
OSCAR: Optimum Simultaneous Scheduling, Allocation and
Resource Binding Based on Integer Programming

Birger Landwehr, Peter Marwedel, Rainer D�omer

University of Dortmund, Dept. of Computer Science XII, 44221 Dortmund, Germany

Abstract: This paper presents an approach to high-level
synthesis which is based upon a 0/1 integer program-
ming model. In contrast to other approaches, this model
allows solving all three subtasks of high-level synthe-
sis (scheduling, allocation and binding) simultaneously.
As a result, designs which are optimal with respect to
the cost function are generated. The model is able to
exploit large component libraries with multi-functional
units and complex components such as multiplier-accu-
mulators. Furthermore, the model is capable of han-
dling mixed speeds and chaining in its general form1.

1 Introduction

During the recent years, there has been an ever-in-
creasing demand to speed up the design cycles for the
design of electronic systems. This demand is caused by
time-to-market requirements for products in this area.
At the same time, there has been an increasing need to
achieve for correctness by construction.
Due to these driving forces, synthesis techniques are
now being used for the design of many electronic prod-
ucts. Currently, logic synthesis and synthesis of �-
nite state machines are the most widely employed tech-
niques. Unfortunately, these techniques cannot be used
for the design of e�cient systems containing data paths.
The design of such systems is the goal of the various
approaches to high-level-synthesis. Despite signi�cant
e�orts by researchers in the area, high-level synthesis is
still hardly used in industry. A major reason for this is
the ine�ciency of current high-level synthesis systems.
This ine�ciency has several reasons. We believe, the
two most important reasons are
1.) the partitioning of algorithms for high-level syn-
thesis into algorithms for solving the three subtasks
(scheduling, allocation and binding) independently.
However, these subtasks are related and therefore this
approach potentially results in inferior designs.
2.) library mapping { in contrast to its popularity for
logic synthesis { is still very poor.
In our paper, we will describe a method which poten-
tially improves the e�ciency of high-level synthesis sig-
ni�cantly by avoiding these two sources of ine�ciencies.
The synthesis system based on our method is called
OSCAR (optimum simultaneous scheduling, allocation
and resource binding). OSCAR also respects timing
constraints { a feature that was missing in early syn-
thesis systems.

1This work has been partially supported by ESPRIT project
BRA 6855 (LINK).

2 Related work

Almost all early approaches to high-level synthesis par-
titioned the problem into subproblems for scheduling,
allocation and binding. This includes the work by Tseng
and Siewiorek [13], Marwedel [10] and others (see [11]
for a survey). This work helped �nding solution meth-
ods for these subproblems. Later it was recognized,
that these subproblems should be solved simultane-
ously in order to avoid suboptimal results.
The work of Gebotys is especially stimulating in this
respect, because it is based on a formal integer pro-
gramming (IP)-model, which has the potential of solv-
ing several subproblems concurrently. The approach to
scheduling in this work is an improvement over an ear-
lier model by Hwang [7]. Early work by Gebotys into
this direction [4] did not include binding. Recently,
the two-index model in [4] has been extended into a
three index model (see e.g. [5]). The three-index model
has the potential of handling advanced features such as
pipelining, mixed speeds and wiring optimization. Un-
fortunately, the latter is not described in [5].
Other approaches which are based on IP-models in-
clude the following: Library mapping (see also Dutt
[3]) is emphasized in a paper by Achatz [1], integrating
scheduling and allocation. Allocation and assignment
have been integrated for example by Rim and Jain [12].
In addition to having the potential for solving subprob-
lems concurrently, IP-models have the advantage of be-
ing formal models of high-level synthesis. This makes
formally checking the correctness of high-level synthesis
easier.
Now that a considerable amount of heuristics have been
published, we believe that is it the time to investigate
more formal models. Currently available IP-models,
however, do still have major limitations. For example,
currently published IP-models do not allow chaining
in its general form. For all existing algorithms, oper-
ations to be chained must be manually replaced by a
single, more powerful operation before actual synthesis
is started. This means, these algorithms cannot auto-
matically decide whether or not two operations are to
be chained.
Moreover, existing algorithms usually consider simple
libraries containing mostly adders and multipliers. They
are not capable of exploiting e�cient complex com-
ponents such as multiplier-accumulators and many of
them are unable of selecting components with di�er-
ent speeds. Our work aims at removing the limitations
mentioned above.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50



3 The OSCAR System

3.1 Preprocessing

The input description of our high-level-synthesis sys-
tem OSCAR is based on a subset of VHDL [8]. The
input description is �rst compiled into a special form
of data-
ow graphs, namely Gajski's assignment de-
cision diagrams (ADD) [14, 6]. These diagrams have
been extended to include timing speci�cations. These
extended ADDs are called timed assignment decision
diagrams (TADDs).

