
A Performance Evaluator for Parameterized ASIC Architectures
y

Jie Gong, Daniel D. Gajski and Alex Nicolau

Department of Information and Computer Science

University of California, Irvine, CA, 92717, USA

Abstract

System-level partitioning assigns functional objects such

as tasks or code segments to system-level components such
as o�-the-shelf processors or application-speci�c architec-
tures in order to meet design constraints. Characterization
of these system-level components and performance evalua-
tion of given applications on these components are crucial
to system-level partitioning. In this paper, we propose a
new parameterized architecture model of system-level com-
ponents and present an algorithm for rapid performance
estimation. The model, di�erent from those proposed pre-
viously, reects comprehensive architectural characteristics

a�ecting machine parallelism. By using an ultra-�ne-grain
scheduler which exploits the parallelism in the model, we
can evaluate performance of applications assigned to vari-
ous architectures.

1 Introduction

Performance evaluation is indispensable in system par-
titioning [1, 2] which assigns functional objects such as
tasks or code segments to system-level components such as
o�-the-shelf processors or application-speci�c architectures
to satisfy system constraints. Research in [3, 4, 5] has ad-
dressed issues on performance evaluation for o�-the-shelf
processors while [3, 6, 7, 8] have reported methods used
in performance evaluation for application-speci�c architec-
tures. However, previous e�orts on performance evaluation
for application-speci�c architectures are very restrictive in
the sense that they only take into account the number and
type of functional units used in the architecture. They
do not consider other important architectural characteris-
tics such as the number of buses, the number of memory
ports, and connection styles, which a�ect machine paral-
lelism greatly.

In this work, we propose a more detailed and com-
prehensive parameterized architecture model which allows
a designer to con�gure di�erent architectures containing
various functional units, storage elements, and intercon-
nect units. Furthermore, an ultra-�ne-grain scheduler
incorporating various architecture styles and constraints
has been developed to exploit the machine parallelism
in architectures instantiated from the model. While the
functionality of the ultra-�ne operations is similar to mi-
crocode, we use it for purposes of performance evaluation
rather than code generation. Thus, to avoid confusion,
we coined a new term. The ultra-�ne-grain scheduler, to-
gether with the parameterized model, enables designers

yThis work was supported by the Semiconductor Research
Corporation (grant #92-DJ-146).

to evaluate application-speci�c architectures more exten-
sively and precisely.

Performance is not only a�ected by machine parallelism
in architectures but also by program parallelism in appli-
cations. Program parallelism is a measure of the aver-
age number of operations executable concurrently given
enough resources while machine parallelism is a measure
of the ability of an architecture to take advantage of pro-
gram parallelism. In our system, a parallelizing compiler
is used to exploit massive program parallelism in applica-
tions. The role of program parallelism can be examined
by scheduling an application on an architecture with and
without parallelism extraction.

Our performance evaluator allows designers to evaluate
di�erent architectures and de�ne suitable architectures for
given applications. A suitable architecture is one in which
machine parallelism does not limit the execution of pro-
gram parallelism and at the same time machine parallelism
is fully utilized. The constituents of each selected archi-
tecture can be passed on to high-level synthesis tools as
allocation information to guide the synthesis of the corre-
sponding ASIC.

An overview of the system is shown in the next section
followed by an introduction to the parameterized archi-
tecture model in section 3. Algorithms used in the ultra-
�ne-grain scheduler are discussed in section 4. Section 5
discusses some of the experiments conducted to evaluate
various architectures. Finally, section 6 describes the con-
clusion and the future work.

