated with places and Mealy outputs with transitions.
Each place represents a local state of the controller,
and so the global state of the controller is equivalent
to the current marking of the net. New rules for tran-
sition enabling and �ring are introduced. A transition
is enabled when all of its input places are marked and
its predicate, if present, is asserted. All transitions
are synchronised by a global clock and so all enabled
transitions �re simultaneously.

In this paper it is assumed that a parallel controller
is synchronised using a global clock, and is described
using an ordinary SMD net which is synchronous and
interpreted.

3 Synthesis methodology

The synthesis methodology that is presented in this
paper consists of the following steps:

� First, a parallel controller is speci�ed using a Petri
net; then the net is reduced and a macronet is
achieved; this module performs also an internal
place encoding.

� Next, the macronet is coloured according to the
colouring rules that are presented in Section 5.
Places that are marked with the same colour are
used to generate a state machine component of
the macronet. The major idea behind further net
analysis is based on the fact that places which are
marked with disjoint sets of colours are concur-
rent to each other. The next steps of the synthe-
sis can be performed following one of two possible
approaches.

{ The coloured macronet can be decomposed
into a set of state machine components. Af-
ter decomposition each component is encoded
separately using a unique set of latches.

{ An alternative approach is to encode the
entire macronet according to some heuristic
rules which have been developed within this
research.

� Finally, a logic{level description of a parallel con-
troller is achieved in a standard format that can
be accepted by logic synthesis tools.

The following sections discuss the above methodol-
ogy and illustrating it with appropriate examples.

4 Structural reduction

4.1 Reduction algorithm

To simplify the process of the analysis of a Petri net
a reduction of the net is performed. During reduction
a Petri net representation is converted into a more
general description, called a macronet.

There are many reduction techniques for Petri nets.
Some of the reduction methods were introduced in [2]
and [4], three of which are implemented into the sys-
tem.

� Fusion of Series Places (FSP) | as depicted in
Figure 2 (a).

� Fusion of Parallel Places (FPP) | as depicted in
Figure 2 (b).

� Fusion of Distributed Transitions (FDT) | as de-
picted in Figure 2 (c).

In [2] the concept of the Nth{order macronet is in-
troduced. In this approach to reducing the net, both
FSP and FPP techniques are used recursively until
the macronet becomes irreducible. In the system pre-
sented here this idea is enlarged by adding the next

c) Fusion of Distributed Transitions (FDT)

macrotransition

a) Fusion of Series Places (FSP) b) Fusion of Parallel Places (FPP)

macroplace

Figure 2: Petri net reduction techniques.

reduction technique | FDT. For a large set of nets
this extension gives a distinct improvement in the re-
sults of the reduction. The algorithm for the Petri
net reduction is shown in Figure 31. The algorithm
consists of three main steps.

� FSP scanning (FSP{S), each of the transitions is
checked to see whether it is a transition connected
with a single input and a single output place. For
each transition that satis�es the above condition
the FSP technique is used.

� FPP scanning (FPP{S), for all places which have
the same input and output transitions the FPP
algorithm is performed.

� FDT scanning (FDT{S), all transitions are
checked to see whether they share exactly the
same sets of input and output places. For all
transitions that satisfy this condition the FDT
reduction method is used.

In Figure 4 the macronet for the Petri net presented
in Figure 1 is given.

4.2 Place encoding during reduction

To reduce the number of latches needed to imple-
ment the Petri net and to simplify the main encod-
ing algorithm, a method of place encoding inside a
macroplace is used. After FSP{S a technique for se-
quential encoding is performed and after FPP{S a par-
allel encoding method is used. Only places which be-
long to macroplaces are encoded. Each macroplace is
encoded separately.

For sequential place encoding | orthogonal codes
are assigned to all places; for parallel place encoding
| renaming of latches is performed to make codes of
concurrent places non-orthogonal to each other. Two
codes are said to be orthogonal if they share all of
their state variables.