3.2 Integrated Scheduling, Allocation
and Binding

3.2.1 Binding model

High-level synthesis basically has to establish bindings
between operations j, control steps i and resources k.
Such bindings can be represented by binary decision
variables. Triple-indexed variables are required for in-
tegrating scheduling, allocation and binding.

xi;j;k =

�
1; if op. j will be started on inst. k at cs i
0; otherwise

Throughout this text, we will use index k as a name for
a particular component. K will be the index set (value
range) of these names.
Each component k will be an instance of a component
type contained in the component library. We will use
index m to denote a certain component type and M to
denote the set of names of all component types. Func-
tion type is assumed to return the component type of

a certain component instance.
Furthermore, we will use index j to uniquely denote an
operation contained in the TADD. J will be the set of
all j's. More precisely, each j corresponds to an op-
eration instance. Each j is of a certain type, e.g. a
particular operation in the TADD may be an instance
of operation type add or multiply. We will use g to
denote a certain operation type and G to denote the set
of all operation types. Function optype(j) is assumed

to return the operation type of a certain operation in-
stance j.
Table 1 contains the used mathematical symbols.
Variables xi;j;k have to be computed by the synthesis
system. This will assign a control step i and a compo-
nent instance k to each operation instance j.
All combinations of i, j and k for which no solution is
feasible will not be used as subscripts of x. For exam-
ple, if k cannot perform operation j, the corresponding
decision variables are never generated in order to re-
duce the number of variables and relations.

3.2.2 Constraints

The following constraints are required to de�ne the set
of legal solutions:

I � IN0 set of control steps
i 2 I control step i 2 I
J � IN0 set of ops in the TADD
j 2 J operation j 2 J
K � IN0 index set of resource instances
k 2 K resource instance k 2 K
M � IN0 index set of existing resource types
m 2M resource type m 2M
R(j) range of possible c-steps for op j
Gm operation types executable by m
kmax max number of all available instances
`(j; k) latency of component k for operation j
type(k) component type of instance k
G � IN0 set of operation types
g 2 G operation type g 2 G
optype(j) operation type of operation instance j
C(j; k) delay for executing j on k
C(j) =

maxk C(j;k) max of delays for executing j on k

Table 1: Mathematical notation

1. Operation assignment constraints
Each component type m is assumed to be able to exe-
cute a set Gm of operation types. E.g. a certain compo-
nent type may be able to perform additions and multi-
plications while others are only able to perform either
of the two.
Our �rst set of constraints now models the fact that
each operation j should be started on exactly one re-
source instance of the appropriate type. Furthermore,
each operation j should be started in a control step
i which lies within the range R(j) of feasible control
steps. R(j) is the range of control steps between the
earliest (ASAP) and latest (ALAP) control step feasi-
ble for operation j. These conditions are modelled by
the following relations:

8j 2 J :
X

i2R(j)

X
k2K

j executable on k

xi;j;k = 1 (1)

For each j, the sum over k includes only instances for
which the relation \j executable on k" holds. This en-
sures that operations will be mapped to appropriate
components. Relation \j executable on k" can be de-
�ned as:

j exec. on k () optype(j) 2 Gtype(k) (2)

Note that relation \j executable on k" is more general
than the corresponding implicit relation in [4]. For each
k, we have to know the corresponding type m before
solving our synthesis problem. To model this knowl-
edge, we are using a function called type. For each

potential instance k, function type has to return the

corresponding resource type. Without loss of general-
ity, we require type to be a monotone step function of k.

