
Hardware-Software-Codesign of Application Specific Microcontrollers
with the ASM Environment

A.W. Both, B. Biermann, R. Lerch, Y. Manoli, K. Sievert

Fraunhofer-Institute of Microelectronic Circuits and Systems
Finkenstr. 61, D-47057 Duisburg, Germany

A new CAD system for generation of application
specific microcontrollers is presented. It is based on a
properly defined architecture model and consists of a
set of tools for instruction set description, HW-SW-
cosimulation of the processor and the application
software, compiler generation, datapath and
controlpath synthesis, and datapath animation. One of
these tools, the MicroDebugger, follows a new
approach of HW-SW-cosimulation particularly
matching the problems of microcontroller design. The
system proved it's effectiveness throughout numerous
designs including a small multitasking RISC for
embedded applications.

The attempt to automatically generate application
specific microcontroller cores (instruction set
architectures) will fail if one does not restrict the huge
design space. Such a restriction must not affect the
implementation method but it must properly define an
architecture model for synthesis. The criteria for such a
first design space demarcation result from an analysis of
the class of targeted applications. The ASM
Environment targets control and interrupt dominated
applications with medium data throughput.
Architectures of this class are part of a lot of electronic
equipment, as embedded microcontrollers in the
automotive, industrial, telecom and white good markets.

1. Introduction Furthermore our architecture model is based on the
assumption that it will be programmed in C rather than
in assembler language. In practice this assumption
seems to be highly justifiable as more and more
embedded applications are programmed in a high level
language for increased code transparency and
reusability, even though the high level language support
of the underlying architectures is often restricted.

The Application Specific Microcontroller (ASM)
Environment is a CAD system for rapid development
and prototyping of instruction set architectures, or
ASIPs (Application Specific Integrated Processors) as
introduced by Alomary et al. [1]. These circuits consists
of a CPU core, memory and peripheral circuits and are
mainly targeted to embedded applications for fast
growing markets like automotive, telecommunications
and mechatronics control. The remainder of this paper is organized as follows:

Section 2 gives an introduction into the structure of the
ASM Environment. In section 3 an example for an
instruction set description is discussed. In section 4 we
explain in detail our methodology for HW-SW-
Cosimulation using the MicroDebugger. Datapath and
control path synthesis are subjects of section 5 and 6,
respectively. A brief conclusion and some
considerations about further investigations finishes the
paper.

As it is pointed out in [1], many high-level synthesis
systems surveyed in the literature [2][3][4] target
general purpose microprocessors or digital signal
processors where operation scheduling and resource
allocation have the biggest impact on the overall
performance. However, for a lot of applications, this is
not generally true. Actually, for a high performance
embedded controller operation scheduling and resource
allocation play a significant role, but an optimal
instruction set and a well chosen architecture, which
allows short interrupt latency, play at least an equally
important role. Even worse, some applications are not
speed critical but very sensitive to EMI (Electro-
Magnetic Interference). They are better served by lower
clock frequencies and architectural robustness for
electromagnetic compatibility.

2. Overview of the ASM Environment
Fig. 1 shows an overview of the ASM Environment.

A detailed analysis of the application or class of
applications yields a machine and instruction set
description. This is still a highly manual procedure,
supported by automated tools for the quantitative
analysis of the application source code. The instruction
set description serves as input for the Model Synthesizer

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 1994 ACM 0-89791-687-5/94/0009 3.50

which generates in a first step functional models for the
datapath in an HDL as well as the microcode in an
uncompressed binary form. At this stage the microcode
is only used as a source of how and when to switch the
different paths in the datapath and activate the different
operations inside the ALU. Finding an adequate and
area efficient implementation for the control is the task
of the Control Path Synthesizer.

The HDL models generated by the ASM
Environment are synthesizable by a commercial logic
synthesis tool. Thus rapid prototyping on FPGAs is
supported. Furthermore, this and the usage of
conventional layout synthesis tools provides a proven
way from the functional level down to mask level.