1All algorithmswhich are presented in this paper are written

in C{like pseudo{code.

error =Structure_checker (petri_net))==0) {if ((

pn_error (error);

FSP_scanning (petri_net);

error =Structure_checker (petri_net))==0) {if ((

pn_error (error);

Series_place_encoding (petri_net);

FPP_scanning (petri_net);

Parallel_place_renaming (petri_net);

(petri_net);FPT_scanning

net_reduction (petri_net)int

{
do {

do {

return 0; } /* there is a structural error inside the net */

return 0; } /* there is a structural error inside the net */

while (FPP algorithm was used at least once);

}

}

while (FPT algorithm was used at least once);
return 1; /* reduction complete */

}

Figure 3: Petri net reduction algorithm.

5 Coloured net

To determine the relationship between places in the
macronet a colouring algorithm is used. It is assumed
that if a net is coloured it means that the net is cov-
ered by a set of subnets, which all are State Machines.
Since each place in the State Machine is sequential to
the other places, implementation of such a net is very
simple.

After the Petri net colouring colours are associated
with places and transitions. Each colour represents
one state machine subnet. Places in each of the sub-
nets are sequentially related to each other and concur-
rently related to places of any other subnet. Thus if
two places share any colour it is said that these two
places are sequentially related to each other.

T12
T3

T2

MP1 MP2

MP4MP5

MP3

Figure 4: The net from Figure 1 after reduction.

There is a set of rules which must be satis�ed during
a net colouring:
a. If a place has a colour each of its input and output

transitions must have the same colour.
Each live state machine subnet has to be strongly
connected (together with point e).

b. Each place and transition must have at least one
colour.
The entire net must be covered using state ma-
chines, so that it cannot be a place or a transition
which does not have a colour (i.e. which does not
belong to any state machine subnet).

c. The input places of each transition must hold dif-
ferent colours.
A state machine does not has any transition with
two or more input places.

d. The output places of each transition must hold
di�erent colours.
A state machine does not has any transition with
two or more output places.

e. The input and output places of a transition must
share the same set of colours.
Each live state machine subnet has to be strongly
connected (together with point a).

f. There are not two or more initially marked places
which share exactly the same set of colours.
Each of the state machine subnets must contain at
most one token.

g. The number of di�erent colours which are shared
by the places initially marked is equal to the total
number of colours.
Each safe state machine has exactly one token.

Theorem 1: Let a Petri net be coloured. Then
the net is safe and live.

The formal proof of the above theorem can be found
in [1]. Unfortunately, the converse of this result is
not true.2 If the colouring algorithm fails the stan-
dard method for analysis and synthesis of parallel con-
trollers is performed [5]. The colouring algorithm is
shown in Figure 5.

6 Place encoding

Two algorithms for place encoding of the macronet
have been implemented. In the �rst approach parallel
decomposition is �rst performed and then each of the
components is encoded. In the second approach a new
method has been developed that uses a hierarchical
algorithm to encode places straight from the coloured
net. These two methods are described in Sections 6.1
and 6.2 respectively.

6.1 Net decomposition encoding methods

To simplify the net encoding a parallel decompo-
sition is performed. Let us consider the macronet of
Figure 4. It is easy to see that after the net colour-
ing each colour clearly de�nes one of the net compo-
nents (Figure 6 (a), (b)). However, some of the places
(macroplaces) belong to more than one component,
e.g. MP4 in Figure 6 (b). For the encoding algorithm
each place must belong to only one component. The
most important part of the algorithm presented here
is to choose the correct strategy to decide which places
will be removed and which will be kept by the com-
ponent. All places removed from any component are
replaced by a special macroplace, e.g. PR1 in Fig-
ure 6 (b).

