Hardware-Software-Codesign of Application Specific Microcontrollers
with the ASM Environment

A.W. Both, B. Biermann, R. Lerch, Y. Manoli, K. Sievert

Fraunhofer-Institute of Microelectronic Circuits and Systems
Finkenstr. 61, D-47057 Duisburg, Germany

A new CAD system for generation of application
specific microcontrollers is presented. It is based on a
properly defined architecture model and consists of a
set of tools for instruction set descriptioH\W-SW-
cosimulation of the processor and the application
software, compiler generation, datapath and
controlpath synthesis, and datapath animation. One of
these tools, the MicroDebuggerfollows a new
approach of HW-SW-cosimulation particularly
matching the problems of microcontroller design. The
system proved it's effectiveness throughout numerous
designs including a small multitasking RISC for
embedded applications.

1. Introduction

The Application Specific Microcontroller (ASM)
Environment is a CADsystem forrapid development
and prototyping of instruction set architectures, or
ASIPs (Application Specific Integrated Processors) as
introduced by Alomary edl. [1]. These circuits consists
of a CPU core, memorgnd peripheratircuitsand are
mainly targeted to embedded applications for fast
growing markets like automotive, telecommunications
and mechatronics control.

As it is pointed out in [1], many high-level synthesis
systems surveyed inthe literature [2][3][4] target
general purpose microprocessors or digital signal
processors where operation scheduliengd resource
allocation have thebiggest impact onthe overall
performanceHowever, for aot of applications, this is
not generally true. Actuallyfor ahigh performance
embedded controller operation schedulargl resource
allocation play a significant role, but an optimal
instruction setand awell chosen architecture, which
allows short interrupt latencyplay at least an equally
important role. Everworse, some applicatiorege not
speed critical butvery sensitive to EMI (Electro-
Magnetic Interference). Thegre betteserved by lower
clock frequenciesand architecturaiobustness for
electromagnetic compatibility.

The attempt to automatically generate application
specific microcontroller cores (instruction set
architectures) will fail if onedoesnot restrict the huge
design space. Such a restriction must afiéct the
implementation method but it must properly define an
architecture model for synthesighe criteriafor such a
first design space demarcation result from an analysis of
the class of targeted applications. The ASM
Environment targets contrand interruptdominated
applications with medium data throughput.
Architectures of thiglass argart of alot of electronic
equipment, as embedded microcontrollers in the
automotive, industrial, telecom and white good markets.

Furthermore our architecture model is based on the
assumptiorthat itwill be programmed in @ather than
in assembler language. In practiteis assumption
seems to be highly justifiable as moeand more
embedded applicatiorsme programmed in faigh level
language for increasedcode transparency and
reusability, even though the high level language support
of the underlying architectures is often restricted.

The remainder of this paper is organizedadlsws:
Section 2 gives an introductianto the structure of the
ASM Environment. In section 3 an example for an
instruction set description is discussed. In section 4 we
explain in detail our methodology for HW-SW-
Cosimulation using th&licroDebugger Datapath and
control path synthesis arsubjects of section &nd 6,
respectively. A brief conclusion and some
considerations abodtrther investigations finishes the
paper.

2. Overview of the ASM Environment

Fig. 1shows an overview ahe ASM Environment.
A detailed analysis of the application or class of
applications yields amachine and instruction set
description. This is still a highly manugrocedure,
supported by automated tools fdhe quantitative
analysis of the applicatiosource codeThe instruction
set description serves as input floe Model Synthesizer

Permission to copy withodiée all or part ofthis material is granted provided thhé copiesire not made or distributéar direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the fsgsGuiatfmrting

Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

00 1994 ACM 0-89791-687-5/94/0009 3.50

which generates in a first step functional models for the
datapath in arHDL as well aghe microcode in an
uncompressed binary form. #tis stage thenicrocode

is only used as a source of hawdwhen to switch the
different paths in the datapatindactivate the different
operations inside th&LU. Finding an adequate and
areaefficient implementation fothe control is the task
of theControl Path Synthesizer

I:> |:> ‘ Instruction Set Description ‘
Data Path Model
© Gompller Synthesia Synthesia

Control Path
Synthesis
Functional
‘ Data-RAM ‘ ‘ Program—ROM‘ ‘Cmtml Path ‘ Data Path ‘ Models ‘
[]
Logic and Environment
S i
@ MicroDebugger

Layout or

Fig.1 Main Design Flow within the ASM
Environment

Starting from the machine description it@essible
to generate a C compileand anassembler which are
dedicated exactly tothe given instruction set
architecture. In contrast to [1] this C-Compiler is not

based on GCC, but on a completely new programmed

retargetable C Compiler [SHencethe compilerdoes
not restrict the architecture to 16 or 32 bit.