2 System overview

A block diagram of the system is shown in Figure 1.
The GNU C compiler translates a C program into three-
address instructions. The three-address instruction format
is based on a RISC-like load/store architecture in which
only load and store operations can access memory and all
other operations work on registers. The compiler uses 32
registers. A �ne-grain VLIW compiler with percolation
scheduling and loop pipelining using unlimited resources
is applied to �nd program parallelism beyond basic blocks
and conditional boundaries [6, 9]. We have developed an
ultra-�ne-grain scheduler to exploit machine parallelism in
architectures instantiated from the parameterized architec-
ture model. A bypass is provided so that an application
can be scheduled onto the target architecture with or with-
out going through the VLIW compiler. We use a simulator
to mimic the execution of the serial three-address code, the
parallel three-address code as well as the parallel control
code. The simulator records dynamic statistics such as
the number of control steps executed, utilization of each
resource, etc.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee and/or speci�c permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

Simulator

GNU C compiler

Parameterized
architectures

Ultra−fine−grain
 scheduler

Parallel control code

C program

Serial 3_addr code

VLIW compiler

Parallel 3_addr code

Figure 1: The overall system

In this paper, we focus on the parameterized architec-
ture model and the ultra-�ne-grain scheduler. The brevity
of our discussion on other parts of the system does not im-
ply that they are trivial or simple; their discussion is out
of the scope of this paper. For details on these parts, see
references [6, 9].

3 The architecture model

System-level architectures usually consist of three types
of components: functional units such as adders and mul-
tipliers, storage elements such as registers and memories,
and interconnect units such as selectors and buses. The
parameterized architecture model de�ned below incorpo-
rates many architectural aspects thus enabling designers
to specify a wide variety of architectures ranging from a
completely serial architecture to a massively parallel archi-
tecture.

The parameterized architecture model is de�ned as fol-
lows:

� There are ni functional units of type Ti (e.g. Ti could
be adder, ALU, multiplier etc.), for a total of n =Pk

i=1
ni units.

� Each functional unit is associated with a latency de-
noted by li, li > 0. Latency is de�ned as the delay in
control steps from the input ports to the output port
of a functional unit. The various features of a func-
tional unit are speci�ed by setting boolean ags. A
true value to the WITHLATCH ag denotes that the
corresponding functional unit has input and output
latches; a true value to the PIPELINE ag speci�es
that the unit is pipelined, and the BYPASS ag is
used to signify the presence/absence of a bypass route
around a functional unit's output latch.

� There is one register �le with p ports and r registers,
p > 0 and r > 0. Reads from and writes to the
register �le are assumed to take 1 control step.

� There is one memory module with m ports, m > 0,
and a latency of l, l > 0. A port has one MAR and
one MBR latch associated with it.

� There are b buses used to connect di�erent compo-
nents, b > 0. Interconnections are speci�ed by a

B1

B2

B3

B4

P1 P2

ALU1

L3 R3

O3

MUL3
REGISTER
 FILE MEMORY

L2 R2

O2

ALU2

MUXMUX

OUT1

IN1 IN2

OUT2

MBR

MAR

Figure 2: A concrete architecture

binary connection table M . The row indices of the
matrix M are buses and the column indices of M are
latches or ports. Entry M [i; j] has value `1' if there
is a connection between busi and elementj, otherwise
M [i; j] has value `0'.

A concrete architecture can be obtained by specifying
values for the parameters. Figure 2 shows an architecture
consisting of two ALUs and one multiplier. The latencies
of ALU1, ALU2, and MUL3 are 1, 2, and 3 respectively.
ALU1 has no input/output latches. ALU2 andMUL3 have
left, right, and output latches: L2, R2, O2, L3, R3, and
O3. ALU2 has a bypass route around its output latch.
IN1, IN2, and OUT1 denote the input/output ports of
ALU1. There is a register �le which has two ports, P1
and P2, and one memory module which has one port with
two latches, MAR andMBR. There are four buses, B1, B2,
B3 and B4, as well as some multiplexers for connections
among these di�erent components. The interconnection
table for this concrete architecture is shown in Figure 3.