The heuristic algorithm which �nds the �rst good
irredundant disposition of places with the disposition
criterion | minimal number of latches needed to en-
code the entire net | can be de�ned as follows:

2The presented method can only be applied to SMD nets.

start_place = choose_free_place (petri_net);

transition_colouring (start_place.output_transitions)==0) {if (

Net_Colouring (petri_net)int
{

while (Is not coloured pleace in net) {

for (all output transition) {

return 0; /* Net can not be coloured */
}

}
erase not allowed place and transitions;

}
return 1; /* Net colouring complete */

}

int transition_colouring (list_output_transitions)

if (place_colouring (transitions.output_place)==0) {
transition = free_transition (list_output_transitions);

mark transition as not allowed;

{
while (Is free allowed transition in list_output_transitions) {

}
else {

return 1;
}

}
return 0;

}

{
int place_colouring

if (Is start_place in lista_output_places) {
return 1;

}
while (Is free allowed place in list_output_places) {

place = free_place (list_output_places);
assign colour to each in/out transitions for place;
if (transition_colouring (place.output_place)==0) {

mark place as not allowed;
erase colour from each in/out transition for place;

}
}
return 0;

}

(list_output_places)

Figure 5: The Petri net colouring algorithm.

[1]

[2]

[3]

MP4

MP2MP1 MP3

[1] [2] [3]

T2

T3
[2] [3]

[2][1] [3]

[1] [3] [2] [3]

[3]

[1]

[3]

[3]

[3][3]

[3]

[2] [2]

[2]

[2]

[1]

Colours :

[1]

[1]

MP5

[3]

[1]

T12

b

a

c

T3

T2

T3

T12

T3

T2

T12

T2 T3 T3 T12

PR1

T12T2

MP5

MP1
MP2

MP4
MP4

MP1

MP3

MP5

MP1

MP4

MP2 PR1 = {MP1, MP4}

MP3

Figure 6: A net decomposition example.

1. The colour (component) which involves a macroplace
(place) that uses a maximum number of latches for

internal encoding is taken �rst.
2. If two or more colours (components) have the same

number of latches the colour (component) with the

larger number of places is chosen.
3. If there is still more than one colour the order of choos-

ing the colour is arbitrary.
4. The chosen colour (component) holds all of its places

(macroplaces), and shared places are removed from the

other colours (components).
5. The previous steps are repeated as long as all compo-

nents are created.

In Figure 6 (b) and (c) the decomposition phases
are shown.

As we can see from Figure 6 (c), each component
is represented by the state machine, and the stan-
dard place encoding algorithm can be used. There
is only one restriction: to encode each of the compo-
nents a disjoint of set of latches has to be used. After
place encoding a code that is assigned to the special
macroplace is added to code of each place that was
previously replaced by this special macroplace.

6.2 Hierarchical colouring place encoding
algorithm

Place encoding can be performed directly from the
coloured net. Using colours we can �nd all relations
which occur among places within the net | Figure 7.
The algorithm for place encoding from the coloured
net can be de�ned as follows:
1. The place (macroplace) with the largest number of

colours is found and a latch state (e.g. state Qn) is

allocated.

� To all places (macroplace) which share the same

colours as the chosen place (macroplace), the com-
plement state (i.e. �Qn) is allocated. The latch is not

allowed to be used in the encoding of places that do not

have any of the colours of the chosen place (i.e. places
which are concurrently related to the chosen one).

� For places already removed from the net the symbol
`{' (meaning allowed) or `*' (meaning not allowed)

are used to represent the latch, depending on whether

the place (macroplace) is non{concurrent to all or
concurrent to any of the currently encoded places

(macroplaces).

2. The chosen place (macroplace) is removed from the
net.

3. If two or more places have an identical set of colours
they are merged.

4. The above steps are repeated until the net is empty.

The last step in this algorithm is the renaming of
the place codes in macroplaces. To minimise the num-
ber of latches used to encode the original net all latches
marked in macroplaces codes with the symbol `{' can
be reused during the internal macroplace renaming.