3. Instruction Set Description
The development of an instruction set of an

application specific microprocessor core in the ASM
Environment is a highly iterative procedure starting
with a first draft coming either from the statistical
analysis of the application program or from a previously
generated processor core. The instruction set and the
data processing hardware blocks are specified in a C-
like language. The description is parsed by the
Instruction Set Specification Interface, which generates
the internal database consisting of coupled data flow
and structure graphs [6].

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA

/* the registers */
long dedireg pc; /* 16 bit pc */
dedireg fp, cc, ir; /* dedicated 8 bit regs */
register X,Y,Z; /* temp. regs */
nil NIL;

/* the busses */
memory dbus {r,w}; /* data bus */
long memory ibus {r};

Fig.1 Main Design Flow within the ASM
Environment

/* variables */
int opcode, pc_l, pc_h ;

/* the functional units */
branchcalc branch {add,adds};
statuscalc statcalc {U,U,U,U,C,N,Z,U};
alu alu_0 {&,|,^,+, -,cmp,>>,==,<=,~};Starting from the machine description it is possible

to generate a C compiler and an assembler which are
dedicated exactly to the given instruction set
architecture. In contrast to [1] this C-Compiler is not
based on GCC, but on a completely new programmed
retargetable C Compiler [5]. Hence the compiler does
not restrict the architecture to 16 or 32 bit.

mask mask_0 {0, 1, 8, 16,255};
incrementer inc_0 {++};
jmpmux jump_0, jump_1;
cline alu_crin_ctrl0 {status}, stop {one,zero};

Fig. 2 : Declaration of the hardware elements

Roughly divided the instruction set description
contains three sections :The behavioural models of datapath, control and

peripherals can be simulated using a commercial circuit
simulator. Via interprocess communication (IPC) the
simulator is coupled to the MicroDebugger, which
enables the user to concurrently simulate the hardware
and the application software. Thus performance
estimation and software development is supported on
purely functional, RTL, gate-level as well as mixed
level. Up to now the Verilog simulator and the Lsim
simulator are supported. Another IPC channel links the
MicroDebugger to the Datapath Animator. This tool
visualizes the datapath structure and highlights the
currently active connections during a simulation.

1. Declaration of the available hardware elements
(registers, busses, ports, functional units)

2. Declaration and assignment of temporary variables
3. Instruction scheduling description

Fig. 2 shows an example for section 1. Registers, busses
and functional units like the ALU or a dedicated
branchcalculator are declared in this section. All units
can be declared as single word or double word units
where the word width has to be predefined to 4, 8 or 16
bit.

process running on the host system allows to use
conventional source code debuggers. Since this is not
possible in our approach, it motivated us to design the
MicroDebugger. The MicroDebugger is dedicated to
debug software running on a simulated processor core
as well as the simulated hardware itself. Thus the
MicroDebugger incorporates the following features :

/* the instructions */
instructionset() {

 switch (opcode) {
case lwg : seq(par(Y=ibus[pc],X=X,PCINC),

 par(X=X,Z=dbus[Y]),
 par(dbus[X]=Z,PREFETCH));

case swg : seq(par(Y=ibus[pc],Z=dbus[X],PCINC),
 par(dbus[Y]=Z,PREFETCH));

case rtf : seq(par(fp=X, X=X-1),
 par(pc_l=dbus[X],X=X-1),
 pc_h=dbus[X],
 par(PREFETCH));

 }
}

• A homogeneous user interface throughout all
abstraction levels from architectural evaluation
down to gate and even transistor level.

• Assembler and C-source display with current
instruction highlighting.