The behaviouraimodels ofdatapath, control and

peripherals can be simulated using a commercial circuit

simulator. Via interprocess communication (IPC) the
simulator is coupled tahe MicroDebugger which

enables the user to concurrently simulate the hardware 2.

and the application software. Thus performance
estimationand software development is supported on
purely functional, RTL, gate-level as well as mixed
level. Up to nowthe Verilog simulatoand thelsim
simulator are supported. Another IPC channel links the
MicroDebuggerto the Datapath Animatar This tool
visualizes the datapath structuamd highlights the
currently active connections during a simulation.

The HDL models generated bythe ASM
Environment are synthesizable by a commeriagic
synthesis tool. Thusapid prototyping onFPGAS is
supported. Furthermore, thiasnd theusage of
conventional layout synthesis tools provides a proven
way from the functional level down to mask level.

3. Instruction Set Description

The development of an instruction set of an
application specific microprocessor core the ASM
Environment is a highly iterative procedure starting
with a first draft coming either from the statistical
analysis of the application program or from a previously
generated processor corBhe instruction seand the
data processing hardwabdocks are specified in a C-
like language. The description is parsed by the
Instruction Set Specification Interfgoghich generates
the internaldatabase consisting of coupledta flow
and structure graphs [6].

/* the registers */

long dedireg pc; /* 16 bit pc */

dedireg fp, cc, ir; [* dedicated 8 bit regs */
register XY, Z; [* temp. regs */

nil NIL;

/* the busses */

memory dbus {r,w}; /* data bus */

long memory ibus {r};

[* variables */

int opcode, pc_l, pc_h;

/* the functional units */

branchcalc branch {add,adds};

statuscalc statcalc {U,U,U,U,C,N,Z,U};

alu alu_0 {&,|,*+, -,cmp,>>,==<=,~};
mask mask_0 {0, 1, 8, 16,255};

incrementer inc_0 {++};

jmpmux jump_0O, jump_1;

cline alu_crin_ctrl0 {status}, stop {one,zero};

Fig. 2 : Declaration of the hardware elements

Roughly divided the
contains three sections :

instruction set description

1. Declaration of the available hardware elements
(registers, busses, ports, functional units)
Declaration and assignment of temporary variables

3. Instruction scheduling description

Fig. 2 shows an example for section 1. Registersses
and functional units like theALU or adedicated
branchcalculator are declared in thiction. All units
can be declared as singleord or double wordunits
where theword widthhas to beredefined to 4, 8 or 16
bit.

/* the instructions */
instructionset() {

switch (opcode) {
case lwg : seq(par(Y=ibus[pc],X=X,PCINC),
par(X=X,Z=dbus[Y]),
par(dbus[X]=Z,PREFETCH));

case swg seq(par(Y=ibus[pc],Z=dbus[X],PCINC),
par(dbus[Y]=Z,PREFETCH));

: seq(par(fp=X, X=X-1),
par(pc_l=dbus[X],X=X-1),
pc_h=dbus[X],
par(PREFETCH));

case rtf

Fig. 3 : Examples of an instruction set description

The ASM Environmentwas used to describe the
instruction set of a smalRISC architecture.This
architecture was designed to suppGHprogramming
and fast context switching. The description of three
instructions (load word global (lwg), store word global
(swg), return from function (rtf)) of this processor is
shown in Fig. 3. Th&eywordspar andsegmean, that
the parenthesized actions are happening concurrently or
sequentially, respectively. Ale complete information
about operation schedulingnd resource allocation is
part of the instructioset description it could be seen as
another form oSymbolicmicroprogrammingHowever
the description on thievel usually is compact enough
so that additionaéffort for further automatiorwas not
made at this stage.

4. Hardware-Software-Cosimulation

The needor a cosimulation tool arises immediately
since an iterative optimization of the instruction set
might be necessaryWith a standalone conventional
circuit simulator such a simulation taskould be
difficult to handle - thegroblem is the data abstraction
and the lackingnoninteractive simulation control as
well as the lack of software debugging aids.

In the ASM Environment cosimulatiohas to be
understood as the simulation opeocessorunning his
application software together widldditional hardware.
The processorand the additional hardwaexist as
behavioural modulesThis is a majodifference to the
system ofThomas, Adamsand Schmit [7]where the
softwareruns as alifferent UNIX process on general
purpose CPU, i.ethe hostsystem. Their approach
requires a complicated synchronization mechanism
betweenthe differerprocesses, whichan beavoided
with our approach. On the othdrand a software

processrunning on thehost system allows to use
conventional sourceode debuggersSince this is not
possible in our approach, it motivated us to design the
MicroDebugger The MicroDebuggeris dedicated to
debug softwareunning on asimulated processarore

as well asthe simulated hardware itself. Thus the
MicroDebuggerincorporates the following features :

* A homogeneous user interface throughout all
abstraction levels fromarchitectural evaluation
down to gate and even transistor level.