L2 R2 O2 L3 R3 O3 P1 P2 MAR1

1 1 1

1 1 1 1 1

MBR1

1

1

1

1

1 1 11 1 1 1

IN1 IN2 OUT1

1

1

OUT2

0 0

0

0

0

0

0 0 0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0 0

0B1

B2

B3

B4

Figure 3: Connection table for architecture in Figure 2

4 The ultra-�ne-grain scheduler

The ultra-�ne-grain scheduler takes either serial three-
address code or parallel three-address code as input and
maps it onto the target architectures speci�ed by the ar-
chitecture model described in the last section. It compiles
three-address operations into control code (i.e. ultra-�ne
operations) which describes data transfers between archi-
tectural elements. As an example, consider the execution
of a three address addition \Reg3 = Reg1+Reg2" on ALU2
in Figure 2. One possible sequence of the data transfers is:
Reg1 ! L2, Reg2 ! R2; L2 ALU2 R2 ! O2; O2! Reg3
or Reg1 ! L2, Reg2 ! R2; L2 ALU2 R2 ! Reg3 if ag
BYPASS of ALU2 is set. Whether a set of data transfers
can be scheduled in parallel is determined by the avail-
ability of required resources. For example, suppose at the
control step when Reg1 ! L2 is scheduled, bus B3 is oc-
cupied by another data transfer, then even if register �le
ports are available, the data transfer Reg2 ! R2 has to

wait until B3 is available. Scheduling parallel data trans-
fers under architecture constraints is the main task of the
ultra-�ne-grain scheduler.

The ultra-�ne-grain scheduler consists of three compo-
nents: a basic block recognizer, a data dependence graph
builder and a scheduler and binder. We briey introduce
the �rst two tasks which use standard techniques and dis-
cuss our algorithm for the third task, i.e., scheduling for a
target architecture.

4.1 The basic block recognizer

The basic block recognizer takes serial or parallel three-
address code and �nds the basic blocks in the code. It uses
a standard algorithm which basically �nds the entry node
of a basic block �rst, then lists the operations that belong
to the same basic block until the entry node of the next
basic block is found.

4.2 The data dependence graph builder

The dependence graph builder takes a basic block as
input and produces a data dependence graph (DDG) for
the list of three-address operations, L, of the basic block.
A DDG is a directed acyclic graph G = (V;E). Each node
in V is a three-address operation. Each edge in E is one of
the three types of dependence edges: (1) ow dependence
(write-read) edges; (2) anti-dependence (read-write) edges;
and (3) output dependence (write-write) edges. The de-
tailed algorithm to build a DDG is reported in [10]. The al-
gorithm creates a node in DDG for each three-address in L.
Then the algorithm creates the ow dependence edges, the
output dependence edges and the anti-dependence edges
among the nodes in DDG.

Given a DDG that exposes program parallelism, the
mobility of each node in DDG is computed. Mobility [11]
is a measure of urgency that a node (operation) needs to be
scheduled. A smaller value of mobility indicates a higher
urgency for scheduling. Nodes in the critical path have
zero mobility; they need to be scheduled as soon as they are
ready and resources are available. A ready node represents
an operation that has all predecessors already scheduled.

4.3 The scheduler and binder

The scheduler and binder takes a DDG as input and
then schedules and binds operations in the DDG to re-
sources given in the target architecture. The scheduling
algorithm is a variation of list scheduling [11], which incor-
porates various architectural parameters. The algorithm
shown below as Algorithm 1 basically considers the re-
quired functional units and memory resources for the op-
erations �rst and then considers the required bus and reg-
ister �le port resources. Next, we describe each procedure
used in the algorithm.

Assume the target architecture has ni functional units
of type Ti, i = 1, . . ., k. The algorithm uses a priority list
L for each type Ti to queue corresponding ready nodes.
These lists are denoted by the variables LT1 ; . . . ; LTk . The
algorithm also builds a priority list LM to queue memory
type operations such as store or load operations. Besides
these priority lists, the algorithm uses a special priority
list LW to queue the operations which have been assigned
to either functional units or memory ports but are waiting

for bus or register �le port resources. LW is a list of tuples
< op;r > indicating that operation op has been assigned
to the resource r. Each priority list is sorted with respect
to a priority function. In the algorithm, the mobility of
a node is used as the priority function. Nodes are sorted
in ascending order of their mobilities. Initially all priority
lists are empty.

