
Symbolic Exploration of Large Circuits with Enhanced

Forward/Backward Traversals

Gianpiero Cabodi Paolo Camurati Stefano Quer

Politecnico di Torino

Turin, Italy

Abstract

Symbolic state space exploration techniques for Fi-

nite State Machines (FSMs) are a major recent result

in CAD for VLSI. Most of them are exact and based

on forward traversal, but limited to medium-size cir-

cuits. Approximate forward traversal deals with bigger

circuits at the expense of exactness. Backward traversal

takes into account many irrelevant, unreachable states.

This paper combines the advantages of approximate for-

ward traversal and of exact backward traversal. Cofac-

toring plays a key role in e�cient function simpli�ca-

tion. For the �rst time, we are able to symbolically

manipulate some of the larger ISCAS'89 and MCNC

circuits in an exact way and to generate test patterns

for them. 1 2

1 Introduction

A popular model for \control-dominated" ASICs is

the Finite State Machine.

Given two FSMs, proving or disproving the equiv-

alence of their input/output behavior has applications

to several �elds, namely automated synthesis, formal

veri�cation of correctness, test pattern generation, re-

dundancy identi�cation and diagnosis.

Equivalence is a global property whose veri�cation

is better done on a local basis: the theoretical frame-

work consists in exploring the state space of the product

machine, checking at each step whether the outputs dif-

fer. State space exploration can either be a forward or

a backward traversal.

The basic traversal operation is an image or a pre-

image computation. They are conceptually simple if

1This work has partially been supported by the ESPRIT

Working Group 6018 CHARME-2.
2Contact Address: Paolo Camurati, Politecnico di Torino,

Dipartimento di Automatica e Informatica, Corso Duca degli

Abruzzi 24, I-10129 Turin (Italy), e-mail: camurati@polito.it.

the next state function is given as a \transition rela-

tion" [1].

Forward traversal is limited to medium-size circuits,

because of state space explosion. Backward traversal

considers too many unreachable states, thus the BDDs

grow too large. Approximate traversals allow only to

prove equivalence, not to disprove it, neither to gener-

ate a counterexample.

As neither forward nor backward traversals are def-

initely the best, a combination of both could be ben-

e�cial. Instead of a costly exact forward traversal, we

have a fast and cheap approximate version combined

with an exact backward algorithm. E�cient function

simpli�cation occurs thanks to the use of cofactoring,

which is by far superior to simple set intersection-based

techniques. The resulting algorithm is exact, complete

and applicable to large circuits.

Experimental results show that this mix allows us

to explore for the �rst time and exactly some of the

larger ISCAS'89 and MCNC circuits, that have been

until now outside the scope of exact symbolic tech-

niques. We are also able to generate the test patterns

for or to tag as undetectable all stuck-at faults with

few exceptions.

Section 2 summarizes some useful concepts. Sec-

tion 3 presents the symbolic state space exploration

algorithms. Section 4 briey recalls how the over-

estimation of the reachable state set is computed. The

experimental results are in section 5. Section 6 closes

the paper with a brief summary and future develop-

ments.

2 Preliminaries

Let two completely speci�ed FSMs be M =

(I;O; S; �; �; S0) and M 0
= (I;O; S0; �0; �0; S0

0
), where

I (O) is the common input (output) space, S and S0

are the state spaces, � and �0
(� and �0

) are the next

state (output) functions, and S0 and S0

0
are the initial

state sets.

Permission to copy without feeall orpart of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the

ACM copyright notice and the title of thepublication and its date appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, orto republish, requires a feeand/or specific permission. (c)1994 ACM 0-89791-687-5/94/0009 3.50



When working on Boolean spaces, denoting with B

the set f0; 1g, I; O; S, and S0 are (not necessarily the

same) powers of B; �, �0, �, and �0 are functions from

powers of B to powers of B.

The product machine Mp = M � M 0 is a 6-

tuple Mp = (I; B; Sp; �p; �p; S
p
0
) where Sp = S � S0,

�p((s; s0); x) = (�(s; x); �0(s0; x)), �p((s; s0); x) =

(�(s; x) 6= �0(s0; x)), and S
p
0

= f(s0; s
0

0
) such that

s0 2 S0 and s0

0
2 S0

0
g.

Let us consider the representation of � as a transition

relation: its characteristic function �c : S � S � I !

