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Abstract

We present algorithms for computing separations

between events that are constrained to obey rela-

tionships speci�ed by an acyclic event graph. The

algorithms are useful for interface-timing veri�ca-

tion, where separations are checked against timing re-

quirments. The �rst algorithm computes separations

when only linear and max constraints exist. The al-

gorithm is conjectured to run in O(V 2 logV + V E)

time. The second algorithm uses a branch-and-bound

approach to compute separations when min constraints

also exist. Experiments indicate the algorithms are ef-

�cient in practice.

1 Introduction

The automation of interface timing veri�cation is

important for the design of reliable systems composed

of several interconnected components. Due to man-

ufacturing or environmental variation, the delay be-

tween two signal transitions of a component may not

be a precise number, and is usually speci�ed with a

lower bound and an upper bound by the manufactur-

ers. Exhaustive simulation, where only a particular

delay value is checked at a time, is impractical for large

systems. Therefore, analytical veri�cation algorithms

are necessary to ensure that all timing requirements

will be satis�ed for all possible delay values.

We will present an e�cient interface timing ver-

i�cation algorithm based on the timing model used

by Gahlinger [1], and by McMillan and Dill [2]. It

uses two auxiliary graphs|compulsory constraints

and slacks|to quickly check constraint satisfaction.

Max-linear constraint systems are a subset of the more

general min-max-linear form of the interface timing

veri�cation problem, while min-max-linear constraint

satisfaction is known to be NP-complete. Max-linear

constraint systems are general enough, however, to

model a wide variety of interfaces. We have also used

�This work was supported by NEC, USA.

our e�cient max-linear veri�cation algorithm as the

basis for a practical branch-and-bound algorithm for

the general min-max-linear problem.

Our veri�cation methods operate on a graph-based

form of timing diagram; our present algorithm is re-

stricted to acyclic timing diagrams. A timing diagram

consists of a set of signals on which events occur, where

an event is a change in the value of a signal. The inter-

face speci�cation includes timing characteristics and

timing requirements which represent relationships be-

tween the times of events. Timing characteristics are

represented by a set of delay constraints. A delay con-

straint cij, with a lower bound lower[cij] and an upper

bound upper[cij], belongs to one of the three types:

� linear

max
i
(time[i] + lower[cij ]) � time[j]

� min
i
(time[i] + upper[cij])

� max

max
i
(time[i] + lower[cij ]) � time[j]

� max
i
(time[i] + upper[cij])

� min

min
i
(time[i] + lower[cij]) � time[j]

� min
i
(time[i] + upper[cij])

We model the timing diagram and its characteristics

by an event graph whose nodes represent events and

whose weighted, directed edges represent the delay

constraints. Two events may have an uncertainty in-

terval for their time separation. Our goal is to verify

that all allowable values of the time separations satisfy

the timing requirements and the given constraints are

consistent|at least a solution exists. We need to �nd

only the maximum separations, because a minimum

separation value can be easily computed from a max-

imum separation value by min(time[i] � time[j]) =

�max(time[j] � time[i]). The typical timing ver-

i�cation problem is created when two components,

each with their own timing diagram speci�cation, are

plugged together to create a system; computing sep-
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arations ensures that each component meets the re-

quirements of the other.

Vanbekbergen et al. [3] give a graphic interpretaion

of the di�erences among the three types of delay con-

straints. Gahlinger [1] points out all the three types of

constraints are necessary for modeling interface tim-

ing. It is important not to confuse the max and min

constraints described here with the maximumor mini-

mumconstraints used in some other literature. Gener-

ally, those maximum or minimum constraints are the

same as the upper bounds or lower bounds in the lin-

ear constraints. While all the lower bounds and all

the upper bounds of linear constraints must be sat-

is�ed, only one upper bound of the max constraints

entering a node has to be satis�ed and only one lower

bound of the min constraints entering a node has to

be satis�ed. This alternative or nonlinearity of sat-

isfying bounds for max or min constraints makes the

problem more complicated than the purely linear con-

straint cases such as layout compaction [4].