Before synthesis, a su�ciently large number of poten-
tial instances is automatically computed for each type
m. In order to model the fact that for a certain po-
tential instance k, the instance may be either selected



or left out of the �nal design, we introduce decision
variables

bk =

�
1; if instance k is selected
0; otherwise

A simple observation can be used to speed up the search
for optimal designs: if type(k) = type(k + 1), then the
solutions bk = 1; bk+1 = 0 and bk = 0; bk+1 = 1 are
equivalent, except for renaming of resource instances.
In order to generate only one of these equivalent solu-
tions, we require that

8k : if type(k) = type(k + 1) then bk � bk+1 (3)

without loss of generality.
Experimental results have shown that this constraint
can reduce the execution time of the IP-solver by a
factor of 10 - 50! This redundancy is not eliminated in
other models [5].
Components which we have considered so far are able
to perform certain functions. Results computed by
these functions can be described in terms of expres-
sions involving operators, input ports and constants.
Up till now, high-level synthesis systems have only con-
sidered expressions involving a single operator, e.g in a

+ in b. In the following, we will call components com-
puting those expressions simple components.
Recent component libraries, however, do contain com-
ponents such as multiplier-accumulators (MACs), which
compute expressions like (in a * in b) + in c. These
components correspond to complex gates in logic syn-
thesis and we will therefore call these components com-
plex components. Complex components allow very e�-
cient implementations, but high-level synthesis systems
in general are not capable of exploiting them.
One of the goals we set for OSCAR is to decide auto-
maticallywhether to map sets of adjacent operations to
several simple components or to a single complex com-
ponent. To this end, we de�ne macro-operations2 to be
a set of adjacent operations which can be executed by
at least one component type. Let Y be the set of all
such macro-operations.
Constraint (4) ensures that either all operations con-
tained in a macro-operation y 2 Y are assigned to sep-
arate simple components or to a single complex com-
ponent. 8j 2 J :X
i2R(j)

X
k2K

j exec on k

xi;j;k +
X
y2Y :
j2y

X
i2R(y)

X
k2K

y exec on k

xi;y;k = 1 (4)

If no complex components are employed, the right sum
of (4) becomes 0. In this case the constraint reduces to
the standard operation assignment constraint (1).
Additionally, constraint (5) restricts the assignment of
macro-operations to at most one complex component:

8y 2 Y :
X

i2R(y)

X
k2K

y executable on k

xi;y;k � 1 (5)

2Note that macro-operations y 2 Y can be handled in the
following constraints just as conventional operations j 2 J

Before calculating the IP-model, a matching between
the system and component behavior must be performed
in a preprocessing phase.
The described technique of compiling operations to ma-
cro-operations in order to exploit complex components
can be also applied for module sharing: a set of data-
independent operations are allowed to be assigned to
the same component instance at the same cycle if the
following presumptions are ful�lled: 1.) The number of
port lines must be at least as large as the sum of argu-
ment bitwidths. 2.) A su�cient number of separation
bits between the arguments must be inserted to avoid
interactions between the operations. 3.) All unused in-
put lines of the module must be don't care-extendable.
These requirements are ful�lled by several function units
like an n-bit adder. Such components can be employed
to perform two data-independent additions which are
de�ned on k bits (with k + k + 1 � n). One separa-
tion bit s = 0 has to be inserted between both argu-
ment pairs in order to avoid carry propagation. While
generating the netlist, the resulting output C1xC2 (x
represents the carry of A1+B1) must be split into two
bit vectors C1 and C2.

2. Resource assignment constraints
We assume that all components are only able to start
a limited number of operations. More precisely, we
assume that component k is able to start a new oper-
ation j every `(j; k) control steps. `(j; k) is called the
component latency. This restriction is modelled by the
following relations: 8i 2 I : 8k 2 K :

X
j2J

j executable on k

i+`(j;k)�1X
i0=i
i2R(j)

xi0;j;k � bk (6)

A naive approach would use 1 as the constant at the
right hand side of this equation. With the current ap-
proach we avoid solutions in which operations are as-
signed to non-selected instances. Summing up into for-
ward direction (from i0 = i to i + `(j; k) � 1) has the
advantage of replacing the two constraint sets (2) and
(13) in [5] by a single constraint set.

3. Precedence constraints
Data dependency relations are explicitly represented
in the TADDs. For data-dependent operations, the fol-
lowing constraints have to be met:
8j1 � j2 : 8i 2 R(j2) \ (R(j1) +C(j1)� 1) :

X
k

j2 executable on k

X
i2�i�chain(j1 ;j2)

i22R(j2)

xi2;j2;k +

X
k

j1 executable on k

X
i�(C(j1;k)�1)�i1

i12R(j1)

xi1;j1;k � 1 (7)

C(j1; k) denotes the delay of operation j1 on compo-
nent instance k. This notation allows di�erent execu-
tion times of a certain operation on di�erent function



units. It can be shown that this approach is su�cient
to guarantee correct solutions even in the case of com-
ponents with mixed speeds.
Parameter chain(j1; j2) describes a possible assignment
of both operations j1; j2 to the same control step pre-
suming that suitable components are available. This
parameter should be calculated for all operation pairs
in a preprocessing step. If chain is set to 0, data-
dependent operations will be assigned to di�erent con-
trol steps. In this case, the support of chaining is lim-
ited to manually created combined operations. This is
the approach taken in [4]. If chain is set to 1, data-
dependent operations are allowed to be assigned to the
same control step. This case corresponds to chaining
in the more traditional sense.