B is 1 i� the next state y 2 S is the image of the

current state s 2 S and of the input x 2 I according

to �. As we are often interested only in the existence

of an input value, rather than in the value itself, the

transition relation abstracts from the inputs. Writing

hereinafter, with abuse of notation, the function's name

for its characteristic function, the transition relation is:

TM (s; y) = 9x

nY

i=1

(yi � �i(x; s))

The image (pre-image) of a set of states described

by its characteristic function C(s) (C(y)) according to

� is de�ned as: Img(�; C(s)) = 9s (TM (s; y)�C(s)) and

PreImg(�; C(y)) = 9y (TM (s; y) �C(y)).

The next section describes how these concepts are

applied in practice in forward and backward traversals.

3 Symbolic Traversal Algorithms

Let us set as a goal proving the equivalence of 2

FSMs, i.e., showing that �p is identically zero on all the

reachable states of their product machine. The stan-

dard algorithms known from the literature are forward

and backward symbolic traversals.

3.1 The standard algorithms

Exact forward traversal is a breadth-�rst search

that, starting from the initial state set S
p
0
of Mp, com-

putes all its reachable states. At each iteration, we

calculate the set of next states (Next) reached from the

current one (Curr). This is accomplished by means of

a symbolic image evaluation. Reached states are ac-

cumulated in R. There are two termination conditions:

if there is at least an input combination for which a

di�erence appears on the outputs on the set of newly

reached states (�p� New 6= ;) or if a least �xed point is

found. The latter condition is tested by computing the

newly reached state set (New) at each step, terminating

as soon as it becomes empty (New 6= ;). Note that the

FT(�p, �p, S
p
0
); f

set of states R, Curr, New, Next;

R = Curr = New = S
p

0
;

do f

if (�p � New 6= ;) return(Not Equiv);

Next = Img(�p, Curr);

New = Next � R;

R = R + New;

Curr = New;

g while (New 6= ;);

return(Equiv);

g

Figure 1: Exact Forward Traversal

BT(�p, �p, S
p
0
); f

set of states Back R, Curr, New, Prev;

Back R = Curr = New = �p;

while (New 6= ;) f

Prev = PreImg(�p, Curr);

New = Prev � Back R;

Back R = Back R + New;

if ((New � S
p
0
) 6= ;) return(Not Equiv);

Curr = New;

g

return(Equiv);

g

Figure 2: Exact Backward Traversal

whole reachable state space needs to be explored only

for equivalent machines. The pseudo-code is shown in

Fig. 1.

The advantage of forward traversal is that explo-

ration starts from a known initial state set and thus

focusses only on reachable states. The limit is that it

doesn't take the property under scrutiny into account

and proceeds blindly so that the reachable state space

might be so large that it can't be represented by a

BDD.

In the exact backward algorithm, we compute the

set of states where at least an input combination makes

the outputs di�er and we use it as a starting point for

traversal. At each step a pre-image of �p is evaluated

on the set of newly reached states (New), yielding the

ones fromwhich they can be reached in one step (Prev).

Back R accumulates discovered states. The greatest

�xed point computation terminates as soon as an initial

state is encountered (New �S
p
0
6= ;) or no newly reached

states are found (New 6= ;). The pseudo-code is shown

in Fig. 2.

The advantage of backward traversal is that search

focusses only on those states that might be relevant



FBT R
+(�p, �p, S

p

0
); f

set of states R+, Curr, New, Next;

R
+[0] = Curr = New = S

p

0
;

i = 0;

do f
if (�p �New 6= ;)

if (BT R
+(�p, �p, R+, i) = Not Equiv)

return(Not Equiv);

Next = ImgApprox(�p, Curr);

i = i + 1;

New = Next �R+[i-1];
R
+[i] = R

+[i-1] + New;

Curr = between(New, R+[i]);

g
while (New 6= ;);
return(Equiv);

g

Figure 3: Combined approximate forward and exact

backward traversals

for the proof, although many of them can't be reached

from the initial ones. The limit is that it often considers

too many unreachable states.

An approximate forward traversal algorithm is de-

rived from Fig. 1 by changing the exact image compu-

tation procedure (Img) with an approximate one (Im-

gApprox). In this case, an over-estimation of Next

results from each call to ImgApprox. Its limit is that

it can be used to prove equivalence, but if it fails, noth-

ing can be said for sure. Section 4 summarizes our ap-

proach to approximate image computation and com-

pares it with the one of [4]. More details can be found

in [2].

3.2 Combining traversals

Approximate forward traversals are not very expen-

sive because approximate image computation is cheap.

Their limit is that they compute at each step an over-

estimation R
+ that contains in general many unreach-

able states. Although the outputs might di�er for some

input combination, this could happen on unreachable

states. To rule out this case, we perform an exact

backward traversal. If it terminates because it encoun-

ters S
p

0
, some states on which the outputs di�er are

reachable and equivalence is disproven, otherwise the

procedure resumes with one more approximate forward

traversal step and proceeds as above. Fig. 3 shows the

pseudo-code.