The next section reviews previous work on inter-

face timing veri�cation. Section 3 describes our algo-

rithm for veri�cation of max-linear constraint systems.

Section 4 describes a branch-and-bound algorithm for

solving min-max-linear constraint systems. Section 5

describes the results of experiments with our imple-

mentation of the veri�cation algorithm. Due to space

limitations, we omit the proofs of all the theorems in

this paper.

2 Previous work

Brzozowski et al. [5] use shortest-paths algorithms

to solve the problemwith only linear constraints. Both

Vanbekbergen et al. [3] and McMillian et al. [2] pro-

pose polynomial-time algorithms for the problem with

only max constraints.

So far no polynomial-time algorithm has been pub-

lished for any mixed-constraint problem. McMillan

and Dill [2] prove that the problem with both max

and min constraints is NP-complete. They solve the

problemwith all the three types of constraints by elim-

inating min constraints and dividing the problem into

subproblems which contain only linear and max con-

straints. Since min constraints are few in most ap-

plications, the number of subproblems may not be

very large in practice. Unfortunately, their algorithm

for a subproblem with max and linear constraints has

worst-case exponential running time which depends on

delay values and might even diverge for some patho-

logical cases. Walkup and Borriello propose an im-

proved algorithm whose running time is independent

of delay values for max-linear problem [6]. They con-

jecture that their algorithm runs in O(V 6) in the worst

case to determine all jV j2 maximumevent separations,

or O(V 5) for all jV j maximum separations from a sin-

gle node. The complexity of the min-max linear con-

straint graph problem is summarized in Figure 1.

Burks and Sakallah [7] apply mathematical pro-

gramming techniques to solve the general min-max lin-

ear programming problem. Although their approach

can be used to solve the interface timing problem, by

concentrating on only the special case of the general

min-max linear programming problem, we are able to

develop a much more e�cient graph-based algorithm.

3 The algorithm for max and linear

constraints

We present an e�cient algorithm to solve the prob-

lem with only max and linear constraints. Given

an event graph G = (V;E) and a node s 2 V ,

the algorithm �nds the maximum time separations

sepa[u] = max(time[u] � time[s]) for all the nodes

u 2 V . We may apply the algorithm several times for

di�erent s in the timing requirements, or jV j times for

all-pairs maximum time separations.

Although we are dealing with acyclic timing dia-

grams, the constraint graph can be cyclic when we

treat the lower bound and the upper bound of a delay

constraint as di�erent edges. McMillan and Dill's al-

gorithm [2] runs in time proportional to delay values

when there is a false negative cycle, a negative cycle

containing an upper bound of a max constraint which

does not have to be satis�ed. Unlike the problem with

only linear constraints, where a negative cycle indi-

cates an inconsistency, their algorithm might require

an exponential number of cycle traversals before iden-

tifying a false cycle. Given this observation, we derive

our algorithm in the following two steps.

� Ignore the upper bounds of the max constraints.

The remaining bounds must be satis�ed for all

feasible solutions and are compulsory. Generate

a constraint graph with only compulsory bounds.

Use a longest-paths algorithm to obtain the small-

est separation values that satisfy all compulsory

bounds.

� Reintroduce the upper bounds of the max con-

straints and increase the separation values ac-

cording to the slacks of the bounds. A proce-

dure similar to a shortest-paths algorithm is used

to calculate the amounts by which the separation

values can increase. The key advantage of this



Constraint type Complexity Proposed by

linear only O(V E) Shortest-paths algorithms

max only O(V 2) Vanbekbergen et al.

max only O(E) McMillian & Dill

max + linear O(V 5) conjecture Walkup & Borriello

max + linear O(V 2 logV + V E) conjecture This paper

min + max NP-complete McMillian & Dill

min + max + linear NP-complete McMillian & Dill

Figure 1: The complexity for deriving the maximum separations of all nodes from a single node for various types

of constraints.

approach is that we can avoid su�ering from false

negative cycles because all the slacks are nonneg-

ative.