4. Chaining Constraints
In case that two or more data-dependent operations
are assigned to the same control step the sum of real
execution times must be less than the user de�ned cycle
time timecycle. We de�ne a new relation

j1 �� j2 () j1 � j2 ^

9k1 : j1 executable on k1;

9k2 6= k1 : j2 executable on k2 :

timecycle � time(j1; k1) + time(j2; k2) + `phy

Constant `phy describes a system dependent latency
caused by interconnect delays. Further, we de�ne a
new set CHAINS. Each ch 2 CHAINS is the longest
chain j1 � � � � � jn (1 : : :n are local indices) in the
data 
ow graph with:
1.) operations j1 to jn are data dependent:
8ji; i 2 f1; : : : ; n� 1g : ji � ji+1
2.) at least two operations ji; ji+1 2 ch can be executed
in the same control step: ji �� ji+1
3.) ch is maximal:
6 9 j0 : j0 �� j1^ 6 9 jn+1 : jn �� jn+1

CHAINS :=
[

ch

ch := fj1; : : : ; jn j ji 2 J ^

8ji; i 2 f1; : : : ; n� 1g : ji �� ji+1g

Constraint (8) restricts the maximumnumber of chained
operations j 2 ch per control step. In combination with
constraint (7) only coherent operator chains are allowed
to be assigned to the same control step. The maximum
length of each chain is restricted by timecycle � `phy .
8ch 2 CHAINS : 8i 2 I :X
j2ch:
i2R(j)

X
k2K

j exec on k

time(j; k) � xi;j;k � timecycle � `phy (8)

Figure 1 illustrates the e�ect of chaining guided by a
simple expression tree. A cycle time of 100ns and la-
tency of 10ns restrict the total execution time of all
chained operations to at most 90ns. The left side of
the �gure represents two possible solutions with maxi-
mum number of chained operations in one control step.

j1
j3

j2

j1

j3

j2

j4

j4

50 ns20 ns

30 ns

40 ns

j1

j3

2j

j4
cs n

cs n+1

cs n+1

ncs

Solution I

Solution II

Figure 1: Operation chaining

In this example, ch1 consists of fj1; j3; j4g because of
j1 � j3 � j4 and j1 �� j3; j3 �� j4. The other set ch2
is represented by fj2; j3; j4g. Set CHAINS consists of
fch1; ch2g.
In case of solution I, constraint (8) is ful�lled only for
the �rst two elements of ch1 and ch2. The alternative
solution shown underneath consists of the entire set
ch1. The additional assignment of operation j2 2 ch2
in the same control step would violate constraint (8).
5. Timing constraints
Models for timing constraints can be taken over from
[4]. For example, if two operations j1 and j2 should be
separated by T control steps, then the following rela-
tions should hold: 8i : i1 2 R(j1)X

k

j1 exec on k

xi1;j1;k +
X
k

j2 exec on k

X
i2 6=i+T

i22R(j2)

xi2;j2;k � 1 (9)

Minimum timing constraints3 can be represented by
the following relation, respectively:

8i :
X
k

j1 exec on k

X
i1�i

i12R(j1)

xi1;j1;k +

X
k

j2 exec on k

X
i2�i+(C(j1 ;k)�1)+T

i22R(j2)

xi2;j2;k � 1 (10)

6. Register constraints
Register constraints can also be taken over from [5].

3.2.3 Cost function

One of the objectives of the current paper is to show
how interconnect optimization can be integrated into
a uni�ed model for scheduling, allocation and binding.
Therefore, the cost function has to include terms de-
scribing interconnect. The following cost function ful-
�lls this requirement:X

m2M

(cm �
X
k2K

type(k)=m

bk) +
X
k1;k2

ck1;k2 �wk1;k2 (11)

3in order to formulate maximum timing constraints exchange
the � resp. � relations of the sum boundaries



with wk1;k2 =

�
1; if k2 is connected to k1
0; otherwise (12)