• Single clock, single step as well as free running
operation.Fig. 3 : Examples of an instruction set description

• Full symbolic access to C-variables, hardware
registers and processor inputs/outputs.The ASM Environment was used to describe the

instruction set of a small RISC architecture. This
architecture was designed to support C-programming
and fast context switching. The description of three
instructions (load word global (lwg), store word global
(swg), return from function (rtf)) of this processor is
shown in Fig. 3. The keywords par and seq mean, that
the parenthesized actions are happening concurrently or
sequentially, respectively. As the complete information
about operation scheduling and resource allocation is
part of the instruction set description it could be seen as
another form of symbolic microprogramming. However
the description on this level usually is compact enough
so that additional effort for further automation was not
made at this stage.

• Support of program and data break points. Program
break points can be specified in the C- as well as in
the assembler display.

• Interface to the Datapath Animator for highlighting
the active connections.

During a cosimulation session the simulator
transmits the current value of the program counter to
the MicroDebugger at a configurable condition, e.g. an
active clock edge. This enables the MicroDebugger to
highlight the corresponding line in the assembler listfile
and the C application program. Then the simulator
enters a wait state - it remains in this state until it
receives a message or request from the MicroDebugger.
In case of a single step or a free running operation the
MicroDebugger sends simulate-commands until a load
instruction register event (single step) or a breakpoint
event (e.g. pc value matches the address breakpoint) is
detected.

4. Hardware-Software-Cosimulation
The need for a cosimulation tool arises immediately

since an iterative optimization of the instruction set
might be necessary. With a standalone conventional
circuit simulator such a simulation task would be
difficult to handle - the problem is the data abstraction
and the lacking noninteractive simulation control as
well as the lack of software debugging aids. Furthermore the tool provides a comfortable way to

simulate large programs including reaction on external
events without manual intervention. In this case
simulator control commands can be specified within the
software code using a dedicated directive. For example,
peripheral timers can be set to a predefined value or
interrupts can be triggered automatically. This feature is
particularly powerful for writing complete suites of test
programs which usually serve as a reference in all
stages of top-down design.

In the ASM Environment cosimulation has to be
understood as the simulation of a processor running his
application software together with additional hardware.
The processor and the additional hardware exist as
behavioural modules. This is a major difference to the
system of Thomas, Adams and Schmit [7], where the
software runs as a different UNIX process on a general
purpose CPU, i.e. the host system. Their approach
requires a complicated synchronization mechanism
between the different processes, which can be avoided
with our approach. On the other hand a software

In order to achieve maximum portability the
graphical interface of the MicroDebugger was designed

with the XView library running on top of the X-window
system. Usually during a software debugging session
the simulator will be iconized as this increases the
simulation speed by a factor of 2. Whereas the first
implementation of the tool communicated over
bidirectional named pipes with the simulator, the newer

version works as a client/server application using UNIX
sockets. Fig. 4 shows a screenshot of a cosimulation
session with the MicroDebugger and the Lsim
simulator.

Fig. 4 : Cosimulation session with the IMS MicroDebugger

5. Datapath Generation
6. Control Path SynthesisAfter evaluation of the instruction set on the

architectural level, functional models of the datapath
are generated by the Model Synthesizer. Similar to the
approach in [1], the model generation is based on a
module library which comprises ALUs,
incrementer/decrementer, branch and status calculator,
mask generator, etc.

As a byproduct the Model Synthesizer produces the
microcode in an uncompacted binary form totally free
of implementation issues. In general there is the choice
between a microcoded or a hardwired control path.
Depending on the chosen implementation style, the
Control Path Synthesizer has to fulfil different tasks.

For a microcoded machine the main task is to choose an
adequate sequencing mechanism and to apply
compaction techniques [8,9]. For hardwired control the
binary microcode is associated with the output of a
finite state machine. The number of states mainly
depends on the availability of the opcode during a
complete instruction cycle. The main tasks now are
state reduction by common tail sharing and state
assignment using NOVA [10], MUSTANG [11] or the
newer STOIC [12] algorithm.