Places which has the same colour
The concurrency matrix:

1 0 0

1 1

0

0

0 1

1 1 0

1 0 1

1

1

1

0

0

1

1

1

1

0

MP3 MP4, MP1

MP1 MP3, MP4, MP5

MP2 MP4

MP4 MP1, MP3, MP2

MP5 MP1

MP3

MP1

MP2

MP4

MP5

 MP3 MP1 MP2 MP4 MP5

Figure 7: Creating a concurrency matrix from the
coloured net of Figure 6 (a).

place Decomposition algorithm Hierarchical algorithm

P1 Q10 !Q1 !Q4 !Q3 Q1 !Q6
P2 Q10 Q1 !Q4 !Q3 Q1 Q6
P3 Q10 !Q4 !Q3 Q1

P4 !Q9 !Q8 !Q10 !Q1 !Q3 !Q4
P5 !Q9 Q8 !Q10 !Q1 !Q3 Q4
P6 Q9 !Q8 !Q10 !Q1 Q3 !Q4
P7 Q9 Q8 !Q10 !Q1 Q3 Q4
P8 Q9 !Q10 !Q1 Q3

P9 !Q5 !Q6 !Q7 !Q2 !Q8 !Q7
P10 Q5 !Q6 !Q7 !Q2 Q8 !Q7
P11 !Q5 Q6 !Q7 !Q2 !Q8 Q7
P12 Q5 Q6 !Q7 !Q2 Q8 Q7
P13 Q7 Q2 !Q4 Q3 Q2 !Q1 Q6

P14 Q7 !Q2 !Q4 Q3 Q2 !Q1 !Q6
P15 Q7 !Q2 !Q1 !Q4 Q3 Q2 !Q1 !Q6 !Q5
P16 Q7 !Q2 Q1 !Q4 Q3 Q2 !Q1 !Q6 Q5
P17 !Q2 !Q1 Q4 !Q3 !Q2 !Q1 !Q5 !Q6

P18 Q2 Q4 !Q3 !Q2 !Q1 Q5
P19 !Q2 Q1 Q4 !Q3 !Q2 !Q1 !Q5 Q6

Table 1: The encoding results for the net of Figure 1.

The result of encoding the Petri net of Figure 1 are
given in Table 1.

7 Experimental results

In this section, the synthesis results that were
achieved by the use of the algorithms presented here
are described. The algorithms have been implemented
in C and linked to the SIS sequential logic synthesis
system [6]. All examples were run on a Sun SPARC{
Station2 computer. The benchmarks were taken from
published papers and various other sources. The
statistics are given in Table 2. The �rst two columns
show the number of places and transitions of the Petri
net speci�cation of each controller. The last two
columns show the number of states and state tran-
sition edges of an equivalent State{Transition{Graph
of each controller.

Each of the examples was encoded using the two
algorithms that were presented in the preceding sec-
tions and then synthesised using the SIS. To evalu-
ate the synthesis results an alternative parallel imple-
mentation of each of the examples was created using
the methodology presented in [5]. In addition, the
functionally equivalent sequential controllers were also
generated3 and then synthesised using state minimi-

3The method is based on converting a Petri net description

into a single state{transition{graph, from which a sequential

controller is next synthesised.

Petri net Equivalent STG

name #places #trans. #states #edges

fcontr 70 72 - -

smok4 32 24 331 662
phil10 30 20 81 590
pr sp 21 22 39 65
zigzag 20 18 40 80

fstore 18 19 48 86
hash 15 17 17 21
graf 19 12 29 79
react 16 13 29 129
fgen 13 14 80 846

Table 2: Statistics of examples: parallel and sequential
controller representation.

Hierarchical colouring Parallel decomposition

name area delay Tcpu area delay Tcpu

fcontr 513648 11.9 37.8 701080 15.5 87.2
smok4 151728 7.7 28.4 156368 10.4 40.4
phil10 88160 6.4 6.9 120456 9.6 25.2

pr sp 94656 10.7 10.9 139664 13.8 13.9
zigzag 188384 11.6 28.2 242672 13.2 26.4
fstore 125280 10.8 13.9 174000 16.7 21.9
hash - - - - - -

graf 133168 9.4 14.3 141520 13.1 19.6
react 86304 9.7 8.3 138736 12.2 13.1
fgen 76096 7.6 6.2 84448 8.7 9.1

Table 3: Synthesis results: hierarchical colouring
method versus parallel decomposition method.

sation and state assignment programs STAMINA and
JEDI and then SIS [6]. For each of the examples the
area, the delay4 of a �nal design, and the synthesis cpu
time Tcpu were considered.