� Iteratively relax the separations. Repeat the

above step until no relaxation is possible.

We formalize the �rst step of the algorithm as follows.

De�nition 1 (Compulsory constraint graph)

Given an event graph G = (V;E) and a source node s,

the corresponding compulsory constraint graph Gc =

(V;Ec) is a weighted directed graph, where Ec con-

tains the following edges. For each linear or max con-

straint cij 2 E, eij 2 Ec and has weight lower[cij].

For each linear constraint cij 2 E, eji 2 Ec and has

weight �upper[cij]. For each node i, esi 2 Ec and has

weight -MAXINT, where MAXINT is a number larger than

any sum of the �nite bounds, but obeys the arithmetic

rules of �nite numbers,

The O(V E) single-source longest-paths algorithm [8]

can be applied to Gc. If there is a positive cycle in

Gc, the problem must be inconsistent and the algo-

rithm can exit. The compulsory constraint graph for

an example modi�ed from [2] is shown in Figure 2.

The second step proceeds with an auxiliary graph

de�ned below.

De�nition 2 (Slack graph) Given an event graph

G = (V;E), a source node s, and a separation value

sepa[i] for each node i 2 V , the slack graph Gs =

(V;Es) is a weighted directed graph, where Es is de-

�ned as follows. For each constraint cij 2 E, eji 2 Es

and has weight sepa[j] � sepa[i] � lower[cij]. Add

eij 2 Es with weight upper[cij] + sepa[i] � sepa[j], if

the weight is nonegative. Mark eij as max-optional

if cij is a max constraint, otherwise it is compulsory. If

a node u is a max event, an event with some max con-

straints entering it, and no max-optional edge enters

u, add a max-optional edge esu with weight zero.

Note the weights in Gs are the slacks of the bounds
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Figure 2: (a) An event graph. The solid lines are linear

constraints while the dotted lines are max constraints.

(b) The corresponding compulsory constraint graph.

The node values are the longest-path weights, which

are the initial values of the time separations.

in the constraints. We ignore the unsatis�ed upper

bounds of max constraints in Gs, so all the weights

of the edges must be nonnegative. It can be easily

shown that we cannot increase sepa[j] by weight[eij]

more than the amount by which we increase sepa[i],

unless either some linear constraint between i and j is

violated, or some other max constraint ckj is satis�ed.

The amount the separation of a node can be increased

by considering all the slacks into it is de�ned as fol-

lows.

De�nition 3 (Shortest slack) Suppose the shortest

slack from s to i is �[i] for each node i in Gs. Then

�[i] = min(�l[i]; �m[i]), where

�l[i] = min
eji is compulsory

(�[j] + weight[eji])

�m[i] = max
eji is max-optional

(�[j] + weight[eji])

If no compulsory eji exists, �l[i] = 1. If no max-

optional eji exists, �m[i] =1.

Because all the compulsory bounds must be satis-



ShortestSlack(Gs; s)

f

for each node i f
enqueue(Q;i);

d[i] =1;

m[i] = 0;
n[i] = no. of max-optional edges entering i;

g

d[s] = 0;
while (Q 6= 0) f

Find u in Q with a minimum d[u];

for each edge eui f
/* Relax the edges */

t = d[u] +weight[eui];

if (eui is max-optional) f
n[i]��;

if (m[i] < t)

m[i] = t;
if (n[i] == 0 and d[i] > m[i])

d[i] = m[i];

g

else if (d[i] > t)

d[i] = t;

g

dequeue(Q;u);

g

g

Figure 3: The procedure ShortestSlack for comput-

ing the shortest slack from a source node s for each

node in a slack graph Gs.