Assembler and C-source display with current
instruction highlighting.

Single clock, single step as well as fremning
operation.

Full symbolic access to C-variablefiardware
registers and processor inputs/outputs.

» Support of program and data break points. Program
break points can bepecified inthe C- asvell as in

the assembler display.

Interface to théatapath Animatofor highlighting
the active connections.

During a cosimulation session the simulator
transmits the current value of the program counter to
the MicroDebuggerat a configurable condition, e.g. an
active clock edgeThis enables theMlicroDebuggerto
highlight the corresponding line in the assembler listfile
and the Capplication program. Then the simulator
enters a wait state - it remains in this statdil it
receives a message or request ftbeaMicroDebugger.

In case of a single step or a freening operation the
MicroDebuggersendssimulatecommandsuntil a load
instruction register event (single step) or a breakpoint
event (e.g. pc value matches the address breakpoint) is
detected.

Furthermore theool provides a comfortableay to
simulate large programs including reaction on external
events without manual intervention. In thiscase
simulator control commands can $ggecifiedwithin the
software codeising a dedicated directive. For example,
peripheral timers can be set to a predefinatle or
interrupts can be triggered automatically. This feature is
particularly powerful fomwriting complete suites of test
programs which usually serve as a reference in all
stages of top-down design.

In order to achieve maximum portability the
graphical interface of th®licroDebuggerwas designed

with the XView library running on top of thé-window version works as a client/server application udingX
system. Usuallyduring a software debugging session sockets. Fig. 4hows a screenshot of a cosimulation
the simulator will be iconized as this increases the session with the MicroDebugger and the Lsim
simulation speed by a factor of 2. Wherdhe first simulator.

implementation of the tool communicated over

bidirectional named pipes with the simulator, tiesver

T ! 1 -
=| Lsm295: [—| =xclock | o |L1]
[FR [— "]

Task Control Table Ez.Z2 Status \\\‘U.p.,%‘
CTP 4 —_— = B
TCB1_FP ca L " HHH :

TCB1_ST uninit P — boe BREAK - S =
ST1_COUNT uninit = 1 CONTROL POINTS SIGNALS 2 A E
TCBZ_FP da = SXSlEd s 5 <
- - i 41 i -
TCB2_ST uninit ir : K SR
?Eéacggm— E::::E Simulate; Stop Go_Step | Go_Cursor | Go_Break | Go_End | o
TCB3_ST uninit .) Cycles 1
hiL H Ll Lsim Mode: i — H
ST3_COUNT uninit 203+ @41 Interactive | Remote Instructions : 131
= e To a1 50 sa L T
t2.2 Activation Frame

last unimpl

last unimpl @1

last unimp1

7 unimpl @1

[=H unimpl

5: unimpl @RI+ @049 @041 Q42

4: unimpl ;L22

3k unimpl =& 3 24 "tasks.c”

2: unimpl i off1=0,m1=0xff

é un impcll. 41 [=1a) 28 =1 fa 23 "tasks.c”
-1 uninit 28 15K : off1=0,c1=1
=2 init ‘ -

| A | # 23 "tasks.c”
=] FhG-IMS C-Tracer Version 2.22- Beta for 12.2 T= 0] ; off1=0.c1=8

#define PORTO (*(volatile int *) 0x02) =l 4 75 "acke.c" S

i %, 1 i ES 4 "
#define PORT1 (*{velatile int *) Ox03) ; off1=0,c1=6
> 425 "tasks.c”
;faskm : LR_=L25
int i; gy 5
26 "tasks.c
while (17 ; off1=0,m1=0xff
for (i=2; 1<6; ++1) # 25 "tasks.c
PORTO = i; Los i off1=0,c1=1
for (i=4; i=0; _E’%RTO= y 75 "tasks.c"
3 e i off1=0,c1=0
3 J LR_=L24
sLsim | irglol
25 "tasks.c"
N LR_=L21
taskz) sLsim hiraglol
i o !
int i; 4
while (135 W4 Handler
L text OX300
i=F 0 ——i ;_irqo_handler:
A e P%RTO - ;74 scheduler of jr=RTK (preemptive, round-robin, no blocking, n
3 3 i l'wa off1=7m1=CTP
- ; sfp
|

Fig. 4 : Cosimulation session with th&VS MicroDebugger

5. Datapath Generation _
After evaluation of the instruction set on the 6. Control Path Synthesis

architectural level, functional models tifie datapath As a byproducthe Model Synthesizeproduces the
are generated by thdodel SynthesizelSimilar to the microcode in an uncompacted binary form totally free
approach in [1], the model generationbased on a of implementation issues. In general there isd@ce
module library which comprises ALUSs, between a microcoded or l@ardwired controlpath.
incrementer/decrementer, branghd status calculator, Depending on the chosen implementatistyle, the

mask generator, etc. Control Path Synthesizenas tofulfil different tasks.