Algorithm 1: Scheduling DDG to Target Architecture
C = 0;
INSERT RDY OPS(DDG, LT1 ; . . . ; LTk ; LM ; C+1);
while (LT1 [. . . [LTk [LM [LW [DDG) 6= � do

C = C + 1;
/* assign functional units to their ready lists */
for i = 1 to k do

while (QTi 6= �) \ (LTi 6= �) do
r = FIRST(QTi);
op = FIRST(LTi);
INSERT(LW , < op; r >);
QTi = DELETE(QTi , r);
LTi = DELETE(LTi , op);

end while
end for
/* assign memory resource to its ready list */
while (QM 6= �) \ (LM 6= �) do

r = FIRST(QM);
op = FIRST(LM);
INSERT(LW , < op; r >);
QM = DELETE(QM , r);
LM = DELETE(LM , op);

end while
/* assign bus and register �le port resource to LW */
for each < op; r >2 LW do

if CONNECT RESERVED(op, r, C, CRT)
then

SCHEDULE OP(op, r, C);
x = RESOURCE RELEASE STEP(r, C);
RRQ = INSERT(RRQ, < r; x >);
for each outgoing edge e of op do

y = EDGE DELETION STEP(op, e, C);
EDQ = INSERT(EDQ, < e; y >);

end for
LW = DELETE(LW , < op; r >);

end if
end for
/* recollect resources released at next step */
RECOLLECT RESOURCES(RRQ, QT1 ; . . . ;QTk ;

QM , C+1);
/* delete edges needed to remove at next step */
DELETE EDGE(EDQ, DDG, C+1);
/* insert nodes ready at next step in lists */
INSERT RDY OPS(DDG, LT1 ; . . . ; LTk ; LM , C+1)

end while

There is a queue for each type of resource. These queues
are denoted by the variables QT1 ; . . . ;QTk , and QM . Ini-
tially there are ni resources of type Ti in QTi . Suppose
two ALUs of the same type and one multiplier exist in
the given architecture. Then, initially, there are two re-
sources ALU1, ALU2 in QALU and one resource MUL3

in QMUL. If the memory has k ports, then there are k
resources in QM initially. Recall that the connection of
the architecture is represented by a matrix M . The row
indices of the matrix are buses. The column indices of the
matrix are latches and ports. Entry M [i; j] has value `1'

if there is a connection between busi and elementj, oth-
erwise M [i; j] has value `0'. Note that a register �le port
or a bus is always used by only one control step and can
always be released in the next control step, therefore, we
do not use resource queues for register �le ports or buses.
Instead, we use a connection-reservation table (CRT) to
record whether they are used at certain control steps. The
row indices of CRT are buses and register �le ports. The
column indices of CRT are control steps. CRT [i; j] is `1'
if elementi is reserved at control step j, otherwise it is `0'.
Initially, all entries in CRT are zeros.

There are two auxiliary data structures. A resource-
releasing queue (RRQ) is used to record at which control
step C the occupied resources r can be released. It is a
queue of tuples < r; C >. An edge-deletion queue (EDQ)
is used to record at which control step C the edge e can be
deleted from the DDG. It is a queue of tuples < e;C >
Initially, RRQ and EDQ are empty.

INSERT RDY OPS(DDG;LT1 ; . . . ; LTk ; LM ; C) in-
serts nodes in DDG, that are ready at control step C,
into their corresponding priority lists. A ready node in
DDG is one whose in-degree is zero i.e., has no incoming
edges. INSERT READY OPS deletes those ready nodes
from DDG but does not delete their outgoing edges.

DELETE(L;x) returns the new L in which x has been
removed. INSERT(L;x) returns the new L in which x has
been inserted. FIRST(L) returns the �rst element of L.