References
[1] Alomary, A., Takeharu, N., Yoshimichi, H., Jun,

S., Nobuyuki, H., Masaharu, I.: "PEAS-I: A
Hardware/Software Co-design System for ASIPs",
Proc. of Euro-DAC '93, pp. 2 - 7, 1993

[2] Camposano, R., Walker, R.A., eds.: "A Survey of
High-Level Synthesis Systems", Kluwer Academic
Publishers, 1991

[3] Camposano, R., and Wolf, W. eds.: "High Level
VLSI Synthesis", Kluwer Academic Publisher,
1991

The Control Path Synthesizer is programmed in C
and incorporates a C-Scheme interface as a Lisp
interpreter. This allows to write meta-programs with
different strategies for generating an area-efficient
implementation of the control in form of an HDL
model.

[4] Catthoor, F., Svensson, L., eds.: "Application-
Driven Architecture Synthesis", Kluwer Academic
Publishers, 1993

[5] Krohm, F.: "Ein retargierbarer Compiler für
anwendungsspezifische Mikrocontroller", VDI
Verlag, R.20, Nr.69, 1992

[6] Haeck, H.-G., Krohm, F., Manoli, Y. : "Data Path
Synthesis from a Microcontroller Instruction Set
Specification in MicroSyn", Microprocessing and
Microprogramming 32, North Holland, pp. 193 -
198, 1991

7. Conclusion and Further Investigations
We presented a new CAD system for the automatic

synthesis of application specific microcontroller cores.
The ASM Environment consists of a set of tools for
instruction set description, HW-SW-cosimulation of the
processor together with the application software,
compiler generation, datapath and controlpath
synthesis, and datapath animation.

[7] Thomas, D.E., Adams, J.K., Schmit, H. : "A
Model and Methodology for Hardware-Software
Codesign", IEEE Design & Test of Computers,
September 1993, pp. 6 - 15

[8] Landskov, D., Davidson, S., Shriver, B., Mallett,
P.W.: "Local Microcode Compaction
Techniques", ACM Computing Surveys, Vol.12,
No.3, 1980

The hardware-software cosimulation tool
MicroDebugger proved it's usefulness throughout
numerous design sessions. One of the microcontroller
designs included a collection of timers and counters
which were in a complex interaction with external
events and of significant sequential depth (22 bits).
How can an event which occurs only every 222 clock
cycles be simulated safely and reproducable in a
complex system environment? The problem was
perfectly addressed by our cosimulation tool which is
able to preset any register or state of any part of the
simulated system using automated and sychronized
mechanisms.

[9] Wei, R.-S., Tseng, C.-J. : "Column Compaction
and Its Application to the Control Path
Synthesis", IEEE Trans. on CAD, pp. 320 - 323,
1987

[10] Villa, T., Sangiovanni-Vincentelli, A.: "NOVA:
State asignment of finite state machines for
optimal two-level logic implementations", Proc.
26th Design Automation Conference, pp. 327 -
332, June 1989

[11] Devadas,S., Ma,H.T., Newton,A.R., Sangiovanni-
Vincentelli,A., "MUSTANG: State Assignment of
Finite State Machines for Optimal Multi-Level
Logic Implementations", Proc. ICCAD 87, 1987,
pp. 16-19

Further investigations will be performed in the
improvement of the Instruction Set Specification
Interface and the Control Path Synthesizer. For
example we have not yet applied our approach to the
synthesis of complex pipelined architectures. Another
branch of research will be area estimators for different
implementation styles during control path synthesis and
the meta-programming. Since more and more
applications use an IEEE 1149.1 conformant test
interface, the MicroDebugger will be enhanced for
semiautomatic simulation of such an interface.

[12] Pomeranz, I., Cheng, K.-T. : "STOIC: State
Assignment Based on Output/Input Functions",
IEEE Trans. on CAD of Integrated Circuits and
Systems, Vol. 12, No. 8, pp. 1123 - 1131, August
1993

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