�ed, �l is computed by the min function of the

slacks. Only one upper bound corresponding the max-

optional edges needs to be satis�ed, �m is computed by

the max function to increase the separations as much

as possible. We can increase sepa[i] by �[i] without

violating any already satis�ed constraints. The proce-

dure ShortestSlack(Gs) shown in Figure 3 computes

�[i] for each node i. It is based on Dijkstra's shortest-

paths algorithm [8]. During execution, for each node

i, let d[i] be a shortest slack estimate, n[i] be the num-

ber of max-optional edges entering i, and m[i] be the

temporary value for �m[i]. If we implement the pri-

ority queue Q with a Fibonacci heap, the complexity

of ShortestSlack is O(V logV + E). The following

theorem shows the correctness of this procedure.

Theorem 1 After we run the procedure

ShortestSlack(Gs; s), at termination d[u] = �[u] for

all nodes u in Gs.

Though the shortest slack �[u] in De�nition 3 may

not be unique, it can be shown ShortestSlack

computes shortest slacks. Moreover, the shortest

MaxSeparation(G;s)

f

Construct the compulsory constraint graph Gc.
if (!LongestPath(Gc; s) )

return INCONSISTENT;

for each node u f
sepa[u] = the longest path weight of u;

g

/* Iterative relaxation */
do f

Construct the slack graph Gs.

ShortestSlack(Gs; s);
change = NO;

for each node u f

if (�[u] ==1)
sepa[u] = MAXINT;

else if ((�[u] > 0) f

sepa[u]+ = �[u];
change = YES;

g

g

g while (change == YES);

for each node u

if (sepa[u] � MAXINT) sepa[u] =1;
if (all constraints are satis�ed) return CONSISTENT;

else return INCONSISTENT;

g

Figure 4: The algorithm MaxSeparation for �nding

the maximum separations from a source node s for an

event graph G, where only max constraints and linear

constraints exist.

slacks computed by ShortestSlack can be used by

MaxSeparation(G;s), shown in Figure 4, to �nd the

maximum time separations from a single source in an

event graph with only max and linear constraints. Al-

gorithm MaxSeparation increases the time separation

sepa[u] by �[u], updates the slack graph, and repeats

the steps until �[u] = 0 or �[u] =1 for all u 2 V . The

iteration steps for the example in Figure 2 are shown

in Figure 5.

We can prove that the algorithm produces the cor-

rect result.

Theorem 2 (Correctness) If the algorithm

MaxSeparation(G;s) returns CONSISTENT, sepa[u] is

the maximum separation from the source node s

to node u for all nodes u in G. If it returns

INCONSISTENT, the given constraints in G are incon-

sistent.

The complexity of constructing a slack graph is O(E),

that of ShortestSlack is O(V logV +E), and that of

increasing the separations is O(V ). The key to know



the worst-case running time of the algorithm is to show

a bound on the iterations for the do-while loop.

Theorem 3 The algorithm must terminate in �nite

steps.

Conjecture 4 (Complexity) The number of it-

erations for the do-while loop in the algorithm

MaxSeparation is bounded by jV j+ 1.

Unfortunately, we have not been able to prove this

conjecture rigorously. If this conjecture is true, the

algorithm for �nding the maximum separations from

a single source when only max and linear constraints

exist has an asymptotic upper bound of O(V 2 logV +

V E).

4 The algorithm for all types of con-

straints

The fact that the problem with all min, max and

linear constraints is NP-complete [2] justi�es a branch

and bound approach. In particular, we make the

following modi�cations to algorithm MaxSeparation.

Without loss of generality, we assume no event has

both max and min constraints entering it. An event

with min constraints entering it is a min event. The

major modi�cations are as follows:

� Add edges for the upper bounds of min con-

straints to the compulsory constraint graph. Add

compulsory edges for upper bounds of min con-

straints and min-optional edges for lower bounds

of min constraints to the slack graph.