CONNECT RESERVED(op; r;C;CRT) returns false if
the bus and register �le port resources required by
op can not be ful�lled in CRT . Otherwise, CON-
NECT RESERVED returns TRUE and marks those en-
tries of CRT reserved by op. The reservation process uses
a look-ahead approach. For example, let's assume that the
current control step is C, and resource r to which operation
op is assigned is a functional unit with latency of l and has
both input and output latches. The reservation procedure
will try to look up column C and column C+ l+1 of CRT
as well as connection matrix M to decide if there are buses
and register �le ports available for scheduling the opera-
tion op, since op will need buses and register �le ports at
control step C and control step C + l + 1 to move data
between register �le and latches. If the resources are avail-
able, then operation op will be scheduled at this control
step. Otherwise it has to be delayed.

SCHEDULE OP(op; r; C) creates the scheduling se-
quence for op starting from control step C. The sequence
depends on the resource type, latency, and style etc. For
example, suppose r is a functional unit with latency of 1
and has both input and output latches. The scheduling
sequence for op will be, (1) in control step C, contents of
source registers are moved to input latches of r, (2) in step
C + 1, `Lr op Rr' are moved to Or where Lr , Rr and Or
are the left, right, output latches of r respectively, (3) In
step C + 2, contents of the output latch is moved to the
destination register.

RESOURCE RELEASE STEP(r;C) returns the con-
trol step at which the occupied resource r is released. This
step depends on the resource type, latency, and style (e.g.
pipelined/non-pipelined) as well as the current control step
C. For example, suppose r is a functional unit with latency
l and it is used at step C, r will be available at step C +1
only if it is pipelined. If r is not pipelined, it will be avail-
able at step C + l.

(1, fully) (2, partially) (2, fully) (3, partially) (3, fully) (4, partially) (4, fully) (5, fully) (8, fully)
0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

S
pe

ed
_u

p

WITHOUT VLIW COMPILER
WITH VLIW COMPILER

GLRE

GLRE

HFL

COS

FFT

FFT

COS

HFL

(Number_of_buses, Connection style)

Figure 4: A study for bus constraints

EDGE DELETION STEP(op; e;C) returns the control
step at which an outgoing edge e of op in DDG should be
removed. This step depends on the resource type, latency,
style, current control step C as well as the type of the edge.
For example, a outgoing ow dependence edge of op can be
deleted after the step at which the destination register of
op is written while an anti-dependence edge can be deleted
after the source registers of op are read.

RECOLLECT RESOURCES(RRQ;QT1 ; . . . ;QTk ;QM ;
C) �nds out from RRQ all resources released at the control
step C and inserts them to their corresponding resource
queues.

DELETE EDGE(EDQ;DDG;C) �nds out from EDQ
all edges that need to be deleted from DDG at control step
C and deletes them from DDG.

5 Experimental results

To evaluate di�erent architectures with various con-
straints several orthogonal experiments have been con-
ducted. Four applications are used in the experiments: a
fast Fourier transformation program (FFT), a Cosine com-
putation program (COS), a hydro fragment loop (HFL)
and a program of general linear recurrence equations
(GLRE). The absolute performance of a program is mea-
sured by the number of control steps required to execute
the code. Speed up is used to measure relative perfor-
mance and de�ned as x=y, where x is the performance
obtained for the reference architecture whereas y is the
performance obtained for the architecture to be evaluated.

5.1 Bus constraints

1/1/2 2/1/2 3/1/2 4/1/2 3/2/2 4/2/2 4/3/2
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

S
pe

ed
_u

p

WITHOUT VLIW COMPILER
WITH VLIW COMPILER

Number_of_ALUs/Number_of_Multipliers/Number_of_Memory_Ports

HFL

GLRE

FFT

COS

GLRE

HFL

COS

FFT

Figure 5: A study for functional unit constraints

We �rst study the impact of bus constraints on per-
formance. The chosen architecture has one ALU with a
latency of 1 and one Multiplier with a latency of 3. Both
units are pipelined and have input and output latches. The
architecture has a one-port memory with a latency of 2.