Starting from the initial state set S
p

0
, the ImgAp-

prox procedure computes the approximate state set

(Next) reachable in one step from the current one

(Curr). States that have not yet been visited (New)

are identi�ed and R
+[i] stores an over-estimation of

the reached state space for that step. If there are

new states where a di�erence appears on the outputs,

BT R
+ (Fig. 4) is called starting from this state set.

This procedure di�ers from the one of Fig. 2 because

the vector R
+ of the over-estimations is used to re-

strict the search space. If the procedure veri�es that

the outputs di�er on reachable states, we conclude that

the 2 FSMs are not equivalent and a test pattern can

be returned. Otherwise, nothing can be said yet and

procedure FBT R
+ iterates. The starting set Curr is

selected choosing a suitable BDD that represents all

newly reached states and possibly some of the already

visited ones. The least �xed point iteration terminates

as soon new states are found in the approximate for-

ward traversal step.

The function Increase Exactness of [9] is based on

an approximate pre-image computation, whereas the

�nal image computation is exact. Our pre-image is ex-

act and our image computation is approximate. We

believe that this can explain our better performance,

because the exact backward traversal exploits the lo-

cal over-estimation R
+ to restrict the backward search

space.

3.3 Enhanced exact backward traversal

The key operation in the pseudo-code of Fig. 2 is pre-

image computation. Although conceptually simple, the

resulting BDD might contain many unreachable states.

Some intuitive observations allow us to e�ciently prune

the search space, once the over-estimations R
+ are

available:

1. the pre-image of �p on Curr is of interest only inside

the over-estimation R
+[i-1] at the previous step,

i.e., it can be cofactored with R
+[i-1]. It is easy to

show that this means to cofactor the �
p functions

with R
+[i-1]

2. there can be no states s outside the over-

estimation R
+[i] at step i whose pre-image has

a non-empty intersection with the over-estimation

R
+[i-1] at the previous step. As a consequence, the

current state set Currwhose pre-image is computed

can be simpli�ed by cofactoring it with R
+[i].

Note that the above remarks allow us to deal only

with cofactored functions, which are in general much

simpler than the original ones, with intuitive bene�ts

on BDD size and CPU time.

Fig. 4 shows a variant to the standard backward

algorithm of Fig. 2 that includes the above remarks.



BT R
+(�p, �p, R+, i); f

set of states Curr, Prev;

Curr = �p # R+[i];
while ((i > 0) and (Curr 6= ;)) f

Prev =PreImg(�p #R+[i-1], Curr);
Curr = Prev;

i = i-1;

g
if ((i = 0) and (Curr 6= ;))

return(Not Equiv)

else

return(Equiv);

g

Figure 4: Exact backward traversal with enhanced

search state pruning thanks to R
+ and cofactoring

Procedure BT R
+ is called at the i-th step of the ap-

proximate forward traversal and has access to all the

over-estimations R+ computed from step 1 to i-1. Note

that there is no more need of passing S
p

0 as a parame-

ter, because it is included in R
+[0].

4 Computation of R+

Algorithms for computing R
+ must satisfy several

constraints:

� speed: computing the over-estimation must be sig-

ni�cantly faster than performing an exact image

computation

� accuracy, i.e., how close R and R
+ are

� applicability: techniques that work well on single

FSMs may fail on product machines, as mutual

constraints are overlooked [4].

Image computation requires the knowledge of the

transition relation: hence, approximating TM entails

an approximate image computation. The approxima-

tion stems from overlooking some mutual constraints.

The basic idea is to partition the n fi functions in

k groups, to build for each of them its transition

relation TMj
and to compute TM as their product:

TM =
Qk

j=1
TMj

. Functions are grouped without tak-

ing topology into account, unlike [4], rather only their

order. Each machine (TMj
) is assumed to be indepen-

dent of the others.

It is easy to take more constraints into account, re-

turning more accurate over-estimations, with a simple

variation to the previous strategy. For example we can

sort the fi functions according to two di�erent order-

ings and store the result in two arrays. We partition

each array, starting from a di�erent o�set, in k groups.

For each group we compute the exact transition rela-

tion. TM is their product. We refer the reader to [2]

for experimental results.

To make the two strategies e�cient for product ma-

chine traversal, as already noted in [4], we keep corre-

sponding functions in the same group.