For a microcoded machine the main task ishioose an
adequate sequencing mechanisand toapply [1]
compaction techniques [8,9]. For hardwired control the
binary microcode is associated withe output of a
finite state machine. The number of states mainly
depends on the availability of thepcodeduring a
complete instructiorcycle. The maintasks now are
state reduction by commotail sharing andstate
assignment usin§lOVA [10], MUSTANG [11] or the
newer STOIC [12] algorithm.

(2]

(3]

The Control Path Synthesizas programmed in C [4]
and incorporates a C-Scheme interface as a Lisp
interpreter. Thisallows to write meta-programs with
different strategies forgenerating an area-efficient
implementation of the control in form of an HDL
model.

[5]

[6]

7. Conclusion and Further Investigations

We presented a new CAD system fioe automatic
synthesis of application specific microcontroller cores.
The ASM Environment consists of a settobls for
instruction set description, HW-SW-cosimulation of the
processor together withthe applicatiorsoftware,
compiler generation, datapathand controlpath
synthesis, and datapath animation.

[7]

[8]

The hardware-software cosimulation tool
MicroDebugger proved it's usefulness throughout
numerous design sessions. One of the microcontroller
designs included a collection of timeand counters
which were in a complexnteraction with external
eventsand of significansequential depth %22 bits).
How can arevent which occurs onlgvery 22 clock
cycles be simulated safely and reproducable in a
complex systemenvironment? The problem was
perfectly addressed by our cosimulation tool which is
able to preset any register or state of gayt of the
simulated system using automatedand sychronized
mechanisms.

[9]

[10]

[11]

Further investigations will be performed in the
improvement of the Instruction SeSpecification
Interface and theControl Path Synthesizer. For
example we have nogtet applied our approach to the
synthesis of complex pipelined architectures. Another
branch of research will be area estimatirs different
implementatiorstylesduring controlpathsynthesis and
the meta-programming. Since morand more
applications use anEEE 1149.1 conformantest
interface, theMicroDebugger will be enhanced for
semiautomatic simulation of such an interface.

[12]

References

Alomary, A., Takeharu, N., Yoshimichi, H., Jun,
S., Nobuyuki, H., Masaharu, I.: "PEAS-I: A
Hardware/Software Co-design System for ASIPs",
Proc. of Euro-DAC '93pp. 2 - 7, 1993
Camposano, R., Walker, R.A., edsA Survey of
High-Level Synthesis Systémsluwer Academic
Publishers, 1991

Camposano, R., and Wolf, W. eddtigh Level
VLSI Synthesis Kluwer Academic Publisher,
1991

Catthoor, F., Svensson, L., edsApplication-
Driven Architecture SynthesjKluwer Academic
Publishers, 1993

Krohm, F.: 'Ein retargierbarer Compiler fur
anwendungsspezifische MikrocontrollevDI
Verlag, R.20, Nr.69, 1992

Haeck, H.-G., Krohm, F., Manoli, Y. : "Data Path
Synthesis from a Microcontroller Instruction Set
Specification in MicroSyn"Microprocessing and
Microprogramming 32North Holland, pp. 193 -
198, 1991

Thomas, D.E., Adams, J.K., Schmit, H. : "A
Model and Methodology for Hardware-Software
Codesign"|EEE Design & Test of Computers
September 1993, pp. 6 - 15

Landskov, D., Davidson, S., Shriver, B., Mallett,
P.W.: "Local Microcode Compaction
Techniques"ACM Computing Survey¥ol.12,
No.3, 1980

Wei, R.-S., Tseng, C.-J. : "Column Compaction
and Its Application to the Control Path
Synthesis"]JEEE Trans. on CADpp. 320 - 323,
1987

Villa, T., Sangiovanni-Vincentelli, A.: "NOVA:
State asignment of finite state machines for
optimal two-level logic implementationgProc.
26th Design Automation Conferengp. 327 -
332, June 1989

Devadas,S., Ma,H.T., Newton,A.R., Sangiovanni-
Vincentelli,A., "MUSTANG: State Assignment of
Finite State Machines for Optimal Multi-Level
Logic Implementations'Proc. ICCAD 87 1987,
pp. 16-19

Pomeranz, I., Cheng, K.-T. : "STOIC: State
Assignment Based on Output/Input Functions",
IEEE Trans. on CAD of Integrated Circuits and
SystemgsVol. 12, No. 8, pp. 1123 - 1131, August
1993

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