The �rst term describes the cost of functional units.
cm is the cost per instance of component type m.
The second term describes the cost of the interconnect.
ck1;k2 is the cost for interconnecting k1 to k2. Due to
the lack of layout information, ck1;k2 is usually set to
the bitwidth.
A naive implementation for computing wk1;k2 would
contain terms of the form xi;j1;k1 � xi;j2;k2 , which are
quadratic in x. The corresponding quadratic assign-
ment problem can be avoided by using a trick published
by Rim, Jain and De Leone [12]. The trick consists in
de�ning wk1;k2 as: 8j1 � j2 :

wk1;k2 �

0
@ X
i12R(j1)

xi1;j1;k1 +
X

i22R(j2)

xi;j2;k2

1
A� 1 (13)

wk1;k2 � 0 (14)

If both variables xi;j1;k1 and xi;j2;k2 are set to 1, wk1;k2
also becomes 1. In the case that only one of both vari-
ables takes the value of 1, wk1;k2 becomes 0. Constraint
(14) avoids negative values if both variables are set to
0. Consider that a variable wk1;k2 is only created if
both j1 and j2 can be executed on instances k1 resp.
k2. With this trick, the cost function is still a linear
function in x.
Hence, algorithms for solving (linear) integer program-
ming problems can be used to compute optimal bind-
ings.

4 Results

We have applied our synthesis system to several bench-
marks. All calculated results are optimal. The execu-
tion times have been measured on a Sparc 10 using the
mixed IP-solver [2].
In the following, we present experimental results for the
5th-order Elliptical Wave Filter [9] and the Di�erential
Equation Solver benchmark.

5th-Order Elliptical Wave Filter
Table 2 shows the results of the EWF employing adders,
multipliers and multi-functional units with di�erent de-
lays, latencies and costs. All delays are measured in
control steps. The entry 2:1 means a pipelined func-
tion unit with a delay of two cycles. The speci�ed costs
represent the size relations between the particular com-
ponent types.
Table 3 presents results with chained (left part) and
unchained (right part) operations. Chaining was ap-
plied to + and * -operations which allows to perform
both operations together within one control step. Note,
that all component delays are speci�ed in ns. For this
example, the application of chaining yields a reduction
by 3 control steps of the minimum schedule presum-
ing a clock cycle of 1000ns. Table 4 presents synthesis

FU + * f+,*g
delay 1 1 1
costs 20 30 40 t[s]
cs 14 2 1 1 34

15 2 0 1 13
16 2 1 0 170
17 2 1 0 764

FU + * f+,*g + * f+,*g
delay 1 2 2 1 2:1 2:1
costs 20 30 40 t[s] 20 30 40 t[s]
cs 17 4 2 0 13 3 2 0 5

18 2 2 0 33 3 1 0 81
19 2 2 0 1185 2 1 0 349

Table 2: E�ect of di�erent speeds of components

results based on a complex component library. We em-
ployed MACs which are able to perform the addition
and multiplication (separately or as macro-operation)
within one control step.

FU + * + *
delay 600ns 300ns 600ns 300ns
costs 20 10 20 10
cs 11 4 1 - -

12 3 1 - -
13 3 1 - -

14
.
.
.

.

.

. 3 2
15 3 1
16 2 1

Table 3: Enabling vs. disabling chaining of add/mult-
operations

FU + * MAC
delay 1 1 1
costs 20 10 25 time
cs 11 2 0 2 70s

12 2 0 1 975s
13 2 0 1 9519s
14 2 0 1 9464s
15 1 0 1 666s
16 1 0 1 3195s

Table 4: Employing complex component libraries

Di�erential Equation Solver
The results calculated for the Di�-Eq benchmark are
given in the tables 5-7.

FU + - * + - *
delay 450 450 700 450 450 700
costs 20 20 30 time 20 20 30 time
cs 3 1 2 3 1s - - - -

4 1 1 2 1s 1 1 2 1s
5 1 1 2 9s 1 1 2 3s
6 1 1 2 187s 1 1 2 72s
7 1 1 1 43s 1 1 1 14s

Table 5: Enabling vs. disabling chaining of sub/sub-
operations



FU + - * f+,-g f+,*g
delay 1 1 1 1 1
costs 20 20 30 25 40 time
cstep 4 0/2 0/1 1/4 1/3 1/6 3s