Building transition relations for the partitions ac-

cording to the de�nition is often impossible, as the fis

may have relatively small BDDs, but their product may

grow too large. Early existential quanti�cation could

reduce the size, but it doesn't distribute with logical

and. A result of [1] shows that they do distribute, pro-

vided the functions are simpli�ed by the \exist" co-

factor. This allows us to build transition relations for

much larger circuits.

5 Experimental Results

We implemented the algorithms in a fully home-

made package amounting to about 15,000 lines of C-

code, called FBT. BDD nodes are limited to 1,500,000.

In this section we present the results of FBT for the

circuits described in Tab. 1. They come from the IS-

CAS'89 andMCNC suites. The columns give the name,

the number of primary inputs, primary outputs, ip-

ops, and gates for each circuit.

Until now, symbolic techniques have dealt with the

smaller ones. We present experimental evidence on all

the smaller circuits, but our main novelty is to present

data on some of the larger ones, namely s1423, s5378,

s13207, s15850, that, to the best of our knowledge, have

never been handled symbolically in an exact way. We

also present for the �rst time results on minmax9, and

mul32, as far as symbolic ATPG is concerned.

Tab. 2 collects the ATPG statistics. We ran the ex-

periments on a 70 MIPS VAX-Alpha. For each bench-

mark circuit, the table shows the total number of faults

(F), the number of detectable (D), undetectable (U),

and aborted (A) faults and the total CPU time (T) (in

seconds, unless otherwise stated). We work on non-

scannable synchronous sequential circuits composed of

combinational logic and ip-ops, all controlled by the

same clock. We assume the existence of an all-zero re-

set state and that all fault-free or faulty storage devices

can be put in that state. Our model is the single stuck-

at fault. We disregard faults a�ecting the clock or the

reset lines or occurring inside the ip-ops.

FBT is exact and fully symbolic, i.e., no prelimi-

nary random pattern was fault-simulated for pruning



Circuit PI PO FF Gates

s208 11 2 8 96

s298 3 6 14 119

s344 9 11 15 160

s349 9 11 15 161

s382 3 6 21 158

s386 7 7 6 159

s400 3 6 21 162

s420 19 2 16 196

s444 3 6 21 181

s510 19 7 6 211

s526 3 6 21 193

s641 35 24 19 379

s713 35 23 19 393

s820 18 19 5 289

s382 18 19 5 287

s838 35 2 32 390

s953 16 23 29 418

s1196 14 14 18 529

s1238 14 14 18 510

s1423 17 5 74 657

s1488 8 19 6 653

s1494 8 19 6 647

s5378 35 49 179 2779

s13207 31 121 669 8652

s15850 14 87 597 10384

sbc 40 56 28 1011

minmax9 14 9 27 863

mul16 18 1 16 245

dsip sim 229 198 224 4109

mul32 34 2 32 470

big key 229 198 224 5643

Table 1: Example statistics

the fault list. As soon as the symbolic ATPG proce-

dure computes a new test pattern, we use simulation

to drop faults. The software is still a prototype and we

put no e�ort on optimizing its time performance, as we

focussed on showing the applicability of our approach

to larger circuits. We manually select the degree of ap-

proximation for R+. It is important to note that there

is a trade-o� between exactness of the over-estimation

and ATPG e�ciency, as already experienced in [2]. It

is often better to use a simple but very approximate

R+ than a complicated, but more precise one. Cir-

cuits s13207 and s15850 are sequentially very deep and

this makes even approximate traversal di�cult on the

product machine, as already noted in [4]. We believe

that most aborted faults are undetectable, but we still

lack adequate approximate techniques for traversing se-

quentially deep circuits.

Circuit F D U A T

s208 215 150 65 0 7

s298 308 273 35 0 5

s344 342 337 5 0 4

s349 332 325 7 0 4

s382 399 379 20 0 376

s386 384 314 70 0 4

s400 424 397 27 0 405

s420 430 204 226 0 77

s444 474 439 35 0 309

s510 564 564 0 0 14

s526 555 466 89 0 515

s641 467 408 59 0 11

s713 585 484 101 0 12

s820 850 815 35 0 40

s832 870 819 51 0 41

s838 857 303 554 0 626

s953 1079 1069 10 0 35

s1196 1242 1199 3 0 33

s1238 1355 1283 72 0 35

s1423 1515 1465 37 13 5h

s1488 1486 1446 40 0 73

s1494 1506 1455 51 0 90

s5378 4603 3635 778 190 7h

s13207(1) 9815 1956 4860 2999 23h

s15850(2) 11719 573 6804 4342 40h

sbc 1495 1381 34 0 180

minmax9 1594 1247 347 0 240

mul16 561 512 49 0 8m

dsip sim 7233 7230 3 0 22m

mul32 1091 1012 79 0 30m

big key 15583 15123 460 0 94m

Table 2: ATPG results. (1) means that 952 faults are

undetectable with sequences whose length is � 100. (2)

means that 1439 faults are undetectable with sequences

whose length is � 100.