We use di�erent numbers of buses and connection styles
for the chosen architecture. Functional units and memory
are fully or partially connected to the buses. The register
�le in the architecture has the same number of ports as
the number of buses used. Register �le ports are fully
connected to the buses, i.e., every register �le port has a
connection to a bus.

The results are shown in Figure 4. The vertical axis
represents performance speed up compared with a refer-
ence point. The reference point in the graph is the perfor-
mance of the program without going through the VLIW
compiler and executing on the architecture with 1 bus.
The horizontal axis represents di�erent architecture con-
straints. The �rst element of the tuple indicates the num-
ber of buses. The second element of the tuple indicates bus
connection styles. Fully denotes the fully-connected style
while partially denotes a partially-connected style. De-
tails of the partially-connected style for each architecture
can be found in [10].

The results show that, increasing bus number from 1
and 2 can improve the performance for all applications
dramatically. For some applications with moderate paral-
lelism, 3 buses will be enough. For applications with lots
of parallelism, 4 buses would be good. We can view these
programs after parallelism extraction by the VLIW com-
piler as new programs with more parallelism. The results
also show that unless resources are highly constrained, us-
ing the parallelism beyond basic blocks (extracted by the
VLIW compiler) can dramatically improve performance.

3/2/1 3/2/2 3/2/3 3/2/4

Number_of_ALUs/Number_of_Multipliers/Number_of_Memory_Ports

0.8

1.1

1.3

1.6

1.8

S
pe

ed
_u

p

WITHOUT VLIW
WITH VLIW

HFL

GLRE

FFT

COS

GLRE

HFL

COS

FFT

Figure 6: A study for memory port constraints

5.2 Functional unit constraints

To study the impact of the number of functional units
on performance, we assume an architecture that has ALUs
with a latency of 1, multipliers with a latency of 3, one
memory with a latency of 2 and 2 ports. Every unit has
input-output latches. The ALUs and multipliers are not
pipelined. There are 4 buses which are fully connected
with units and ports. There is a register �le with 4 ports.

The results are shown in Figure 5. For some applica-
tions, the performance improves along with the increment
in the number of ALUs. For other applications, increas-
ing the number of multipliers improves the performance.
This shows that for di�erent types of applications, di�er-
ent types of functional units should be provided in order
to improve performance.

One interesting phenomenon is that program GLRE af-
ter VLIW parallelizing compiler performs worse than that
without using VLIW parallelizing compiler on the architec-
ture with 1 ALU and 1 multiplier. The reason is that the
version of the VLIW compiler used in these experiments
introduces some overahead such as duplicated operations
in di�erent blocks during the parallelization process. The
small amount of machine parallelism o�ered in the archi-
tecture can not compensate for the overhead introduced.

5.3 Memory port constraints

In this experiment, we study how the number of mem-
ory ports a�ects performance. The architecture we use has
2 multipliers with a latency of 3, 3 ALUs with a latency
of 1, 1 memory with a latency of 2. Every unit has input-
output latches. ALUs and multipliers are not pipelined.
There are 3 buses that are fully connected with functional

1/1 2/2 3/3 4/4 5/5 6/6

Number_of_ALUs/Number_of_Multipliers

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2
S

pe
ed

-u
p

WITHOUT VLIW, PIPELINED
WITH VLIW, PIPELINED
WITHOUT VLIW, NON-PIPELINED
WITH VLIW, NON-PIPELINED

GLRE

GLRE

FFT

FFT

Figure 7: A study for pipeline vs. nonpipeline

units and memory/register �le ports. There is a register
�le with 3 ports.

Figure 6 shows the results. We notice that increasing
the number of memory ports helps applications which have
more memory accesses such as the FFT. And it does not
help performance for applications with few memory ac-
cesses. While not surprising, this underlines the need for a
tool such as the one proposed to enable study of applica-
tion characteristics and their interaction with architecture
selection in ASIC design.