In Table 3 the synthesis results that were obtained
by the use of the hierarchical colouring place encod-
ing algorithm described in Section 6.2, and those that
were produced by the use of the parallel decompo-
sition implementation, presented in Section 6.1, are
shown. In general, when area, delay, and cpu time
of the synthesis are considered, results obtained using
the hierarchical colouring algorithm are better, and
some of them are considerably better. The bench-
mark hash is an example of the Petri net which is
safe and live, but which cannot be coloured, thus the
algorithms presented in this paper cannot be used in
this case.

In Table 4 the synthesis results that were obtained
by the use of the methodology described in [5] (reach-
ability graph method), and the equivalent sequen-
tial implementation are presented. When reachability
graph encoding approach is considered, comparison of
the results reveals remarkable improvements, for more
complex controllers, when using hierarchical colouring
approach. When sequential approach is considered,
comparison of the results reveals signi�cant improve-
ments in terms of area, delay and synthesis cpu time
when using presented in this paper methodology. For
the examples fcontr and smok4 the code length ex-
ceeds the limit allowed by the state assignment pro-
gram JEDI.

4Delay denotes the longest feedback time in the circuit.

Reachability graph FSM equivalent

name area speed Tcpu area delay Tcpu

fcontr 725692 28.6 96.1 - - -
smok4 198592 8.2 1804.3 - - -
phil10 134094 12.7 45.3 915936 106.7 1870.0
pr sp 109040 11.0 15.1 168896 30.2 61.9
zigzag 205552 16.1 31.8 309024 47.4 601.2

fstore 242208 19.6 26.6 317376 50.5 775.7
hash 15312 4.5 11.0 129920 16.7 23.3
graf 142448 10.9 20.7 151264 15.8 34.5
react 108112 9.2 14.4 119712 17.2 20.2

fgen 76560 7.8 7.1 299744 53.4 1152.7

Table 4: Synthesis results: reachability graph method
versus FSM state assignment method.

8 Conclusion

A new methodology for parallel controller synthesis
has been introduced. The new concept of using colours
to detect and represent concurrency within a Petri net
along with the set of colouring rules and a relevant
algorithm has been presented. Experimental results
clearly demonstrated the advantages of the presented
approach, especially when complex controllers are to
be synthesised.

The future work in this area includes the develop-
ment of a more e�cient algorithm for net colouring
which can deal with all classes of safe and live nets;
the set of colouring rules should be thoroughly inves-
tigated to facilitate decisions on why a net cannot be
coloured.

References

[1] M. Adamski. Petri Net Decomposition. In Zeszyty

Naukowe WSI, pages 1 { 23, Zielona Gora, 1982. WSI
Publisher. In Polish.

[2] M. Adamski. Direct Implementation of Petri Net Spec-

i�cation. 7th International Conference on Control Sys-

tems and Computer Science, pages 74{85, 1987.

[3] K. Jensen. Coloured Petri Nets. In W. Brauer,
W. Reisig, and G. Rozengerg, editors, Petri Nets: Cen-

tral Models and Their Properties. Advances in Petri

Nets 1986, Part I. Proceedings of an Advances Course,
volume 254 of Lecture Notes in Computer Science,

pages 248 { 299. Springer-Verlag, 1987.

[4] T. Murata. Petri Nets: Properties, Analysis and Appli-

cations. Proceedings of the IEEE, 77(4):548{580, 1989.

[5] J. Pardey, T. Kozlowski, J. Saul, and M. Bolton. State
Assignment Algorithms for Parallel Controller Synthe-

sis. In Proceedings of the IEEE International Confer-

ence on Computer Design, pages 316{319. IEEE Com-
puter Society Press, 1992.

[6] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon,

R. Murgai, A. Sadanha, H. Savoj, P.R. Stephan, R.K.

Brayton, and A. Sangiovanni-Vincentelli. SIS: A Sys-
tem for Sequential Circuit Synthesis. University of

California, Berkelay, May 1992. Memorandum No.

UCB/ERL M92/41.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