Our data fully agree with those coming from other

symbolic approaches, like VERITAS [5]. There are dis-

crepancies between symbolic approaches and ATPGs

like STEED [6]. For example, the percentage of prov-

ably undetectable faults according to STEED for s5378

is higher than ours.

Tab. 3 compares FBT, VERITAS, and STEED in

terms of test generation e�ciency tge = D + U
F

� 100.

The superiority of symbolic techniques is evident, as

well as the fact that FBT handles larger circuits than

VERITAS. Most other work focussed on test generation

for circuits without a reset state [3], [8], [7]. As already



noted in [5], this is a di�erent problem and, though

test generation may be harder, tagging faults as unde-

tectable may be easier. A fair comparison is therefore

di�cult.

6 Conclusions

Symbolic FSM state space exploration techniques

represent one of the major recent results of formal veri-

�cation. Their limit resides in the inability to deal with

large circuits. We propose a combination of approxi-

mate forward and backward traversal that is exact and

e�cient, because of its enhanced search space pruning.

Experimental results show that it is possible to explore

and to generate the test patterns for some of the larger

ISCAS'89 and MCNC circuits, that have been until

now outside the scope of exact symbolic techniques.

Future developments will consist in reducing the

number of aborted faults, by developing notions of fault

equivalence classes and better techniques for product

machine traversal of large and sequentially deep cir-

cuits.

References

[1] G. Cabodi, P. Camurati: \Exploiting cofactoring for

e�cient FSM symbolic traversal based on the Tran-

sition Relation," ICCD'93, Cambridge, MA (USA),

October 1993, pp. 299{303

[2] G. Cabodi, P. Camurati, S. Quer: \E�cient State

Space Pruning in Symbolic Backward Traversal,"

ICCD'94, Cambridge, MA (USA), October 1994

[3] W-T. Cheng, T. J. Chakraborty: \Gentest: an auto-

matic test-generation system for sequential circuits,"

IEEE Computer, Vol. 22, n. 4, April 1989, pp. 43{48

[4] H.Cho, G.D. Hachtel, E. Macii, B. Plessier, F.

Somenzi: \Algorithms for approximate FSM traver-

sals," DAC-30, Dallas, TX (USA), June 1993, pp. 25{

30

[5] H. Cho, G.D. Hachtel, F. Somenzi: \Redundancy

identi�cation/removal and test generation for sequen-

tial circuits using implicit state enumeration," IEEE

Transactions on CAD, Vol. 12, No. 7, July 1993,

pp. 935{945

[6] A. Ghosh, S. Devadas, A. Richard Newton: \Test gen-

eration and veri�cation for highly sequential circuits,"

IEEE Transactions on CAD, Vol. 10, No. 5, May 1991,

pp. 652{667

[7] K. Hatayama, K. Hikone, M. Ikeda, T. Hayashi: \Se-

quential test generation based on real-valued logic sim-

ulation," ITC'92, September 1992, pp. 41{48

[8] T. Niermann, J.H. Patel: \HITEC: a test generation

package for sequential circuits," EDAC'91, February

1991, pp. 214{218

[9] F. Somenzi, Private communication

Circuit tge

FBT VERITAS STEED

s208 100 100 97.02

s298 100 100 99.02

s344 100 100 100

s349 100 100 100

s382 100 100 95.23

s386 100 100 100

s400 100 100 95.75

s420 100 100 91.16

s444 100 100 95.56

s510 100 100 99.82

s526 100 100 90.99

s641 100 100 93.08

s713 100 100 93.11

s820 100 100 100

s832 100 100 99.65

s838 100 100 80.50

s953 100 100 100

s1196 100 100 98.71

s1238 100 100 98.96

s1423 99.14 - -

s1488 100 100 100

s1494 100 100 100

s5378 95.87 - 99.25

s13207(1) 69.45 - -

s15850(2) 62.95 - -

sbc 100 100 98.64

minmax9 100 - -

mul16 100 - -

dsip sim 100 100 100

mul32 100 - -

big key 100 - -

Table 3: ATPG result comparison. - means data not

available. (1) means that 952 faults are undetectable

with sequences whose length is � 100. (2) means

that 1439 faults are undetectable with sequences whose

length is � 100.


	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index