� In the ShortestSlack procedure, for each de-

queued min event, if the relaxation of any min-

optional edge does not reduce the shortest slack

estimate, ignore the relaxation of all the min op-

tional edges out of the event. Otherwise, choose

one min-optional edge each time, save the cur-

rent status of the graph, delete all the other min-

optional edges, do a recursive call to start a new

subproblem, and restore the status of the graph

after the subproblem is �nished.

� The maximum separation of each event is the

maximum of the separations given by by all the

subproblem.

Our algorithm for each subproblem, where only max

and linear constraints exist, is e�cient. In the worst

case, if U is the set of all min events, we will have

�u2Uindegree[u] subproblems, where indegree[u] in

the number of min constraints entering u. We avoid
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Figure 5: (a) The event graph whose node values

are initial time separations. (b) The slack graph in

the �rst iteration. The dotted lines are max-optional

edges. The node values are the shortest slacks. (c)

The event graph whose node values are the time sep-

arations after each initial values is increased by the

shortest slack. (d) The slack graph in the second iter-

ation. Because all the shortest slacks are zeros, and all

constraints are satis�ed, we have obtained the maxi-

mum separations in (c).

generating a subproblem when it is possible. If the

lower bound of a min constraints entering an event has

been satis�ed because of some other constraints, the

alternative of choosing a min constraint disappears.

When we generate a new subproblem, we continue it

with the current status instead of running the proce-

dure from the beginning. These approaches make the

algorithm for the problem with all three types of con-

straints more e�cient than dividing the problem into

subproblems at �rst and solving each subproblems in-

dependently.

5 Experimental results

The �rst example for Intel 8086 ROM read cycle

is from [1], and used by [2]. As pointed out in [2],



Example #events #min #max #linear #require satis�ed? CPU time

8086 + 2716 13 2 2 14 6 NO 0.04s

80386 + 2147H-3 25 2 9 21 11 NO 0.19s

80386 + 2147H-2 25 2 9 21 11 YES 0.19s

Figure 6: The problem size and the result. The columns show the number of events, min constraints, max

constraints, linear constraints, timing requirements respectively. Then the result and the execution time given by

our algorithm are shown.

because the modeling of the address latch is incorrect,

the result shows the timing is not satis�ed.

The second and third examples are cache read hit

bus cycles for an Intel 80386 system. The compo-

nents involved are the Intel 80386 CPU, the Intel

82385 cache controller [9], 2147H-3 (55 ns) Static

RAM [10], an address latch 74FCT373T and a data

bu�er 74FBT245A [11]. Suppose the clock is 20MHz.

The algorithm shows the timing is not satis�ed. How-

ever, if we replace 2147H-3 with 2147H-2 (45 ns), all

the timing requirements are satis�ed.

The problem size and the execution time of our al-

gorithm, measured on a Sun Sparc ELC Workstation,

for each example is shown in Figure 4.

6 Conclusion

This paper has presented an algorithm for comput-

ing event-separations in constraint systems consisting

of max and linear constraints. The algorithm achieves

its e�ciency by using new techniques for eliminating

false negative constraint cycles. We have also pro-

posed a new branch-and-bound algorithm, embedded

in the algorithm for the max-linear problem, to solve

the problem with min, max, and linear constraints.

We believe that the elimination of false negative con-

straint cycles, intrinsic to the algorithm for the max-

linear problem, will allow the branch-and-bound algo-

rithm to be very e�cient for typical problems.

We are working to use these algorithms to develop

a complete veri�cation methodology for hardware in-

terfaces, particularly systems which include micropro-

cessors. We hope to extend these algorithms to deal

with cyclic timing diagrams, a problem which has been

explored by Amon, et.al [12]. In addition, we hope

that similar constraint-graph-based techniques can be

used to analyze the complex system timing that oc-

curs when interfaces \switch modes" and must simul-

taneously meet the constraints of multiple timing di-

agrams, a problem partially addressed by Daga and

Birmingham [13] with the use of annotated state tran-

sition graphs.
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