5.4 Temporal parallelism vs. spatial par-

allelism

In this experiment we compare two types of parallelism:
temporal parallelism which is achieved by pipelining and
spatial parallelism which is achieved by using multiple
functional units. The architecture we use has 6 buses,
fully connected to functional units and memory/register
�le ports. There is a memory with 4 ports and a register
�le with 6 ports. ALU has a latency of 1, multiplier has
a latency of 3 and memory has a latency of 2. Every unit
has input-output latches.

We observe from Figure 7 that a design with 1 pipelined
ALU and 1 pipelined multiplier results in machine paral-
lelism similar to a design with 2 or 3 non-pipelined ALUs
and 2 or 3 non-pipelined multipliers. Essentially, pipelin-
ing requires less resources to achieve similar performance.

6 Conclusion and future work

We have presented a comprehensive parameterized
model to characterize various architectural styles and con-
straints and an ultra-�ne-grain compiler to exploit machine

parallelism in architectures instantiated from the architec-
ture model. A set of experiments have been conducted to
show how various architectures can be evaluated. Through
such an evaluation, architectures suitable for given appli-
cations can be selected. The constituents of each selected
architecture can be passed on to high-level synthesis tools
as allocation information to aid the synthesis of the corre-
sponding ASIC.

Future work will be on conducting more experiments to
study the the performance impact of other architectural
parameters such as the number of register �le ports and
the number of pipeline stages of functional units as well as
the combined impact of various architectural parameters.
Also, we will explore the possibility of extending the pa-
rameterized architecture model from bus-based model to
point-to-point model.

The algorithm used in the ultra-�ne-grain scheduler has
room for improvement. For example, heuristics besides
mobility can be used in the priority function to exploit
more parallelism. Also, the use of a more sophisticated
VLIW compiler that takes bus constraints and operation
pipelining into account may further improve the results.

7 Acknowledgements

Our system is built on a version of the VLIW compiler
implemented by the PS group at UC Irvine. We would
like to thank Roni Potasman for his discussions and sug-
gestions regarding this work.

References

[1] R. Ernst and J. Henkel, \Hardware-software codesign
of embedded controllers based on hardware extraction,"
in International Workshop on Hardware-Software Co-
Design, 1992.

[2] R. Gupta and G. DeMicheli, \System-level synthesis using
re-programmablecomponents," inProceedings of the Euro-
pean Conference on Design Automation (EDAC), pp. 2{7,
1992.

[3] W. Ye, R. Ernst, T. Benner, and J. Henkel, \Fast timing
analysis for hardware-software co-synthesis," in Proceed-
ings of the International Conference on Computer Design,
pp. 452{457, 1993.

[4] J. Gong, D. Gajski, and S. Narayan, \Software estimation
from executable speci�cations," in Journal of Computer
and Software Engineering, 1994.

[5] W. Wolf and J. Martinez, \C program performance esti-
mation for embedded systems architecture sizing," in In-
ternational Workshop on Hardware-Software Co-Design,
1993.

[6] R. Potasman, Percolation-based compiling for evaluation
of parallelism and hardware design trade-o�s. PhD thesis,
University of California, Irvine, 1992.

[7] S. Narayan and D. Gajski, \Area and performance estima-
tion from system-level speci�cations." UC Irvine, Dept. of
ICS, Technical Report 92-16,1992.

[8] A. Timmer, M. Heijligers, and J. Jess, \Fast system-level
area-delay curve prediction," in Proceedings of APHDLSA,
1993.

[9] A. Nicolau, \Uniform parallelism exploitation in ordinary
programs," in Proceedings of International Conference on
Parallel Processing, 1985.

[10] J. Gong and D. Gajski, \Exploiting ultra-�ne grain paral-
lelism for machines with parallel pipelined datapaths."UC
Irvine, Dept. of ICS, Technical Report 92-112,1992.

[11] D. Gajski, N. Dutt, C. Wu, and Y. Lin, High-Level Syn-
thesis: Introduction to Chip and System Design. Boston,
Massachusetts: Kluwer Academic Publishers, 1991.

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