5 0/2 0/1 2/2 1/2 0/3 128s
6 0/1 0/1 2/2 1/1 0/3 3569s

FU + - * f+,-g f+,*g
delay 1 1 2 1 2
costs 20 20 30 25 40 time
cstep 6 0/2 0/1 2/4 1/3 1/5 17s

7 0/2 0/1 1/3 1/3 1/4 27s
8 0/2 0/1 2/2 1/3 0/3 35s
9 0/1 0/1 2/2 1/1 0/3 948s

FU + - * f+,-g f+,*g
delay 1 1 2:1 1 2:1
costs 20 20 30 25 40 time
cstep 6 0/2 0/1 2/4 1/3 0/5 19 s

7 0/1 0/1 2/2 1/1 0/3 607 s
8 0/1 0/1 1/2 1/1 0/3 257 s
9 0/1 0/1 1/1 1/1 0/2 121 s

Table 6: E�ect of di�erent speeds of components

Table 7 presents synthesis results of interconnect mi-
nimization. The number of interconnects could be re-
duced without increasing the number of required com-
ponents.

FU + - * + - *
delay 1 1 1 1 1 1
costs 20 20 30 #w t[s] 20 20 30 #w t[s]
cs 4 1 1 2 5 1 1 1 2 5 1

5 1 1 2 4 8 1 1 2 5 3
6 1 1 2 4 149 1 1 2 5 72
7 1 1 1 4 39 1 1 1 4 14

Table 7: Enabling vs. disabling interconnect minimiza-
tion

5 Conclusion

We presented a new IP-model and its implementation
in OSCAR which extends existing approaches to IP-
based high-level synthesis into six di�erent directions:
1.) OSCAR extends previous models for scheduling
and allocation to wiring optimization.
2.) In addition, OSCAR is able to handle complex li-
braries with multi-functional components.
3.) Furthermore, OSCAR is able to handle components
with mixed speeds.
4.) OSCAR has the potential to exploit the existence of
complex components such as multiplier-accumulators.
5.) OSCAR has the capability of assigning several op-
erations operating on short bit vectors to components
with a large bit width.
6.) Finally, OSCAR allows chaining in its general form.

We have shown that acceptable runtimes can be achieved
for standard benchmarks.

References

[1] H. Achatz. Extended 0/1 LP formulation for the
scheduling problem in high-level synthesis. EURO-
DAC'93, 1993.

[2] M. Berkelaar. Unixtm manual page of lp solve.
Eindhoven University of Technology, Design Au-
tomation Section, 1992.

[3] N. D. Dutt. GENIUS: A generic component library
for high level synthesis. Technical Report 88-22,
U.C. Irvine, 1988.

[4] C. H. Gebotys and M. I. Elmasry. Simultaneous
scheduling and allocation for cost constrained opti-
mal architectural synthesis. 28th Design Automa-
tion Conference, pages 2{7, 1991.

[5] C. H. Gebotys and M. I. Elmasry. Global optimiza-
tion approach for architectural synthesis. IEEE
Transactions on CAD, 1993.

[6] T. Hadley, V. Chaiyakul, and D. D. Gajski. A
data structure for interactive synthesis. Technical
Report 92-06, Dept. of Information and Computer
Science, University of Irvine, 1992.

[7] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu. A formal
approach to the scheduling problem in high-level
synthesis. IEEE Transactions on CAD, 1991.

[8] D. IEEE. IEEE standard VHDL language refer-
ence manual (IEEE Std. 1076-87). IEEE Inc., New
York, 1988.

[9] S. Y. Kung, H. J. Whitehouse, and T. Kailath.
VLSI and Modern Signal Processing. Prentice
Hall, 1985.

[10] P. Marwedel. A new synthesis algorithm for the
MIMOLA software system. 23rd Design Automa-
tion Conf., pages 271{277, 1986.

[11] M. McFarland, A. Parker, and R. Camposano. The
high-level synthesis of digital systems. Proc. of the
IEEE, Vol. 78, pages 301{318, 1990.

[12] M. Rim, R. Jain, and R. D. Leone. Optimal alloca-
tion and binding in high level synthesis. Proceed-
ings of the 29th Design Automation Conference,
1992.

[13] D. Siewiorek and C. Tseng. Facet: A procedure for
the automated synthesis of digital systems. 20th
Design Automation Conf., pages 490{496, 1983.

[14] L. R. V. Chaiyakul, D. D. Gajski. Minimizing syn-
tactic variance with assignment decision diagrams.
Technical Report 92-34, Dept. of Information and
Computer Science, University of Irvine, 1992.


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




